
This is a repository copy of Thermal 3D modelling.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/120381/

Version: Accepted Version

Proceedings Paper:
Clarkson, G, Luo, S and Fuentes, R orcid.org/0000-0001-8617-7381 (2017) Thermal 3D 
modelling. In: Proceedings of the 34th ISARC. 34th International Symposium in 
Automation and Robotics in Construction, 28 Jun - 01 Jul 2017, Taipei, Taiwan. IAARC , 
pp. 493-499. 

https://doi.org/10.22260/ISARC2017/0068

© This is an author produced version of a paper published in 34th International 
Symposium on Automation and Robotics in Construction (ISARC 2017). 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



34th International Symposium on Automation and Robotics in Construction (ISARC 2017) 

Thermal 3D Modelling 

Gregory Clarkson, Shan Luo, Raul Fuentes 

School of Civil Engineering, University of Leeds, Leeds, LS2 9JT 
E-mail addresses: cn13gc@leeds.ac.uk, S.Luo@leeds.ac.uk, R.Fuentes@leeds.ac.uk 

 
Abstract – This paper presents the case of a 3D 

reconstruction of an object using infrared imagery 

directly. In total, three point clouds are created using 

3DF Zephyr and SfM techniques. The first is a 

thermal reconstruction, the second is a low resolution 

RGB reconstruction and the final is a high resolution 

RGB reconstruction which is used as a reference for 

comparison of the others. CloudCompare is then used 

to analyze and evaluate the reconstructed point 

clouds. In particular, this paper presents the 

reconstruction of a 3D Model directly from thermal 

images, conversely to previous solutions that use RGB 

imagery for 3D reconstruction subsequently followed 

by superposition of the thermal data. 
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1 Introduction 

The field of reconstruction from multiple images, 
known as Structure from Motion (SfM) has been rapidly 
expanding in recent years to incorporate a wider variety 
of possibilities and applications. This development is 
driven by constant innovation and improvement in 
computer technology [1]. 3D reconstruction is therefore 
becoming a much more frequent practice in various fields. 
[2] shows why reconstruction is of great importance in 
architectural restoration and deformation monitoring of 
historic structures using the wall in Uzutrakis palace, 
Lithuania as a case study. Other uses of this technology 
include crime scene investigation [3] and medical MRI 
scanning [4]. However, the more specific use of thermal 
reconstructions is largely unexplored and has many 
potential applications in the construction industry alone, 
such as leak detection (see Figure 1). Creating full 
thermal profiles of buildings would also be possible using 
UAV’s with mounted thermal optics, such as the DJI 
Inspire 2 [5] and DJI Zenmuse XT Thermal Camera with 
Stabilized Gimbal provided by FLIR [6]. These models 
could be used to evaluate and improve a structure’s 
energy performance. Moreover, [7] discusses how the 
operational cost of a building is greater than the capital 
cost at a ratio of approximately 1.2:1.0 and thus there is  

 

Figure 1: (Left) RGB photograph. (Right) 
Thermal / infrared image. It can be seen that the 
leaks can only be detected in the thermal view 
[24]. 

significant financial motivation to ensure energy 
efficiency. Thermal reconstructions would allow 
complex situations to be analyzed more accurately. 

To date, there has been little research into the 
reconstruction of 3D models directly from thermal 
imagery. Current methods involve superimposing 
thermal data onto reconstructions created through regular 
RGB images or other means. For example, [8] uses a 
method where thermal data is projected onto an existing 
3D model created with AutoCAD. [9] presents the idea 
of ‘carving’ out a heat source from a voxel set created by 
segmentation using Otsu thresholding method [10]. To 
date, no reliable method for thermal-only reconstruction 
has been proposed. This paper will investigate the 
reconstruction of models directly from thermal images 
using software which implements SfM techniques. These 
are then compared to both low and high quality RGB 
reconstructions, using Cloud Compare for evaluation. 

