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Abstract

A massive amount of information as geo-referenced data is now emerging from the digitization of contemporary cities.

Urban streets networks are characterized by a fairly uniform degree distribution and a low degree range. Therefore,

the analysis of the graph constructed from the topology of the urban layout does not provide significant information

when studying topology–based centrality. On the other hand, we have collected geo-located data about the use of

various buildings and facilities within the city. This does provide a rich source of information about the importance

of various areas. Despite this, we still need to consider the influence of topology, as this determines the interaction

between different areas. In this paper, we propose a new model of centrality for urban networks based on the concept

of Eigenvector Centrality for urban street networks which incorporates information from both topology and data residing

on the nodes. So, the centrality proposed is able to measure the influence of two factors, the topology of the network

and the geo-referenced data extracted from the network and associated to the nodes. We detail how to compute the

centrality measure and provide the rational behind it. Some numerical examples with small networks are performed to

analyse the characteristics of the model. Finally, a detailed example of a real urban street network is discussed, taking

a real set of data obtained from a fieldwork, regarding the commercial activity developed in the city.

Keywords
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Introduction

We live in a time when the data constitute a source around

which emerge new business models and new forms of

exploitation. The cities, in general, are great sources of data

[Behhisch and Ultsch(2007)]. Many private and public enter-

prises manage large volumes of data generated in urban envi-

ronments where the positional component, that is, the ability

to geo-locate data, is crucial to obtain valuable information

for strategic decision making ([Fischer and Wang(2011),

Haining(2003), Oyana and Margai(2015)]). Therefore, spa-

tial data become important geo-marketing tools aimed

at enhancing land management processes and business

through the integration and exploitation of the geographi-

cal position of some human activity [Bradlow et al(2005),

Gliquet(2002)].

Networks can be represented by graphs and their

structure can be analysed using different concepts;

one of the most important is centrality.The centrality

indices [Freeman(1977)] are measures of the varying

importance of the nodes in a network according to a specific

geometrical or topological criterion [Crucitti et al(2006a)].

As [Porta et al(2006)] states, a set of centralities measures

proposed in [Freeman(1977), Freeman(1979)] can be

grouped into two different families. The first one considers

a central graph entity in terms of being near to others

([Freeman(1977), Freeman(1979), Nieminen(1974),

Sabidussi(1966)]), where the closeness centrality is the most

representative.

The second family may be viewed as centralities

in terms of being the intermediary of others

[Freeman(1977), Freeman(1979), Freeman et al(1991),

Brandes(2001), Newman(2003)], where the betweenness

centrality is the most representative of this category.

There are another families of centralities which are
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relevant for the study of basic network properties. One

of them is a family of centralities which deal with

the global efficiency of the networks, it includes such

measures as efficiency, straightness and information

centralities [Latora and Marchiori(2004)].

Another family of centralities measures the relative

influence of the nodes in the network, including

eigenvector centrality [Bonacich(1987), Bonacich(1991)],

Katz centrality [Katz(1953)], and Page Rank

based centralities [Page et al(1999), Berkhin(2005),

Langville and Mayer(2005), Agryzkov et al(2012)] among

others.

Urban spatial networks belong to a particular type of

complex networks. They are most similar to the geometric

network, given that spatial close nodes are more likely to

be linked. They do not exhibit the small–world properties

as they are planar and there are large topological distances

between some nodes. In addition, urban networks are

characterized by a fairly uniform degree distribution, with

the usual degree variation between 1 and 5. Therefore the

use of the graph constructed from the topology of the urban

layout does not provide much interest studying the centrality

based exclusively from the network geometry or topology, as

is the case of the standard eigenvector centrality.

In this work a new model of analysis based on the

calculation of a type of eigenvector centrality in urban

spatial networks is proposed, which includes as a component

the geo-referenced data. The aim of proposed centrality

is to identify more and less influence areas of the city

by taking into account its geo-located data. For that task

the eigenvector centrality is the most appropriate. Besides,

endow the proposed measure with a mechanism that allows

us to weight the contribution of the network topology to the

final node score.

The association of geo-referenced data to the graph breaks

the uniform distribution of values, also it provides the

additional information in addition to the topology for the

analysis. Both elements are key to correctly identifying

important areas in the network. The relationships of the data

can only be properly understood in presence of the network

topology. Consequently, the proposed centrality measure is

an adaptation of the eigenvector centrality for the spatial

networks, which in addition to preserving the characteristics

of the original centrality, also includes in the computation

process the geo-referenced data.

