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ABSTRACT

Whether massive stars (& 30 M⊙) can occasionally form in relative isolation (e.g. in clusters with M < 100 M⊙) or if they require a
large cluster of lower-mass stars around them is a key test in the differentiation of star formation theories as well as how the initial
mass function of stars is sampled. Previous attempts to find O-type stars that formed in isolation were hindered by the possibility that
such stars are merely runaways from clusters, i.e., their current isolation does not reflect their birth conditions. We introduce a new
method to find O-type stars that are not affected by such a degeneracy. Using the VLT-FLAMES Tarantula Survey and additional high
resolution imaging we have identified stars that satisfy the following constraints: 1) they are O-type stars that are not detected to be
part of a binary system based on radial velocity (RV) time series analysis; 2) they are designated spectral type O7 or earlier ; 3) their
velocities are within 1σ of the mean of OB-type stars in the 30 Doradus region, i.e. they are not runaways along our line-of-sight;
4) the projected surface density of stars does not increase within 3 pc towards the O-star (no evidence for clusters); 5) their sight
lines are associated with gaseous and/or dusty filaments in the interstellar medium (ISM), and 6) if a second candidate is found in the
direction of the same filament with which the target is associated, both are required to have similar velocities. With these criteria, we
have identified 15 stars in the 30 Doradus region, which are strong candidates for being high-mass stars that have formed in isolation.
Additionally, we employed extensive Monte Carlo stellar cluster simulations to confirm that our results rule out the presence of
clusters around the candidates. Eleven of these are classified as Vz stars, possibly associated with the zero-age main sequence. We
include a newly discovered Wolf-Rayet star as a candidate, although it does not meet all of the above criteria.

Key words. Stars: formation; massive; early-type – open clusters and associations: individual: 30 Doradus stars

1. Introduction

Massive stars play a crucial role in shaping their environment
by ionising large regions around them, affecting the temperature
and structure of the ISM and through chemical enrichment. They
are the flag-posts of star formation, with large H ii regions often
dominating the optical structure of their host galaxies, e.g., 30
Doradus in the Large Magellanic Cloud (LMC). Despite their
prominence, we know little about how massive stars form due to
multiple challenges: their large distances to us, heavy extinction,

rapid formation process, and small population statistics com-
pared to their lower mass counterparts.

The spatial distribution of massive stars can provide us with
clues to their formation. Do they only form in massive clusters
or can they also form in isolation? There are multiple scenarios
on how massive stars form and here we consider two of them,
as these represent opposite ends of the spectrum. The first is
competitive accretion (e.g., Bonnell et al. 2001, 2004; Smith
et al. 2009) where stars, including massive ones, only form in
clustered environments. In this model, massive stars are built up
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from the seeds of lower mass stars through the accretion of gas
from their environment. Since a large amount of gas is needed
for accretion, a cluster of low mass stars is expected to be present
around the higher mass stars (e.g., Maschberger et al. 2010). The
second model of massive star formation is that of monolithic col-
lapse (Yorke & Sonnhalter 2002; McKee & Tan 2003; Krumholz
et al. 2009) where a star’s mass is set by the initial dense core
from which it will form. In this scenario, massive stars can form,
albeit rarely, without a surrounding cluster. Hence, determining
the spatial distributions of the massive stars allows us to test
these theories and will possibly lead to a better understanding
of the star formation process.

In addition to testing star formation theories, determining
whether or not massive stars can form in isolation would have
important ramifications on how the stellar initial mass function
(IMF) is sampled (e.g. Bastian et al. 2010). Depending on how
stars form they will sample the IMF in different ways. It has
been suggested that in the competitive accretion scenario mas-
sive stars only form in clusters, so the IMF will be sampled
in a “sorted” way, such that enough low mass stars need to be
present before higher mass stars can form (Weidner et al. 2010).
However, in the monolithic collapse scenario, massive stars are
able to form in relative isolation, meaning that the IMF will be
sampled stochastically (e.g., Oey et al. 2004; Elmegreen 2006;
Parker & Goodwin 2007; Selman & Melnick 2008), likely re-
flecting the mass distribution of the star-forming cores (e.g.,
Alves et al. 2007). These different ways of sampling the IMF
have important implications to the resulting mass distributions,
and in particular massive star numbers, in different galaxies (e.g.
Weidner et al. 2010; Bastian et al. 2010; also see Sect. 6).

These two IMF sampling scenarios lead to similar relation-
ships between the mass of the most massive star in a group and
the mass of the group in total. However, there are important dif-
ferences. In the stochastic scenario, such a relation is statistically
expected (with a large scatter), whereas in the sorted sampling
scenario such a relationship is causally expected with little scat-
ter. Observations have been presented which seem to favour one
scenario or another (e.g., Maschberger & Clarke 2008; Weidner
et al. 2010), however large homogeneous datasets are required
to provide a solid answer. Alternatively, in the present work,
we will search for extremes in the distribution, O-type stars that
formed in relative isolation, in order to address this issue.

The term ‘isolated massive star formation’ does leave room
for different interpretations and one could argue against a star
being ‘isolated’ in several different ways, which we list below,
from most to least restrictive.

1. The massive stars formed from the same molecular cloud or
filament (i.e. the stars would be associated with the same OB
associations).

2. The massive stars formed in the same or a related environ-
ment in terms of radiation field or kinetic energy input (e.g.,
a second massive star formed due to feedback from a first
star)

3. The massive stars formed within the same gravitational well
of size .3 pc that led them to be (at least initially) bound
and constitute a physical cluster (see Efremov & Elmegreen
1998; Maı́z-Apellániz 2001; Scheepmaker et al. 2007) and
not simply part of an unbound association.