2 Structure from Motion (SfM) 

SfM is now a well-established and commonly used 
reconstruction technique, it is well documented and there 
is software readily available offering various 
implementations of it. SfM is the process of obtaining 3D 
spatial coordinates from a series of 2D images. The 
image capture point locations need not be known or 
planned prior to taking the images and are recovered 
from the SfM pipeline itself, much like traditional 
photogrammetry. Multiple overlapping images of the 
object need to be captured from varying perspectives. 
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Features of an image known as keypoints can then be 
detected and described using various algorithms such as 
Speeded Up Robust Features (SURF) [11] or the popular 
Scale Invariant Feature Transform (SIFT) [12]. 
Maximally stable extremal features (MSER) [13] is 
another algorithm which matches regions of similar 
luminous intensity rather than specific keypoints. A 
matching process then occurs between the keypoints in 
different images and if there are enough matches between 
multiple images, first the camera position and 
orientations are recovered, followed by a measurement of 
the 3D coordinates of the keypoints through triangulation. 

Zephyr Pro created by 3D Flow [14] is just one 
package, but is used in this work due to its intuitive 
workflow and reliability. Zephyr uses its own proprietary 
set of algorithms for reconstruction. The first is known as 
SAMANTHA which calculates camera positions and 
orientations and keypoints and the second is STASIA, a 
Multiview Stereo (MVS) algorithm which extracts dense 
point clouds [15,16]. SAMANTHA uses a feature 
detector to extract keypoints that is a scale-space feature 
extractor based on Difference of Gaussian, with a radial 
and symmetric descriptor [17]. Keypoints are then 
matched between images based on the response values 
from their descriptors and a rough set of camera positions 
and orientations are estimated. A more refined matching 
stage is then undertaken in which keypoints are also 
discarded. The fundamental matrix [18], which describes 
the intrinsic relationship between two viewpoints, is 
calculated using M-SAC [19]. A hierarchal structure is 
created for matching images using an agglomerative 
clustering algorithm. The partial models created from 
these matches are merged together forming a single 
model and finally bundle adjustment is performed to 
reduce reprojection errors and improve overall accuracy.  

3 Object Description 

The object being reconstructed in this paper was 
carefully chosen to have the following properties: 

 
 Relatively small – easy to photograph using 

available thermal cameras (low resolution images). 
 ‘Blocky’ geometry – Geometry which is too 

complex would be difficult to accurately reconstruct. 
 Varying thermal profile – unlike in regular RGB 

photographs thermal images require a temperature 
gradient for keypoint detection. 

  
Figure 2 shows the architectural model chosen for the 
reconstruction. The whole model is relatively small (~ 
75x45cm) and has a complex enough form to allow both 
RGB and thermal reconstruction. The model is heated 
and given a sufficient thermal profile using two 1000W 
work lights secured to the tabletop via a drill vice. The 

work lights act as a sun emulator and provide heat across 
the model, much in the same fashion as a heliodon [20]. 

 

 

Figure 2: Photograph showing architectural model 
to be reconstructed (High resolution RGB). 

4 Camera Calibration and Properties 

Both thermal and RGB cameras are automatically 
calibrated within Zephyr, this is done using an additional 
package called 3DF Lapyx which has been recently 
integrated into Zephyr. 

4.1 Thermal Camera 

The device used to capture thermal images is a FLIR 
A65sc. The specifications used can be seen in Table 1 
below. 

Table 1 FLIR A65sc Properties. 

Camera property Value 
IR Resolution 

Temperature Range 
640x512px 

16-38°C 
Thermal Sensitivity 50mK 

Focal Length 30mm 
Accuracy ±5°C (±9°F) or 

±5% of reading 
 

4.2 RGB Camera 

The device used to capture regular RGB photographs 
is a SONY ILCE-7S DLSR camera. The settings are 
selected by trial and error to ensure that the quality of the 
image was adequate and can be seen in Table 2. 
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Table 2: SONY ILCE-7S Properties. 

Camera property Value 
Focusing Mode AE-L 

F-stop f/5.6 
Exposure Time 1/250s 

ISO-Speed 
Focal Length 
Max Aperture 

Brightness 

4000 
50mm 
4.336 
3.404 

5 Image Capture 

The image capture process for both thermal and RGB 
reconstruction is crucial as it must be ensured that there 
is enough overlap between consecutive images for 
sufficient keypoint matching to occur. The architectural 
model is encircled completely while continually 
capturing images at approximately 20° increments (see 
Figure 3). In total, the capture process took around 15 
minutes for each set of images, excluding initial 
experiment set up time.  
 

 

Figure 3: Reconstruction in Zephyr showing 
computed camera locations (blue frustums) and 
reconstructed point cloud (centre). 