Related work

There is a large volume of published studies describing the

role of complex networks or spatial analysis when we try

to understand the current cities. In this section we briefly

summarize the work developed by some researchers or

working groups, related to the study of cities as complex

networks, which we consider relevant.

Introducing the science of cities, Batty [Batty(2013)]

suggests that to understand cities we must view them not

simple as places in space but as systems of networks or

flows. Last decades have seen the development of diverse

analytic techniques for describing spatial layouts and their

properties. One of them is space syntax, a set of techniques

for the analysis of the spatial form developed by Bill

Hillier and his colleagues at University College London

(see [Hillier and Hanson(1984), Hillier(1999)]).

Space Syntax Analysis threat the urban space as dual

graph where nodes are represented as straight lines

of unobstructed pedestrian movement, and graph edges

are defined as its intersections. The basic component

of this dual graph is what they call axial space

a straight sight-line and possible path. Axial lines

are defined in the model as the fewest and longest

lines of sight that can be drawn through the open

street spaces of a study area [Hillier and Hanson(1984)].

The centrality measures proposed by Space Syntax

depart from its global vision of urban space as the

social space of human interactions and a physical

space of building environment [Hillier and Hanson(1984),

Hillier(1989), Hillier and Vaughan(2007)]. These centrality

measures are mostly based on topological distances

measured in terms of steps.

The applications of Space Syntax Analysis is numerous

and cover a variety of research areas and applications

in architecture, urban design and planning, transport,

information technology, and many others. Some great

specialists in the field of spatial analysis or urban modelling,

as Bin Jiang or Michael Batty, combined space syntax with

traditional transport networks models, using intersections

as nodes and constructing visibility graphs to link them.

In [Jiang and Claramunt(2002)] the authors present a data

modelling process based on a combination of complex

system theory and the object-oriented paradigm, producing

an object-oriented spatio-temporal data model.

Some authors and research groups, such as S. Porta and

City Form Lab, provide a different technique, using the

direct approach to the spatial system by using the primal

graph, where edges represent an urban streets and nodes
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are its intersections [Chambers(1988), Porta et al(2006),

Sevtsuk(2012)]. This approach to the urban space preserve

its topology and offers an opportunity to work with

Euclidean distances, which are an important property for

almost all spatial systems.

On the other hand, we want to highlight the work done

by Andres Sevtsuk and his colleagues at the City Form Lab

in Cambridge, MA. Among other projects they developed a

toolbox called Urban Network Analysis (UNA) for ArcGIS,

which is able to compute five types of graph analysis

measures on spatial networks (Reach, Gravity, Betweenness,

Closeness, and Straightness), as well as some other indices.

An original contribution of the urban analysis network

tools implemented is that they include a third network

element: buildings. The unit of analysis thus becomes a

building, enabling the different graph indexes to be computed

separately for each building. They are used as the spatial

units of analysis for all measurements and, what may

be very useful, they can be weighted according to some

characteristics, (see [Sevtsuk(2012)]).

A number of authors has shown that network analysis

measures can be useful predictors of some urban phenomena,

as for example in the distribution of retail and service

establishments in urban environments [Porta et al(2009),

Porta et al(2012), Sevtsuk(2014)]. It is interesting the work

developed by Sevtsuk [Sevtsuk(2010)], analysing retail

location patterns in urban settings and investigating whether

and how the distribution of retailers is affected by the spatial

configuration of the built environment. In our case, we are

not considering as a priority the built environment, since

we are focusing the work in the developing of a centrality

measure that acts directly over the data.

In [Porta et al(2009), Porta et al(2012)] the authors exam-

ine the relationship between street centrality and densities

of commercial and services activities in the cities of Bologna

and Barcelona. The centrality measures they use are classical

ones as closeness, betweenness and straightness. They show

a high correlation between areas with high centrality values

and high commercial density. We analyse a similar question

but with a quite different point of view. Their starting point

is the network topology, while our starting point is a set of

retail and services data in the city, applying the eigenvector

centrality proposed to this set of data.