In general terms, case 1 is responsible for large-scale similar-
ities in age, location, and composition but is otherwise irrele-
vant for the detailed physics of star formation. Case 2 influences
the overall efficiency and the age distribution within a large re-
gion and possibly the IMF, since triggering can, in principle, lead

to variations. In case 3, only within the dense (sub)parsec scale
regions, can gravitational interactions between different clumps
and/or stars happen within the massive-star formation timescale
of ∼ 105 years (McKee & Tan 2003). In other words, from the
gravitational point of view, it is mostly irrelevant whether a large
mass (molecular cloud or other clusters) is located at a distance
of 10 pc because for a period of 105 years this would constitute a
nearly constant gravitational field. It is only nearby (∼1 pc) parts
of the cloud that have orbital time scales short enough to lead
to multiple interactions, such as accretion, close encounters, and
collisions. Therefore, from the point of view of star formation
theories and the origin of the IMF, case 3 is the relevant scale,
which is what we will adopt in the current paper.

The possible effect of triggering (case 2) could work as
an external agent to influencing massive star formation in 30
Doradus. The central cluster, R136, other clusters and massive
stars have been suggested to influence the massive star forma-
tion process in the region (see Brandner et al. 2001; Walborn
et al. 1999, 2002), but De Marchi et al. (2011) questions whether
triggered star formation is relevant as their investigation with the
Hubble Space Telescope’s Wide Field Camera 3 (WFC3) obser-
vations do not show clear evidence of such causal effects. In ei-
ther scenario, whether triggering (case 2) is influencing massive
star formation or not in 30 Doradus, it would not change a mas-
sive star’s candidacy for forming in isolation following the case
3 definition. Once triggering activates star formation it is up to
the parts of the cloud within the cluster length scale to interact
with each other.

When we talk about massive stars and them forming in
“isolation”, we adopt a similar 1 definition given in Parker &
Goodwin (2007), where massive stars refer to those those with
spectral types of O7 or earlier (& 30 M⊙ depending on mass
estimate method used – discussed later on in the paper) and iso-
lation means that they are not found in clusters of ≥ 100 M⊙ and
r . 3 pc. Once massive stars are located, we will estimate the ex-
pected underlying cluster mass according to the (Weidner et al.
2010) theory by using the mmax−Mcl relation, which is expected
to hold in the sorted sampling scenario. This allows us to assess
if the underlying cluster should have been detected, and if the
O-type stars are truly isolated, will enable constraints to be put
on star formation theories as well as IMF sampling scenarios.

We are not the first to look for massive stars forming in iso-
lation. A comprehensive analysis of isolated field O-type stars
(hereafter referred to as O-stars) in our Galaxy was conducted
by de Wit et al. (2004, 2005) who found that 4 ± 2 percent of
the O-stars in their sample (model derived value from obser-
vations) could not be traced back to clusters and hence, likely
formed in isolation. Similarly, Lamb et al. (2010) looked at the
Small Magellanic Cloud (SMC) and found three O-stars that are
in sparse-clusters. The total mass of the sparse-clusters in rela-
tion to the mass of the O-stars is not compatible with the sorted
sampling scenario. The sparse-clusters fall within the definition
as we defined above for “isolated”. The SMC was also investi-
gated for isolated star formation by Selier et al. (2011), where
they reported an interesting compact H II region, N33. The com-
pact H II region cannot be traced back to any nearby clusters, as-
sociations or molecular clouds and may be evidence for isolated
massive star formation at the earliest stages. Here we consider
observations from the VLT-FLAMES Tarantula Survey (here-

1 Parker & Goodwin (2007) define an isolated massive star (≥17.5
M⊙ – a criterion that is not used in this paper) as one with a surrounding
stellar cluster with a total mass of < 100 M⊙ and which does not contain
any early B-type stars.
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after VFTS; Evans et al. 2011) of the 30 Doradus nebula and
its environs which contains 350 O-stars.

In addition to the de Wit et al. (2004,2005) findings, there
have been several theoretical investigations of the likelihood of
isolated, massive star formation. Firstly, Oey et al. (2004) noted
that the number of stars per cluster appears to follow a power-
law like slope. They conclude that the power-law dependence
extends, continuously, all the way to down to one OB star per
group, association or cluster, i.e. N⋆ = 1. Parker & Goodwin
(2007) simulated a large number of stellar clusters assuming a
cluster mass function with β = 2 and a universal IMF (stochastic
sampling). They found that “isolated” massive star formation is
not unexpected in this scenario, and that contrary to Weidner &
Kroupa (2006) who found a strict mmax −Mcl relation, stochastic
sampling leads to a mmax − Mcl relation with significantly more
scatter and a slightly different slope. In the sorted sampling sce-
nario, the scatter is significantly reduced, due to the explicit link
between the cluster mass and the stars that it forms. However,
without a large number of clusters, it is difficult to differentiate
between the two (Maschberger & Clarke 2008). The two scenar-
ios do differ significantly in the extreme end of the distributions,
i.e. the presence/absence of isolated high mass stars. Lamb et al.
(2010) conducted similar and updated simulations as presented
by Parker & Goodwin (2007) and confirmed their results.

It is important to note that Weidner & Kroupa (2006) and
Weidner et al. (2010) adopt similar scales from case 3 (concern-
ing arguments against ‘isolated’ stars) for defining the mmax−Mcl

relation, i.e., they adopted the cluster length scale and not the
OB association scale. For example, the authors use the Orion
Nebular Cluster (ONC) and not the entire Orion complex (an
OB association) for supporting the mmax − Mcl relation. Using
the cluster scale makes sense if all stars are formed in clusters,
i.e., in quantised units of star formation. However, if star forma-
tion is hierarchical (e.g., Elmegreen et al 2006) then no distinct
scale exists in the star formation process (above the scale of in-
dividual stars/cores). This means that clusters are made up of
sub-clusters which merge as they evolve dynamically, and that
clusters/associations are themselves grouped into larger struc-
tures (e.g., Bastian et al. 2005). In a hierarchical scenario, the
individual sub-clusters cannot fit the mmax − Mcl relation if the
final cluster does (since the most massive star would be too mas-
sive for its sub-cluster size), so the stars must ‘know’ about the
cluster that they will finally be a part of. This same argument
also holds for larger associations and cluster complexes. Hence,
the mmax − Mcl relation must have a length scale associated to
it, if star formation is hierarchical, above and below which the
relation breaks down.