5.1 Thermal Series 

Two sets of thermal images (640x512px) were 
captured; the first set of 24 had the work lights switched 
on to heat up the model from one side (Figure 4). The 
second set of 19 images was taken roughly five minutes 
after the lights had been switched off so only some 
residual heat remains (see Figure 5). This series of 
images highlights the major problem of reconstructing 
directly from thermal images, which is lack of detectable 
features present. Zephyr could not detect/match enough 
keypoints between images with this set for a successful 
reconstruction, therefore, it was disregarded. 

 
 

5.2 RGB Series 

Two sets of RGB photographs were taken of the 
architectural model. The first is a high resolution 
(4240x2832px) set consisting of 17 images. The second 
set of 18 images were taken at the lowest possible 
resolution of the camera (2128x1416px). This image set 
was then resampled and downscaled to match the thermal 
image resolution (640x512px). This down scaling was 
done using Adobe Photoshop’s resampling tool with 
bicubic sharpening (reduction) as the resampling method 
[21]. Figure 2 shows one of the high-resolution images 
used in the reconstruction. 
 

 

Figure 4: Thermal image from series one showing 
architectural model with work lights switched on. 

 

Figure 5: Thermal image from series two showing 
architectural model after work lights have been 
switched off. 
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6 Reconstruction 

The thermal and RGB photographs taken were then 
reconstructed using Zephyr. A desktop PC was used for 
processing which has primary components of an Intel i5-
4430 (3GHz) CPU and 2Gb NVidia GTX 960 with 
CUDA GPU. Actual processing time of the point clouds 
varies significantly, but is primarily dependent on the 
image resolution and complexity (see Table 3). 

6.1 Thermal 

The thermal photographs are reconstructed using the 
advanced settings in Zephyr to allow more control. A full 
description of the settings is outside the scope of this 
paper but are included for ease of reproducibility of the 
results. A complete explanation of the settings can be 
found in [14]. ‘Exhaustive’ was used as a base point and 
then tweaked to give the best possible reconstruction. 
The photo ordering was changed to unordered and 
keypoint matching tolerance increased. ‘High details – 
Sharp’ was used as the setting for dense point cloud 
generation and with no additional tweaks.   

Only eight of the thermal images showed sufficient 
correspondence to create a point cloud: this further 
highlights the need for a varying temperature gradient 
across an object for thermal reconstruction. There are a 
considerable number of errors in the reconstruction; these 
are especially prevalent in areas with little temperature 
variation, in this case the side of the model not facing the 
heat source. There is also significant distortion within the 
model, although the overall form can be inferred (See 
Figures 4, 6). 

6.2 RGB 

The RGB photographs are reconstructed using the 
Zephyr preset settings, for simplicity. ‘Default’ and 
‘Deep’ were used for the high and low resolution series 
sparse point cloud generation respectively. The photo 
ordering setting was again changed to unordered so that 
keypoint matching occurs between all images. Dense 
point cloud generation was performed with the same 
settings as the thermal photographs. There is some 
surface glare present in several RGB photographs, 
originating from the glossy surface present on some parts 
of the model. This glossiness is inconsistent between 
views as the relative perspective lighting changes and 
hence makes keypoint detection in these areas difficult. 
However, the wood paneling texture on the model 
provides an excellent source of key points, especially 
regarding the high-resolution photographs.  

For the high-resolution image set, only 1 photograph 
failed to match enough keypoints to be successfully 
included in the reconstruction (due to undesirable motion 
blur present). The quality of the point cloud overall 

appears very good, there is little noise and only minor 
reconstruction errors present (see Figure 7). These errors 
are primarily gaps that occur only on the thin white walls 
of the model, explained by the lack of surface texture and 
hence lack of keypoints.  

For the low-resolution image set the reconstruction is 
much less complete with six cameras being discarded. 
The sections of the model with the wood paneling texture 
are still reconstructed well, but the white portions have 
considerably more errors and the overall form of the 
cloud shows more distortion too (see Figure 8). This loss 
of quality is to be expected when using such low-
resolution photographs as there are simply fewer 
keypoints which can be detected. For comparison, a 
script was created in MATLAB running the SURF 
algorithm, 2726 key points are detected in one of the 
high-resolution photographs and only 319 in a low-
resolution photograph. This stark difference is 
exacerbated since the low resolution is not the 
photographs native format and there will be some loss of 
quality occurring from the down sampling and resizing 
process. 