Urban Street Networks and Geo–located

Data

In an urban network, we have a great amount of information;

much of it has a geographic location, allowing us to perform

their representation in the urban fabric itself. However, we

must be able to quantify and distribute this information in

the graph, which is the geometric representation of the urban

network. This is the basic issue that is discussed in this

section. Thus, the issue we ask ourselves is how to perform

the assignment and quantification of the city information in

the graph constructed from the urban fabric.

Data Organization in Urban Networks

When working with urban networks, there are a number

of different ways to represent the topology of the

city [Crucitti et al(2006b), Crucitti et al(2006c)]. In this case,

we opted for a classic representation of cities through the

concept of primal graph [Crucitti et al(2006b)]. The graph

is a pair G = (V,E) with nodes v ∈ V representing street

intersections and edges e = (u, v) representing connectivity

between intersections u and v. Additionally, the nodes

have geometric information associated with them via a

spatial position x(v) for each intersection. This graphical

representation of cities generated a particular type of graph,

an undirected plane graph. This type of network has a

number of similarities to the random geometric graph

(RRG), although the degrees are much more uniform. The

structure of the street network means that the degrees are

typically between 1 and 5.

The topology of the primal graph represents the layout

of the city itself, but the geometric positions allow us

to associate position data about the city with the graph.

Information can be extracted from many different sources,

many of which also provide geolocation information. This

data may be distributed over the primal graph. For example,

consider a data item with position y and value d.

Consider the case where we have a number of different

data categories, indexed by j = 1 . . . l. Each sample from

the source is associated to a node. Then we have a data

matrix D with entries dij representing the value of category j

associated with node i. If, as an example, we want to analyse

the number and location of the different restaurants in a city,

we can establish the characteristic j as restaurants. Then,

the column dj reflects the number of restaurants associated

to each of the nodes of the network. The element dij ∈ D

represents the number of restaurants that are located in the

proximity of the node ni.

A real set of data extracted from a city

Since we take the city of Murcia as an example of a real

urban network, we expose some characteristics of it to

understand the urban environment under study. The city of

Prepared using sagej.cls
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Murcia is located in the south eastern area of Spain and

the urban centre of the city originates from the IX century.

Since then, the city has had important stages of territorial

expansion.

We create the network (primal graph) from a connected

graph where the streets become undirected edges. Nodes

usually represent the intersections of the streets, but we can

also assign nodes to some points of interest in long streets.

The primal graph allows us either to represent the topology

of an urban fabric as well as to organize the geo-located data.

The network is composed of 1196 nodes and 1867 edges (see

Figure 1 for a graphical display of the topology of the urban

fabric and the urban network constructed).

For this example, we will work only with a part of the city,

the historical centre and the neighbourhoods that are placed

around it. The reason that motivates this limitation lies, on

the one hand, in reducing the amount of data to work with

and, on the other hand, because the historical centre is the

most active area of the city and where most activity takes

place.

We should note that the example described in the previous

section constitutes a small portion of the network that we are

now studying as it is the city of Murcia.

The data collection used for this example starts with a

fieldwork that consists of collecting the data or information

from visual inspection or pictures. These data were assigned

to the nodes of the network so that each node has a set

of numerical values associated with the information that is

being studied. We collected data about existing facilities

and commercial activity. In the analysis we perform, we

distinguish the following types of facilities:

• Type I: Bars, restaurants, coffee, snack bar, ...

• Type II: Shops with an area less than 300 square

meters.

• Type III: Sales offices and bank offices.

• Type IV: Big shops (department stores, shopping

centres, ...) with an area greater than 300 square

meters.

The number of tertiary facilities that have been collected

through fieldwork can be summarized in the following,

taking into account the established categories.

• Type I: 552 venues.

• Type II: 2216 venues.

• Type III: 285 venues.

• Type IV: 33 venues.

Figure 2 displays the map of the city where we have geo-

located the tertiary facilities collected from the fieldwork.

Summarizing, we can say that we have, approximately

2, 760 data associated to the nodes of the network and the

maximum value of data associated to a node is 55. With this

set of data, we can construct a data matrix D that is able

to summarize all the information of the data we have in an

organized form. So, we can define D as

D =

n1

n2

n3

n4

n5

...

ni

...

n1196

d1 d2 d3 d4

︷ ︸︸ ︷






















d11 d12 d13 d14

d11 d22 d23 d24

d31 d32 d33 d34

d41 d42 d43 d44

d51 d52 d53 d54
...

di1 di2 di3 di4
...

d1196 1 d1196 2 d1196 3 d1196 4























.