The 30 Doradus region is a complex and dynamic region
that contains multiple, although not necessarily spatially distinct,
generations of stars (see Walborn & Blades 1997). The youngest
population is dominated by the central cluster R136, with an age
of 1-2 Myr (e.g. de Koter et al. 1998; Massey & Hunter 1998)
and, most pertinently for the discussion here, there appears to
be another young population to the north and west of R136, ex-
emplified by the compact multiple systems in the dense nebular
knots observed with the Hubble Space Telescope by Walborn
et al. (1999, 2002). These comprise an apparently young, still
embedded phase of star formation. Interestingly, Walborn et al.
(2002) also presented imaging of two notable infrared (IR)
sources, one of which was resolved into a small, embedded clus-
ter, while the other was a point like source, seemingly single
monolithic object (albeit at the distance of the LMC). This led
the authors to note that the later object may have formed without
an associated cluster or association.

Fig. 1. The 16 candidates, isolated massive stars, in 30 Doradus
are marked with red circles. Figs. 5–9 show sub-fields of this re-
gion to highlight gas/dust filamentary structures that are likely
to be associated with the massive stars in question. The stars
are identified with the numbers used for the VLT FLAMES
Tarantula Survey.

R136 has a relatively shallow power-law density profile and
it does not appear to have a strong truncation out to at least 10
pc (e.g. Campbell et al. 2010). All massive stars observed be-
yond this radius are likely to be either runaway stars, or to have
formed in situ. The majority of the stars in our sample are young
( 2 Myr), hence the disruption of large clusters with lower-mass
stars blending into the background due to “infant mortality”, the
“cruel cradle effect”2 or the dispersal of unbound associations
(either of which would cause the most massive star to appear iso-
lated), is not expected to influence our analysis (e.g. Bastian &
Goodwin 2006; Gieles & Portegies Zwart 2011; Kruijssen et al.
2011, 2012; Girichidis et al. 2012).

In the present work, we attempt to overcome the limita-
tions of the previous studies by removing the possibility that
the stars are runaways by using multi-epoch medium-resolution
spectroscopy and by cross-correlating the spatial distribution of
the candidates with known gaseous filaments. We do this by
combining observations of 30 Doradus with several instruments
from the Very Large Telescope (VLT), Hubble Space Telescope
(HST), and the Spitzer Space Telescope (SST), which will be dis-
cussed in Sect. 2. The methods to finding isolated massive star
candidates are discussed in Sect. 3, where the results and con-
clusions are discussed in Sect. 4, Sect. 5. In the final section we
provide a summary and discuss implications.

2. Observations

In this work we used optical spectroscopy and optical to mid-IR
imaging to study the O-stars in 30 Doradus. The core dataset is
composed of medium resolution optical spectra from the VLT-

2 While infant mortality indicates the early disruption of stellar struc-
ture by gas expulsion, the cruel cradle effect refers to the disruptive in-
fluence of tidal perturbations by the dense, star-forming environment,
which act on a similar timescale.
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FLAMES Tarantula Survey (Evans et al. 2011). bf VFTS allows
us to identify the spectral type of each star, test whether the star
is part of a spectroscopic binary and measure each star’s radial
velocity. The survey employs three different modes of the Fibre
Large Array Multi-Element Spectrograph (FLAMES; Pasquini
et al. 2002) instrument on the VLT: Medusa-Giraffe, ARGUS-
Giraffe, and the Ultraviolet and Visual Echelle Spectrograph.
In this paper we only use spectra that were observed using the
Medusa fibre-feed to the Giraffe spectrograph. There are 132
fibres available for observations, deployable within a 25′ di-
ameter field-of-view and with a diameter of 1.′′2 on the sky.
The European Southern Observatory (ESO) Common Pipeline
Library (CPL) FLAMES reduction routines (v2.8.7) were used
for all of the data processing. The standard reductions were
then applied such as Heliocentric correction and sky subtrac-
tion. Additional information regarding the observations, reduc-
tions and survey strategy are given in Evans et al. (2011). The
radial velocity and multiplicity analysis is discussed in Sana et
al. (in prep.).

The second part of the dataset is composed of imaging
surveys to 1) find filamentary structures of gas and dust, i.e.,
the sites of star formation and 2) determine if a given star is
truly isolated. For the first goal we use the Hα/Hβ map from
Lazendic et al. (2003), 70 µm maps from the SST Legacy
survey Surveying the Agents of Galaxy Evolution (SAGE)
(Meixner et al. 2006), and VLT High Acuity Wide field K-band
Imager (HAWK-I) observations (Kissler-Patig et al. 2008) where
ionised filaments can be detected due to the presence of the Brγ
emission line within the bandpass. To determine whether there
are significant clusters associated with the massive stars we use
HST imaging with the Wide-Field Planetary Camera 2 (WFPC2)
and the Advanced Camera for Surveys (ACS) instruments as
well as the VLT HAWK-I Ks band images to search for embed-
ded clusters.

In Fig. 1 we show a V-band image of 30 Doradus taken with
ESO and the Max Planck Gesellschaft (MPG) 2.2m telescope us-
ing the Wide Field Imager (WFI) instrument (Baade et al. 1999)
to show the 30 Doradus region for context (Program ID: 076.C-
0888; PI J. Alves).