 

 

Figure 6: Dense, thermal point cloud created using 
Zephyr (post-cleanup) – a good reconstruction 
only occurs where there’s a varying thermal 
profile. 

 

Figure 7: Dense, high resolution, RGB point cloud 
created using Zephyr (post-cleanup) – errors 
visible at the bottom of the model on the glossy 
walls. 
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Figure 8: Dense, low resolution, RGB point cloud 
created using Zephyr (post-cleanup) – Mesh holes 
can be seen on the right and distortion on the left. 

6.3 Point cloud cleanup and registration 

The post reconstruction process consists of two steps: 
cleanup and registration. The cleanup itself is done in two 
stages. The first stage involves the removal of points with 
high uncertainty using Zephyr’s confidence index and the 
second stage is a manual removal of anomalous points. 
These are erroneous points inherently present in every 
reconstruction and do not fit with the desired point cloud 
form. The table beneath the base of the model was also 
removed from all the point clouds as this would affect 
comparison validity. This was done using the tools within 
Zephyr to ‘cut’ around the base in the clouds which can 
clearly be discerned. 

SfM techniques cannot currently recover a scaled 
model directly without additional spatial information 
being provided. This procedure was deemed unnecessary 
as this paper is focused on the thermal reconstruction 
process rather than precise accuracy in terms of scale. 
Therefore, a relative scale has been adopted where the 
thermal and low resolution RGB point clouds are 
adjusted to fit onto the high resolution RGB cloud which 
acts as the reference. This process is done in two stages 
using CloudCompare [22]; the first is manually 
translating / rotating / scaling the non-reference clouds to 
align them approximately to the reference. The second 
stage refines this alignment using Iterative Closest Point 
(ICP) algorithm [23], which adjusts the non-reference 
point cloud to achieve the lowest RMS errors. 

7 Point Cloud Comparison 

Once the reconstructions are aligned and scaled relative 
to the reference, they can be compared reliably and fairly. 
The number of points in the dense cloud is proportional 
to the complexity of the image, thus it is intuitive that the 
thermal point cloud will have fewer. Conversely, this 
method also reduces the computation time required for 
processing as can be seen in Table 3. 

Table 3: Point cloud density and approximate 
computation time. 

Model name Number of 
points in cloud 

~ Computation 
time (mins) 

Thermal 137,064 5 
High-res RGB 2,206,837 30 
Low-res RGB 226,364 12 

The histograms below (Figures 9, 10) show absolute 
distance comparisons of the thermal and low-resolution 
RGB clouds against the high-resolution RGB cloud. 
These distances represent how much the non-reference 
point cloud deviates from the reference and thus a rough 
gauge of accuracy can be inferred. 

 

Figure 9: CloudCompare absolute distance 
comparison between thermal and high resolution 
RGB point clouds. 

 

Figure 10: CloudCompare absolute distance 
comparison between low and high resolution 
RGB point clouds. 
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Overall, the low resolution RGB point cloud is the 
closest match to the reference cloud. The mean and 
standard deviation are 44.7% and 38.9% lower than the 
thermal clouds respectively. However, this lower 
accuracy does not mean that reconstructing from thermal 
clouds directly is obsolete; there are several specific 
situations where thermal images will give a better 
reconstruction than an RGB. Flat surfaces with very little 
surface texture such as the glossy white parts of the 
architectural model in this case gave a poor 
reconstruction through RGB images. Thermal 
reconstruction has potential to work around this problem 
as the surface can have a temperature gradient and hence 
can still be reconstructed through the thermal imagery. It 
then follows that the combination of thermal and RGB 
imagery could improve the overall reconstruction result. 
This method is a clear advantage over others that use 
superimposing of the thermal data. 

8 Conclusion 

The SONY ILCE-7S and FLIR A65sc were successfully 
used to acquire good sets of photographs of the 
architectural model. The 3D reconstruction software 
Zephyr was then used to reconstruct these into dense 
point clouds (Figures 6, 7, 8) using SfM techniques. The 
low resolution RGB and thermal point clouds were 
initially manually aligned onto the high-resolution RGB 
cloud, which was further refined by the ICP algorithm. 
An absolute distance analysis is then performed using 
CloudCompare (Figures 9, 10) and the point clouds are 
evaluated in section 7. 
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