(1)

Thus, the matrix D given by (1) has 1196 rows,

corresponding to the 1196 nodes of the urban network

studied, and has 4 columns, each corresponding to the four

different types of data that were obtained. This means that

in the column d1 we have all the Type I data (food-service

sector) associated to each of the nodes. In the column d2 we

have all the Type II data (shops) associated to the different

nodes. And so on with the columns d3 and d4 for the Type

III and Type IV data, respectively.

The arrangement of the data in a matrix form like this

one has the advantage that separate and organize the data,

according to its category, so we can analyse them together or

separately, as we shall see in the numerical results.

As already mentioned in the introduction, the classic

centrality measures do not allow us, in a simple way, to

work with the data associated with a network. Therefore,

it becomes necessary to have centrality measures which

take account of two factors, first, the network topology and,

moreover, the importance of existing data.

The classical eigenvector centrality measure

Eigenvector centrality, denoted by cE , was proposed by

Bonacich [Bonacich(1982)] to measure the influence of a

node in a network from the importance of its connections.

Degree centrality gives an idea about the number of

connections a vector has. However, not all the connections or

links are equally important. Therefore, somehow we should

weight the importance of each node connections. If we

assume the idea that a node is more central if it is in relation

with nodes that are themselves central, we can argue that the

Prepared using sagej.cls
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Figure 1. Map and network of the city area studied.

Figure 2. Map of the geo-located tertiary venues collected in the city area studied.
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centrality of the nodes of a graph does not only depend on

the quantity of its adjacent nodes, but also on their value of

centrality.

If we denote the centrality of node ni by xi, then we

can take into account the importance of each node links by

making xi proportional to the average of the centralities of

i’s network neighbours:

xi =
1

λ

n∑

j=1

Aijxj , (2)

where λ is a constant.

Defining the vector of centralities ~x = (x1, x2, . . .), we

can rewrite (2) in matrix form as

A · ~x = λ~x. (3)

It is clear from the expression (3) that ~x is an eigenvector

of the adjacency matrix A associated to the eigenvalue

λ. As A is the adjacency matrix of an undirected graph

and A is non negative, it can be shown (using the Perron-

Frobenius theorem) that there exists an eigenvector of the

maximal eigenvalue (we denote it by λ1)with only non

negative (positive) entries. This eigenvector constitutes a

classification of the nodes in the graph.

The data centrality for urban networks

The eigenvector centrality in its classical form described

in Section 3 it only takes into account the topology of the

network and the importance of the neighbouring nodes. It

does not incorporate any notion of the spatial information

which may be present on a urban network. Although the

eigenvector centrality can straightforwardly accommodate

weighted edges (and hence edge information) by using a

weighted adjacency matrix, care must be taken in how to

encode the urban spatial data into a centrality index.

Consequently, the main objective in this section is to

construct a centrality map for the data collected in matrix

D based on the concept of eigenvector centrality.

The relative importance of different data categories may

vary according to the problem under study and if we employ

edge weights, we can only incorporate one value on each

edge. We therefore combine the data categories into a single

measurement for each node. The construction of a data

matrix as above allows us to control, in a simple manner,

the importance we assign to each feature dj being measured.

It is enough just to define a vector ~v0 of size l × 1, that

we are going to call weight vector, which values are in the

range [0, 1]. The function of this vector is to establish the

importance that we consider to each of the characteristics

measured in the matrix D. For example, a vector with all

components equal to 1 would mean that we consider all

equally important features. Then the data vector is

~v = D~v.

Our goal is combine this data vector with the topological

information provided by the city network. The obvious

choice is to weight the edges of the network according to

the data on the nodes. If we are to combine the information

from the data vector and the edges, then they must be of the

same order otherwise one type of information will swamp

the effect of the other. Since we want edge weights of O(1),

we normalize the data vector as follows

~̃v =
1

maxi vi
~v,

so the largest component is 1. According with the idea

of eigenvector centrality, a node ni is important if its

neighbours are important. If we want to link this idea with

the influence of data, we should say that node ni is important

if node nj is important and they are linked by a street that is

supported by a large amount of data, that is, large values of ~v

at each node incident on the edge. Following this reasoning,

we can establish the importance of an edge in the graph from

the data associated with the two end points. So, if and edge e

has ni and nj as the two end points, and the data associated to

these nodes are ṽ(i) and ṽ(j), respectively, we can establish

the importance of the edge e as

wij = ṽ(i) + ṽ(j). (4)

This provides us with the weight matrix W for the data.