For the candidates, except VFTS 089 and 849, we acquired
the HST data from the Hubble Legacy Archive, and selected
the science grade data for analysis. The proposal ID numbers
for the HST data are: 05114, 08163, 09471. For VFTS 089 and
849 we used high-level science products from The Archival Pure
Parallels Project (APPP) on the LMC. Wadadekar et al. (2006)
describes the data processing and quality of the HST images.
WFPC2 and ACS data typically have pixel resolutions of 0.1”
and 0.05”, respectively. See Fig. 2 for 2.5×2.5 pc subplots of the
HST data for each candidate. Further details on HST’s sensitiv-
ity around the O-star candidates is discussed in Sect. 4.2.

3. Method

To determine that an O-star is a not a runaway and is still located
near its birth-site, we need to apply several constraints on the
star in the line-of-sight and the plane of the sky. Several obser-
vational tools are needed to do this: precise radial velocity mea-
surements (line-of-sight), association with filamentary structure
(plane of sky), and relative isolation from lower mass stars.

The radial velocity measurements of all the single O-stars in
VFTS (Sana et al. in prep.) can be well fit by a gaussian distribu-
tion. The mean radial velocity is 270.73 km s−1 with a dispersion
(1σ) of 10.50 km s−1. These values are used in selecting the can-
didates (see criterion 3).

Fig. 2. 2.5×2.5 parsec (10”×10”) logarithmically stretched grey
scale images of each of the stars. All of the candidates were ob-
served in the F814W band except for VFTS 682 and VFTS 849,
which are observed in the F673N and F606W bands, respec-
tively. Additionally, all of the candidates were observed with the
WFPC2, except for VFTS 123, 208 and 216 which were ob-
served with ACS.

3.1. Criteria

We begin with the VFTS observations of the 30 Doradus region.
The survey will provide multi-epoch radial velocity measure-
ments for a sample of ∼ 800 OB-type stars in the 30 Doradus
region with a typical precision better than 5 km s−1. From the
sample we select candidates based on the selection criteria pro-
vided below. Within brackets we report on the number of stars
that fulfil all successive criteria in the order as listed and which
constraint it supports (e.g. plane-of-sky, line-of-sight, or isola-
tion). The criteria are:

1. O-type stars that do not show significant variations in their
RV, meaning that they are unlikely part of a spectroscopic bi-
nary system. This allows us to determine accurately the sys-
temic velocity of each star. In Sect. 4.3, we quantitatively es-
timate our detection biases and we will show that our sample
cannot be heavily contaminated by undetected spectroscopic
binaries. (stars: 184, which include some B0-type stars from
preliminary classifications) (constraint: line-of-sight)

2. Their sub-spectral type are O7 or earlier, which corresponds
so stellar masses of & 30 M⊙. See Sect. 3.2 for details on
mass estimates. (stars: 65).

3. Their radial velocities are within one σ of the mean of all
the O-stars in the VFTS sample of 30 Doradus. This ensures
that the stars are not runaways in the line-of-sight. (stars: 39)
(constraint: line-of-sight).

4. That the candidate star be located on (projected) gaseous fil-
ament seen in either ionised gas (i.e., Hα or Brγ), warm dust
(i.e., 70 µm), or cold gas/dust (i.e., based on extinction or
molecular maps). These gaseous filaments are the likely sites
of star formation, and the chance projection of all ejected
stars from nearby clusters that lie projected upon these fil-
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aments is exceedingly low. (stars: 27) (constraint: plane-of-
sky)

In addition to the above criteria, we use high resolution HST
imaging (when available) of the regions around the candidate
stars, along with deep ground-based near-infrared imaging from
VLT to place constraints on the size of any potential cluster sur-
rounding the candidate O-star. With this data we add the follow-
ing criterium:

5. The surface density distribution of stars does not increase to-
wards the candidate star within 3 pc, see Fig. 4. Note that
archival HST data does not cover all candidates from crite-
rion 4. Due to the lack of HST data, four sources are auto-
matically rejected from consideration. This means that this
step automatically reduced the number of stars from the pre-
vious step of 27 stars to 23 stars. Then we apply the surface
density criterion on the remaining 23 stars. (stars: 15) (con-
straint: isolation)

Where applicable, if two stars are located along the same
gaseous filament, we apply the additional criterion below. Note,
that the additional criterion does not exclude the 15 candidates
from above.

6. Two stars have radial velocities within 5 km s−1 of each other.
While filaments can have flows along them, we expect the
gas/stars within a filament to have very similar radial veloc-
ities. (stars: 2) (constraints: plane-of-sky, line-of-sight)

With these criteria we can build up a collection of candidates
that may have formed in isolation. Once a homogeneous map of
30 Doradus showing the gas/dust filamentary structures become
available, e.g. Herschel Space Observatory maps (Meixner et al.
2010) or extinction maps derived from the Visible and Infrared
Survey Telescope for Astronomy (VISTA) Magellenic Cloud
Survey (Cioni et al. 2011), we will be able to apply simple proba-
bility tests to strongly limit the possibility of massive stars being
runaways (see Appendix B).

3.2. Spectral types and ages

The ages of our isolated O-star candidates likely range from less
than 1 Myr to more than 4 Myr based on their spectral types
(Weidner & Vink 2010). We have therefore assigned grades to
each star on the basis of their spectral types, employing esti-
mated ages from Weidner & Vink (2010) for LMC stars. Grade
1 candidates are most likely 2 Myr old or younger, grade 2 are
between 2 and 4 Myr, and Grade 3 are those older than 4 Myr.
The grade scheme is provided to highlight possible issues of
candidate associations, depending on their age, with filamentary
gas/dust structure (see Sect. 5.4).

4. Results

The properties of the 15 isolated O-star candidates are given in
Table 1, including their positions, mean radial velocities (of the
gas and stars), spectral types (Walborn et al. in prep), masses
(estimated from the spectral types), V-band magnitudes, their
expected cluster masses based on the mmax − Mcl relation, and
a grade to indicate their likely ages. Eleven of the candidates are
classified as Vz stars, dened by stronger He ii λ4686 absorption
than either He i λ4471 or He ii λ4542 in their spectra (Walborn &
Parker 1992; Walborn & Blades 1997). The Vz phenomenon has

Fig. 3. The 90% completeness magnitude limit as a function
of radius for VFTS 385 (using HST/WFPC2). The closest de-
tectable source to the candidate is ∼ 0.15 pc, where the upturn
begins. VFTS 385 is the brightest observed candidate presented
in this paper.

been proposed to be related to stars located close to the zero-
age main sequence (ZAMS). Alternatively, rotational broaden-
ing may induce an apparent modification of the line strength
and of He line ratios. In the latter case the Vz signature may
be common for normal dwarf stars and not be tracing stars close
to the ZAMS (Sabı́n-Sanjulián, priv. comm.). Quantitative spec-
troscopic analyses are needed to elucidate the true nature of the
Vz signature and will be undertaken for the Vz stars in the VFTS
sample.

Eleven of the candidates were classified as Vz stars, defined
by strong He ii λ4686 absorption in their spectra (Walborn &
Parker 1992; Walborn & Blades 1997) and thought to be close
to the zero-age main sequence (ZAMS). The ZAMS classifica-
tion is not absolute since the morphological hypothesis has not
yet been confirmed by systematic quantitative analyses; determi-
nations of their gravities and luminosities is underway as part of
the VFTS.

The candidates are located at projected distances of between
14 and 130 pc from R136 (see Fig. 1). Twelve are associated with
the active star forming environment around R136 (see Fig. 5 for
example). Four are located to the southwest of R136 and are
closer to the older association NGC 2060, which has an associ-
ated supernova remnant (Danziger et al. 1981; Chu et al. 1992).
Note that the distance between the centre of NGC 2060 and the
closest candidate in this paper is > 20 pc.

We have taken the spectral types of the candidates and es-
timated their respective masses from Weidner & Vink (2010),
for rotating O-star models in the LMC to approximate the ex-
pected O-star parent cluster’s mass based on mmax − Mcl. The
stellar masses are also used as an input in the computation of the
sensitivity of our data to spectroscopic binaries (see Sect. 4.3).
Estimating stellar masses from spectral types is known to suffer
from a number of caveats (e.g. Weidner & Vink 2010), however
the masses are precise enough for our objectives (typical errors
are expected to be less than 30%). In the following subsections
we discuss the candidates in more detail.
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Table 1. The 16 candidates that most likely formed in isolation.

Star Aliases α(2000) δ(2000) RVstar RVISM mV Spectral Type Mstar Mcl Grade

VFTS [km s−1] [km s−1] [M⊙] [M⊙]

089 ST 1-25 05 37 36.87 −69 08 22.82 280.1 ± 0.8 270.6 ± 2.4 16.08 O6.5 V((f))z 33 660 1

123† - 05 37 42.45 −69 12 21.58 270.7 ± 0.9 270.6 ± 1.1 15.78 O6.5 Vz 33 660 1
208 ST 1-93 05 37 56.23 −69 11 50.90 270.2 ± 1.0 275.6 ± 1.7 14.65 O6 (n)fp 46 1060 3
216 ST 1-97 05 37 59.06 −69 11 56.83 269.4 ± 0.5 274.0 ± 0.6 14.41 O4 V((fc)) 53 1350 2

382† S 226 05 38 32.28 −69 05 44.57 278.3 ± 1.0 264.4 ± 8.8 15.88 O4-5 V((fc))z 48 1130 1
385 P 288, S 84 05 38 32.32 −69 05 23.87 270.8 ± 0.6 281.3 ± 0.9 14.65 O4-5 V((n))((fc)) 48 1130 2
392 S 268 05 38 32.83 −69 05 44.60 278.3 ± 1.0 282.1 ± 1.4 16.10 O6-7 V((f))z 33 660 1
398 Mk 59, P 341 05 38 33.38 −69 04 38.39 268.8 ± 0.5 274.1 ± 0.8 14.40 O5.5 V((n))((f))z 40 860 1
470 P 716 05 38 39.49 −69 04 38.64 265.0 ± 1.2 278.3 ± 3.4 15.46 O6-7 V((f))z 33 660 1
488 P 791 05 38 40.72 −69 08 24.90 270.1 ± 1.0 268.0 ± 2.2 15.87 O6 V((f))z 36 740 1
537 P 1022 05 38 43.02 −69 03 44.78 271.0 ± 1.1 259.7 ± 1.5 15.99 O5 V((fc))z 44 990 1

577† P 1189 05 38 44.94 −69 07 04.59 264.5 ± 1.3 271.4 ± 2.8 16.64 O6 V((fc))z 36 740 1
581 P 1218 05 38 45.07 −69 04 15.57 277.6 ± 1.0 259.1 ± 3.8 16.07 O4-5 V((fc)) 48 1130 2

682⋆ † P 1732 05 38 55.51 −69 04 26.72 300.0 ± 10.0 259.5 ± 3.0 16.08 WN5h >100 >3900 1
706 P 1838 05 38 58.76 −69 05 23.93 269.8 ± 3.6 290.7 ± 0.6 15.77 O6-7 Vnnz 33 660 1

849† - 05 39 47.36 −68 59 21.99 260.6 ± 0.8 262.5 ± 1.3 15.14 O7 Vz 30 580 1

Notes. Positions and magnitudes come from Evans et al. (2011). Eleven of the 16 candidates are Vz stars, thought to be zero-age main sequence
stars (ZAMS). The final column reflects the potential ages of the candidates on the basis of their spectral types and results from Weidner & Vink
(2010). Grade 1 candidates are most likely 2 Myr old or younger, grade 2 are between 2 and 4 Myr, and grade 3 are those older than 4 Myr. The
values for Mcl are derived using the mmax − Mcl relationship from Weidner et al. (2010). Errors provided for the radial velocity are uncertainties
from the mean. Candidates VFTS 208 and 385 show slight indications of variability, but it does not affect the current results. References.
Aliases/previous identifications of the VFTS candidates are given in the second column. The sources of identification are: Mk (Melnick 1985), P
(Parker 1993), S (Selman et al. 1999) and ST (Schild & Testor 1992).
⋆The source is a Wolf-Rayet star and does not fit all criteria in Sect. 3.1. For further details see Sect. 4.1.4 and Bestenlehner et al. 2011
†No known spectroscopy prior to VFTS