Looking at the primal graph with data shown in Figure 2,

draws our attention a very common fact when working with

urban networks, where data from many different sources and

characteristics are collected. Looking at the graph it is noted

that the value of the data associated with some nodes may be

zero. In other words, in some areas no facilities are located

and the corresponding entry in the weight matrix is zero.

We can solve this drawback by introducing what we can

call as a basic level of importance associated to all the

edges. All edges have a small level of importance , even

if no facilities have been identified. Intuitively, this means

that areas are still linked, even if no particular facility exists

on a street. We denote this basic level of importance as α

and defined it as the smallest non-zero level of importance
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assigned by the data:

α = min (wij)wij 6=0
. (5)

The idea of introducing a basic minimum level of importance

associated with the edges is also in agreement with the idea

of the own centrality, where the importance of a node is given

by the importance of the neighboring nodes. A node with no

data is always influenced, albeit minimally, by the data of the

nearest nodes, even if they are not directly connected to it.

Finally, traditional eigenvector centrality tends to lead to

solutions with rapid variations between nodes. We do not

view this as natural for urban networks. Rather, we are

looking for more diffuse centres of activity. This is consistent

with the idea that existing geographic information linked

to a node results influential both the node itself and its

neighbouring nodes.

When working with urban networks of medium or large

size, it is appropriate to introduce some mathematical

technique that smooth out the solutions, so that sudden

changes in the components of the vector solution are

minimized. In our case, the objective is to smooth the

solutions that are obtained by the dominant eigenvector of the

matrix A∗ in the centrality algorithm. A common technique

in optimization problems that acts as a regularize of the

solution consists in the introduction of a matrix of very small

values ǫJ (where J is the matrix of all-ones). This matrix is

a quantity that represents, a small influence of between all

nodes regardless of the network connections.

We define ǫ as a new parameter which is based in the

parameter α given by (5). If α represents the basic level

of importance assigned to every node by the data, we can

establish that ǫ is a small percentage of the value computed

for α. Various experimental tests with different networks of

various sizes have led us to the conclusion that the parameter

ǫ can be established as

ǫ <
1

10
α. (6)

There may be other ways to define the parameter ǫ;

however, numerical tests with different amounts of data in

real urban networks have given us expected and consistent

results when ǫ is defined as (6). In the numerical examples

we will see the effect on the calculations when we take ǫ = 0.

The fact of not smoothing the solutions produces that they

are much more discontinuous, which allows us to determine

zones or areas in the network that act like a kind of hubs or

attractors with respect to the data involved. This is evidenced

when analyzing data on the commercial activity, where we

clearly see the difference between ǫ = 0 and ǫ 6= 0.

With these ingredients, we can now construct the data

adjacency matrix A∗ from the graph adjacency matrix A:

A∗ = A ◦ (W + αJ) + ǫJ (7)

where J is the matrix of all ones and ◦ is the element-

wise multiplication operation. Note that this final term is

reminiscent of the teleportation matrix of the PageRank

algorithm, except that we determine ǫ from the data. In effect,

this term is a regularization to avoid localized solutions.

Our final step is to compute the centrality measure of the

nodes as

~c =
1

λ1

[A ~x1(j) + ~x1] , (8)

where ~c constitutes the centrality values for the nodes of the

graph, and A is the adjacency of the original urban network.

Note that in the expression (2) ~x1 is the principal

eigenvector of A∗ and the components represent the

traditional eigenvector centrality of eigenvector centrality

of A∗. To this we add A~x1 which spreads the importance

of neighbouring nodes in the network. This results in a

smoother and more diffuse solution.

The following algorithm summarizes the steps we can

follow to obtain a new eigenvector centrality measure from

the data network.

Algorithm 1. Eigendata centrality.

Input: A,D, ~v0.

Output: ~c

1: Construct the data vector ~v = D · ~v0.

2. Normalization of ~v.

~̃v =
1

maxi vi
~v.

3. Construct the weight matrix W as

wij = ṽ(i) + ṽ(j)

4. Compute α using the expression (5).

5. Take ǫ, according to the expression (6).

6. From A, W, and α, ǫ construct A∗ as

A∗ = A ◦ (W + αJ) + ǫJ.