Fig. 4. HST stellar surface density distributions (cumulative - see
Lamb et al. 2010) around VFTS 208. The black line with trian-
gles is the HST F555W band and the blue line with circles is
the HST F814W band. Due to the saturation on the ACS images
caused by the candidate (candidate reference point is at 0 pc),
VFTS 208 represents a worst case. However, even here we see
that there is no stellar count increase from 3 pc and inwards (to
0 pc) toward the candidate. This has been observed similarly for
each candidate.

4.1. Local environment examples

4.1.1. VFTS 385, 398, 470 and 581

From east-to-west in Fig. 5 we have VFTS 581, 470, 398 and
385. We see that they are associated to filamentary structures

Fig. 5. Filamentary structures possibly associated with the four
candidates: VFTS 385, 398, 470 and 581 (red circles). The back-
ground image is from the VLT HAWK-I Ks band and the four
subplots on the right are Ks, 70 µm, 70 µm and Hα/Hβ (Lazendic
et al. 2003) maps for VFTS 385, 398, 470 and 581, respectively.
The black boxes in the main image correspond to the field-of-
view for the subplots on the right, where the 70 µm subplots are
larger due to their lower resolution. Different stretches are used
to highlight the filamentary associations in the subplots.

from the VLT HAWK-I Ks band, the Hα/Hβ extinction map
(Lazendic et al. 2003), and the 70 µm map. The observation of
VFTS 581 will be specifically modelled in Sect. 5.1 in order to
see how visible its underlying cluster would be. VFTS 398 and
470 are both classified as Vz stars.
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Fig. 6. V-band optical image with 70µm contours from Spitzer
overlaid, in the region of VFTS 208 and 216. The stars are as-
sociated with a large filament extending southeast from the di-
rection of NGC 2060. The radial velocities of both stars agree
to within 5 km s−1. VFTS 216 may be related with a bow shock
(see Fig. 7).

Fig. 7. VFTS 216 (left target) may possibly be related to a bow
shock as seen above. The image is a 24 µm map from the SAGE
Survey. If the O-star is indeed related to the bow shock, then its
candidacy is ruled out as an isolated massive star. At the distance
of the LMC, the bow shock is estimated to be 5 pc across.

4.1.2. VFTS 208 and 216

VFTS 208 and 216 are found to be associated with a large fil-
amentary structure (Fig. 6) in the 70 µm Spitzer band, which is
associated with NGC 2060, as seen in Fig. 1. No significant stel-
lar populations are seen nearby, implying that they are relatively
isolated. There may be a possible bow shock or bubble related
to VFTS 216, which is shown in Fig. 7. If there is a bow shock
associated with the star, this would strongly suggest that it is a
runaway, and did not form in isolation. The stellar surface dis-
tribution (based on HST V and I-band imaging) of VFTS 208
is shown in Fig. 4. We note that VFTS 208 is classified as an
nfp star (Walborn 1973). While the origins for the spectral pecu-
liarities seen in such stars are still unknown (see Walborn et al.
2010), we retain the star in our discussion as it appears both rel-
atively massive and young.

4.1.3. VFTS 488 and 706

VFTS 488 lies south of R136 at the edge of the dense 70
µm emission (see in Fig. 8). It appears that VFTS 488 is as-
sociated with a filament, and both the VLT Ks and HST F814W
bands show its relative isolation from star clusters.

Northeast of R136 is a prominent ionised filament structure
that is seen both in the V and Ks band. VFTS 706 is at the centre
of the filament (see Fig. 9). It can be seen in 70 µm that the
region is associated cold dust. Both candidates are Vz stars.

4.1.4. VFTS 682

Northeast of R136 we have VFTS 682, which does not fit our cri-
teria as our best estimate of its radial velocity (from models of its
emission lines) is outside the standard deviation from the mean.
However, its young age and exceptionally high mass without ev-
idence of clusters merits attention. Evans et al. (2011) discov-
ered VFTS 682 to be a, previously unknown, Wolf–Rayet star
(see Fig. 10). They also noted it was within 4 pc of VFTS 702,
a candidate young stellar object (YSO) from Gruendl & Chu
(2009). The star displays excess emission in the mid-IR although
the cause is still unclear, however the correlation with molecu-
lar gas suggests a region of ongoing star formation. VFTS 682
is the most massive star in our sample, with Bestenlehner et al.
(2011) estimating an age ranging between 1 to 1.4 Myrs (i.e.
in our youngest age range) from comparisons with evolutionary
models. Bestenlehner et al. (2011) estimate that the AV > 4 for
the candidate which could make it difficult to detect lower mass
stars around the candidate. However, according to the mmax−Mcl

relation, there should be a cluster of ∼ 3900 M⊙ around it. This
candidate is specifically modelled in Sect. 5.1, and such a cluster
would have easily been detected. Banerjee et al. (2012) proposes
that VFTS 682 could be a slow runaway, but is only possible
under their model assuming complete mass-segregation in the
parenting cluster (R136) and that all massive stars are in bina-
ries. Additionally, we find no evidence of bow shocks around
the candidate at 24 µm.

4.2. Photometric completeness around the candidates

In order to test our photometric completeness as a function of
magnitude and distance from each candidate source, we have es-
timated the 90% completeness limit relative to the radius from
the candidates. For this we used PSFEx 2 to generate artificial
stars from modelled point spread functions (for each of the cam-
eras used) and added them to the science frames (Fig. 2). The
artificial sources were given magnitudes between 16.5 and 24
mag, and 49 sources were added to the image in each iteration
(in order to avoid excess crowding). For each magnitude step
of 0.5, 50 iterations were carried out (resulting in 2450 sources
per magnitude added). SExtractor (Bertin & Arnouts 1996) was
used to detect the sources, and the resulting catalogues were used
to test the success rate of detections near the candidates. An ex-
ample of the procedure is given in Fig. 3, where we see (for
VFTS 385, which is a typical source) we are 90% complete at
V = 23 mag at 0.26 pc from the candidate O-star. This cor-
responds to a ∼ 2 M⊙ star assuming an extinction estimate of
AV = 1.

2 PSFEx extracts models of the PSF from FITS images processed
with SExtractor (http://www.astromatic.net/software/psfex). The soft-
ware comes from the same team that maintains SExtractor
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Additionally, the cumulative surface densities of sources as
a function of radius away from each candidate was investigated
using HST V and I-band imaging. An example is shown in Fig.
4, which shows no evidence of stellar density increase around
VFTS 208. For each source we adopted a conservative complete-
ness limit (generally in the range of V = 21 to 23 mag) and fo-
cussed on radii greater than 1 pc. If a cluster was present, we
would expect a rise in the number of stars per pc2 from ∼ 3 pc
and inwards (towards 0pc, the reference frame of the candidate).
Similar results are seen for all the other candidates where no stel-
lar density increase is observed. The information from this sec-
tion will be used further in Sect. 5.1 to explore the constraints on
any underlying cluster that may be present.

Upon visual inspection of higher resolution HST data from
the WFC3 (De Marchi et al. 2011) of VFTS 385, 392, 577 and
706 we see no evidence of clustering in the F555W and F814W
filters. We do not present the data itself in this paper.

4.3. Binary detection probability

To estimate the fraction of undetected spectroscopic binaries
in our sample, we have quantified the observational biases of
each candidate using the Monte Carlo methods from Sana et al.
(2009). We estimated the probability (P detect) to detect binarity
in each candidate, adopting a primary mass on the basis of their
spectral types and with binary properties randomly drawn from
uniform cumulative distribution functions (CDFs) of mass-ratios
and eccentricities, and a bi-modal CDF in log P (as described by
Sana & Evans 2011). Assuming a random orientation of the sys-
tem in space and a random time of periastron passage, we then
apply the specific observational sampling of each object, adding
noise to the RV signal that corresponds to the error measure-
ments at each epoch. Finally, we consider whether the simulated
system would have been detected if the amplitude of the RV sig-
nal is larger than an adopted detection threshold.

For all the O-star candidates, except VFTS 706, we adopt a
threshold of 20 km s−1 from the mean. These levels are chosen to
ensure no false detections at the 99.99% confidence level (>3σ).
VFTS 706 shows evidence of faster rotation than the others, so
we have fixed the threshold to 35 km s−1, yielding no false de-
tections at a 99.7% confidence. Table 2 provides the computed
detection probabilities across three ranges of periods as well as
across the full period range. This shows that it is unlikely that
our sample contains undetected short and intermediate period
spectroscopic binaries. For period larger than one year, our de-
tection probabilities become relatively small. Under the adopted
hypothesis, the average detection probability is 0.83±0.05 up to
a period of ∼8.6 yr. While 10 to 20% of the objects in our sam-
ple might still be undetected, likely long-period spectroscopic
binaries, these simulations allow us to conclude that most of
our targets are either single stars or very wide/large mass ratio
pairs so that the measured systemic velocity is left unaffected by
the companion. Additionally, the spectra were inspected for SB2
systems.

5. Discussion

5.1. Modelling potential underlying clusters

5.1.1. Visual examples of cluster presence

In order to check if we are sensitive to clusters that may be asso-
ciated with the candidates according to the Weidner et al. (2010)
mmax −Mcl relation, we use the MASSCLEAN package (Popescu

Table 2. Average binary detection rates.

VFTS ID 2d-10d 10d-365d 365d-3160d 2d-3160d

089 0.989 0.897 0.424 0.852
123 0.990 0.886 0.430 0.855
208 0.993 0.892 0.456 0.862
216 0.995 0.899 0.460 0.864
382 0.990 0.917 0.490 0.874
385 0.995 0.897 0.449 0.861
392 0.992 0.886 0.425 0.851
398 0.993 0.882 0.417 0.854
470 0.994 0.919 0.485 0.873
488 0.993 0.868 0.411 0.848
537 0.996 0.905 0.473 0.867
577 0.993 0.888 0.431 0.854
581 0.996 0.905 0.459 0.870
706 0.976 0.783 0.266 0.786
849 0.992 0.923 0.456 0.873

Notes. Average detection rate, Pdetect from the simulation of 10000
samples of 15 stars: 0.83 ± 0.05. The WN5h (Wolf-Rayet) star, VFTS
682, is not included in this, as it is not a standard O-type star.

Fig. 8. VFTS 488 is shown in the 70 µm map as a red dot (main)
and Ks as a red circle (subset). The red box in the 70 µm map
represents the subset image’s field-of-view. VFTS 488 is asso-
ciated with a filament in 70 µm and the Ks subset image shows
that it’s located in a relatively sparse field of stars.

& Hanson 2009) to generate illustrative examples. The package
generates images (at a given distance and resolution), of sim-
ulated clusters with stars drawn from a Kroupa IMF (Kroupa
2001) and spatially distributed according to a King profile (King
1962). For the analysis we adopt King profile radii similar to
those reported by Werchan & Zaritsky (2011) for the modelled
clusters. Stellar masses are drawn such that the Weidner et al.
(2010) mmax − Mcl relationship is recovered from these simula-
tions. All simulations were carried out adopting the resolution of
the ACS WFC.