7. Compute the dominant eigenpair of A∗, (λ1, ~x1).

8. From A and ~x1 compute

c =
1

λ1

[A ~x1 + ~x1] .
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Numerical results

In this section we will carry out some numerical experiments

with networks of different sizes and using several data sets.

An example with a small network

We started the numerical section with an example of a very

small graph composed only of 10 nodes. The idea is to check

on a small graph the influence of data, no matter how small

the network is, when the Algorithm 1 runs.

Figure 3. A small graph with 10 nodes.

Figure 3 shows an example network for the data vector

v = [5, 1, 5, 3, 1, 2, 1, 0, 0, 1]
T

.

Running all the steps described in Algorithm 1, we arrive

to obtain a centrality value for each node. This vector is

c = [0.2780, 0.2925, 0.2925, 0.3257, 0.1754, 0.0553,

0.0499, 0.0256, 0.0101, 0.0231]T .

It is clear that the most important node, which has a larger

value of its centrality (0.3257) is the node n4, while nodes n2

and n3 occupy the second place in the ranking. It is observed

as the presence of more data on the left side of the graph

makes the centrality values of these nodes are much greater

than the others. Remark that the graph presents a higher

connectivity in its right part; it is clear that if we did not

consider the influence of the data, the centrality of the nodes

in the right connected component would be much higher.

We will compare these results with those provided by the

classical eigenvector centrality, in order to see the importance

of introducing the data in the measurement.

We try some computations with different data vectors, as

it is reflected in Table 1. The first column shows the ID

of each node; the second column shows the degree of each

node, while in the third column we have the values of the

eigenvector centrality eig for each of the nodes, which does

not depend on the data associated to the nodes of the graph.

This centrality index is independent of the data vector we

choose to perform the numerical experiments, so they are

fixed. In the rest of the columns we show the eigenvector

centrality eigdata for different data vectors ~v1, ~v2, ~v3, ~v4.

We have represented in Figure 4 the values of the

classic eigenvector centrality cE and the eigdata centrality

obtained according to Algorithm 1, for the four data

vectors, ~v1, ~v2, ~v3, ~v4 that we have in Table 1. Typological

characteristics of this graph means that there is a difference

of connectivity between their two distinct components

formed by the nodes n1 to n4 and the rest. When

establishing the data vectors have considered appropriate

to consider cases in which most data focus on the most

disadvantaged component, from the point of view of

connectivity. Therefore, in several data vectors we have

established the large volume of data between nodes n1 to n4.

Analysing the results shown in Table 1 and Figure 4, some

points may be highlighted.

• The values of the eigenvector centrality are quite

expected, since the most central node is n7, which

is the one who has greater connectivity. The same

also applies to the second node in importance (n5),

that has connectivity degree 4. Really, the topology of

the network is the crucial factor in the measurement.

Note in this case the rapid changes occurring in

the value of the centrality between a node with

its immediate neighbours. Furthermore, there is a

difference in values between the nodes who form the

two components of the graph; obviously the lack of

connectivity of the nodes n1 to n3 is reflected in very

low values of its centrality.

• We pay attention to the case of vector v3. We

clearly observe in the graphic values of the centrality

absolutely uniform for all the nodes and very low

compared to other data vectors. This case is quite

strange since it has the characteristic that all data

values of the nodes are equal and balanced (v3(i) = 2,

for all i). This makes the α value obtained is not the

most appropriate for this measure, so there is little

variation between the centrality of the different nodes,

if we compare with other vectors. This case produces

virtually never in large complex urban networks,

where differences in the values of the data between

different nodes are usually much larger and there is

never this feature of equality and uniformity.

• In the case of vector v2 it is absolutely clear the effects

of the concentration of the volume of data at nodes

n1 and n3. The values of the centrality of these nodes

are clearly well above the rest, causing a sudden drop

in the nodes as from n5. Note that the vector v1 also

produced this feature that the initial nodes (component
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Table 1. Numerical values of the data eigenvector centrality eigdata, for different data vectors.

eig v1 eigdata v2 eigdata v3 eigdata v4 eigdata

Node degree data data data data

1 2 0.0278 5 0.2780 15 0.3500 2 0.0069 10 0.2408

2 2 0.0487 1 0.2925 1 0.3578 2 0.0122 10 0.2390

3 2 0.0487 5 0.2925 15 0.3578 2 0.0122 10 0.2390

4 3 0.1427 3 0.3257 3 0.3662 2 0.0357 2 0.2644

5 4 0.4028 1 0.1754 1 0.1319 2 0.1007 2 0.1213

6 3 0.3689 2 0.0692 2 0.0179 2 0.0922 2 0.0363

7 5 0.5306 1 0.0813 1 0.0192 2 0.1327 2 0.0454

8 3 0.3689 0 0.0654 0 0.0177 2 0.0922 2 0.0363

9 3 0.3593 0 0.0290 0 0.0026 2 0.0898 2 0.0198

10 3 0.3593 1 0.0340 1 0.0033 2 0.0898 2 0.0198

Figure 4. Graphical representation of the centrality eigdata, for different values of the data vector, ~v1, ~v2, ~v3, ~v4.

on the left side of the graph) have more data than the

rest. The difference is that the data volume is not large

enough to its influence on the centrality is decisive.

An example with a bigger network

In this section we present an example of a bigger

network than before, with the aim to perform a comparison

between the original eigenvector centrality and the proposed

centrality, to understand the differences between them. Both

measures will be applied to a real spatial network and dataset

extracted from the city of Murcia (Spain).

We take a part of the city of Murcia where we have

used the dataset described in Section . In figure 1 we have

marked in red the specific area of the city that comprises

the urban network that we study in this section. The data

are related with the quantity of commercial facilities (retails,

food-service, leisure venues, big shops) detected in the urban

layout. The urban network shown in the images has 267

nodes, 361 edges and 775 geo-located commercial facilities.

In Figure 5, we have represented the network studied

in this analysis, along with the total number of retail and

services establishments associated to each of the nodes.

These allocations are related to commercial activity in the

city that were collected from the field work carried out in

2013.

Figure 6(a) shows the node degree distribution of the

selected network, which is the main factor that affects

the result of original measure of eigenvalue centrality.

Figure 6(b) shows the density of data distribution in the
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Figure 5. Number of retail and services data registered in the

part of the city of Murcia studied.

selected area of the network, where we can observe a high

data concentration in the lower left corner, the place where

an important urban square is located.

Figure 7(a) shows the fairly expected result of the original

eigenvector centrality. From this image we can appreciate

that the node with the maximum ranking is, as expected, a

central node with the maximum degree value. Figure 7(b)

shows the result of the proposed eigenvector centrality

measure, in which both the topology and the data density are

involved. We can observe that the node with the maximum

ranking is located in the area of the network which is

characterized by high density of data and degree distribution.

An example with a real urban network

In this example we will use the data described in Section

2.2 concerning the city of Murcia regarding the commercial

activity described in detail in this section. We are going to

work in this example with data of Type I and Type II, that

is, the most numerous, since we want to study the city from

the point of view of the commercial activity related to the

shopping and food-service sectors. The total amount of data

is 2, 760 while the maximum value of data associated to a

node is 55.

Therefore, when we proceed to normalize the data vector

of this network. We have that

~vN =

(
v(j)

55

)1196

j=1

.

For this example, we construct the matrix W , and compute

α, that is

α = min (wij)wij 6=0
=

1

55
.

Figure 6. The data and degree distribution.

Now, we compute the parameter ǫ. Following expression 6,

we have that

ǫ <
1

10
α = 0.0018.

Having computed the parameters α and ǫ, we are ready to

run Algorithm 1. The result of the centrality map obtained

for this urban network is shown in Figure 8. In this figure,

it is clearly revealed a main central area corresponding to

an arterial axis of the city, running from north to south and

containing the most central nodes in the whole network. This

arterial axis is a famous commercial street where it is placed

on the north (close to the most central node in red colour) the

most important department store in the city.
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Figure 7. Eigenvector centrality and Algorithm 1 applied over

the selected area of the network.

We can understand the parameter ǫ as a parameter that

helps us in addition to take account of existing global data

in the city, to smooth solutions and get a better visualization

of the results. Notice what happens when the parameter ǫ is

zero (see Figure 9).

When comparing the images, we can not say that the

analysis that displays a picture invalidate the analysis offered

by the other picture. The difference is in the display. Since

we do interpolation is linear in the graph, most of the values

are displayed on a bluish hue, except those with the greatest

centrality. When we introduce the parameter and get smooth

solutions, the network is best viewed, since the difference in

centralities does not cause a sudden change in colour.

In Figure 9, where we do not take into account the

whole information present in the network, we see from

the information analysed that the entire urban network is

reduced to a small hub where nodes with high centrality

are concentrated. If we wish to reduce all the information

analysed at a certain point or reduced area, this measure of

centrality is the most appropriate for their characteristics.

However, as shown in Figure 8, we introduce the parameter

ǫ, the centrality map that is exposed is much more faithful to

the reality of the urban network. The values of the centrality

have been smoothed.

We will briefly comment on the usefulness of using such

measures in urban networks analysis. The application of this

measure of centrality in this city allows us to determine

those areas of the network that present a greater commercial

activity compared to more disadvantaged ones, as can be

clearly seen in the images. If we think that centrality may

be considered in some sense as a fairly good indicator of

power in the network, we can see in Figure 8 where is

located the most influential commercial area. In this case,

with the parameter ǫ = 0, we determine a hub in the city, a

commercial activity power, which corresponds to the main

commercial artery of the city. It is important to highlight

that the highest values of centrality are concentrated in

the main artery of the city, called Gran Vı́a, which turns

out to be interesting since this avenue is characterised

by the greatest concentration of outstanding multinational

business establishments related to the sale of textile products

(especially in its southern part).

It is also noteworthy other aspect that characterise this

main commercial street; in this area we find the highest land

market values, as well as the highest rental prices. Then,

centrality captures the essence of location advantage in this

urban area, and its value is reflected in the intensity of land

uses and densities of economic activities.

Therefore, we can say that the results of the performed

analysis identify hubs of the very influential material goods

located at the studied area of the city, by taking into account

the topology of the urban layout and the geo-located data

density.

The eigenvector centrality offers us certain aspect of

centrality that is not captured by other measures. This

conception of importance or centrality makes sense in

different circumstances, for instance in urban environments,

where the importance of a node is given, in a way, by the

importance of its neighbouring nodes. If we talk about retail

and services establishments (commercial sector), we see that
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Figure 8. Centrality map of the city area studied, for ǫ = 0.0018.

Figure 9. Centrality map of the city area studied for ǫ = 0.
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the value of a retail is given not only by the topological value

of its location within the network, but also by the amount and

importance of the retails and services establishments around

it.

Regarding to the prediction capabilities of the model, we

must say that we can easily modify the data associated to

each node. Therefore, it is possible to simulate and visualize

changes in the urban network where we can add or remove

all the data that we consider appropriate. Moreover, we can

simulate urban plans before they are developed in order to

evaluate the impact that the extensions of the network cause

on the neighbouring of it by means of the centrality measure.

In other words, it is possible to introduce modifications

in the commercial layout or modifications in the urban

network topology, with the aim to evaluate the effect of

such modifications over the whole network. Among other

applications we can include those related to distribution of

land uses, retail influence or rents.

Conclusions

In this paper we discuss the problem of how to locate the key

areas of activity in the urban infrastructure of a city by using

a centrality measure. We propose a new measure of centrality

for these types of augmented urban networks, which is based

on the concept of eigenvector centrality, and it is able to

measure the influence of the topology of the network and

the geo-referenced data extracted from the network and

associated to the nodes. The motivation to analyse spatial

data in the city has led us to develop this model of analysis

based on the calculation of the eigenvector centrality in urban

street networks, with the primary characteristic that it takes

into account the component of geo-located data. The main

contribution of the proposed model is the incorporation of

the geo-located data factor to the computation structure for

eigenvector centrality in the urban street networks. The data

associated to the network provide additional features to the

topological properties of the nodes, it allows to quantify

and qualify the information located in their environments. In

other words, the proposed centrality measure identifies the

node topological importance within the urban street network

according to their location and the amount of geo-referenced

data associated. Through several examples shown in this

paper it has been tested the centrality measure over networks

with different sizes. In the example studied for a network

of small size, it is evident the influence of the data on the

calculation of the centrality measure for each node. For a big

urban network we have seen how we can determine those

areas or ”central” nodes of the urban network according to

the commercial data that we are handling, taking into account

that now the importance of a node is also related to the

amount and importance of endowments and services of its

own and its neighbours. In other words, the model proposed

allows us to understand the distribution and relationships

of retail and service establishments in this particular urban

environment.
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