We generated three clusters, whose most massive stars were
25, 45, and 100 M⊙. The 25 M⊙ star represents the lower mass
estimates of the candidates given in Table 4, while the 45 and
100 M⊙ stars represent VFTS 581 and 682 (Table 1), respec-
tively. The total cluster masses are 420, 1000 and 4000 M⊙, re-
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Fig. 9. VFTS 706 is shown in the 70 µm map (main) and Ks

(subset). The red box in the 70 µm map represents the subset im-
age’s field-of-view. The candidate is located in a region of high
70 µm emission, where filaments appear to be in the peripheral
region. This is similarly seen in the subset where ionised mate-
rial is near the candidate.

Fig. 10. VFTS 682, a Wolf-Rayet star that is discussed in fur-
ther detail by Bestenlehner et al. (2011), is shown in the Ks band
(main) marked by a red circle and Hα/Hβ derived map as a red
dot (subset). The red box in the Ks image represents the sub-
set image’s field-of-view. The candidate is located in a relatively
sparse field of stars and the subset shows that’s located in a re-
gion of relatively high AV . VFTS 682 is the most massive can-
didate presented in this paper.

spectively, and are shown in Fig. 11. In order to account for the
effects of extinction (which we assume affect all cluster members
equally), we then scaled the images such that the most massive
star had the same V-band apparent magnitude as the candidate
which we were modelling.

In Fig. 11 the most massive star is indicated by a green dia-
mond. Note that in the 4000 M⊙ image, the most massive star is

not in the centre of the cluster, this is simply due to the fact that
the positions of each of the stars is distributed stochastically, re-
gardless of mass. We then applied the completeness curve from
Fig. 3, assuming that all stars above the 90% completeness limit
(at a given radius) would have been detected. All stars that pass
this criteria are circled (red) in the images. In the middle panel
of Fig. 11 fewer stars would have been detected than in the left
(420 M⊙ case) panel. This is due to the difference in reddening
between the two model stars (for similarity to the candidates).

In all cases we would likely have observed an underlying
cluster, which is evident when comparing Fig. 2 and Fig. 11,
suggesting that these stars are isolated compared to what one
would expect for star formation drawn from sorted sampling.
Each of the O-star candidates should have B-stars present and
several should have other O-stars in their associated cluster.

5.1.2. Monte Carlo simulations

Alongside the visual examples of the typical clusters that should
be present around the massive O-star candidates, we conduct
three comprehensive sets of Monte Carlo simulations.The exact
same parameters of the most massive stars and clusters given in
the previous section are adopted, but with uniform dispersion of
cluster masses for each simulation set (SS#). The cluster mass
ranges are extrapolated from the 1/5 and 5/6 quantile disper-
sions reported from Fig. 5 in Weidner et al. (2010). Details of
the SS# are listed below.

1. SS1: 10,000 runs with median cluster mass of 420 M⊙with
its most massive star at 25 M⊙. The cluster mass dispersion
range is 102 − 103 M⊙.

2. SS2: 10,000 runs with median cluster mass of 1000 M⊙with
its most massive star at 40 M⊙. The cluster mass dispersion
range is 102.2 − 103.6 M⊙.

3. SS3: 10,000 runs with median cluster mass of 4000 M⊙with
its most massive star at 1000 M⊙. The cluster mass disper-
sion range is 103.1 − 104.1 M⊙.

To determine the observable number of stars in the simula-
tions we remove stars below our estimated mass sensitivity limit
of 3 M⊙. Furthermore, we assign cluster positions to each of the
stars using the same King profile parameters as mentioned in the
previous section and remove any stars within 0.15 pc of the most
massive star in the cluster. This reflects the completeness limit as
a function of radius discussed in Sect. 4.2. In Fig. 12 the num-
ber of observable stars with a 1σ dispersion is shown. For the
cases of SS1, SS2 and SS3 we observe at minimum 11, 53, and
148 numbers of stars at the 1σ dispersion level from the mean
assuming AV ∼ 1.

If we place a system like the Trapezium cluster (just the inner
0.1 pc of the Orion Nebula Cluster) in the LMC we would not be
able to resolve it. However, with an effective radius of 2 pc (e.g.
Portegies Zwart et al. 2010) we would have readily detected the
surrounding cluster with minimum of ∼ 40 excess stars in a 5 pc
radius. This is particularly relevant for the mmax − Mcl relation-
ship presented by Weidner et al. (2010), for which the full Orion
Nebula Cluster must be used for the most massive star, θ1Ori C
(48 M⊙, Kraus et al. 2007) to fit the relation.

5.2. Comparing Monte Carlo simulations to observations

If the mmax − Mcl relationship is correct we should have an ex-
cess number of stars within a 5 pc radius of each of the candi-
dates. Around each candidate we measured the number of ob-
servable stars above 3 M⊙ in the HST data and compared them
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Table 3. Number of stars around each candidate based on obser-
vations and Monte Carlo stellar cluster simulations.

VFTS NNinner NNfield Nexcess Nsim

[stars pc−2] [stars pc−2] [star count] [star count]

089 0.09 0.07 2 53
123 2.01 2.23 −17 53
208 2.93 2.61 25 53
216 2.67 2.51 13 53
382 0.32 0.22 7 53
385 0.32 0.38 −5 53
392 0.35 0.22 11 53
398 0.37 0.46 −7 53
470 0.51 0.48 3 53
488 0.64 0.39 19 53
537 0.22 0.29 −6 53
577 0.70 0.66 3 53
581 0.31 0.41 −9 53
682 0.05 0.07 −2 148
706 0.22 0.12 8 53
849 0.28 0.19 7 11

Notes. If the mmax − Mcl relationship is correct we should see an excess
number of stars within a 5 pc radius of each of the candidates. Around
each candidate we measured the number of observable stars above 3
M⊙ from the HST images and compared the number of excess sources
(Nexcess) to the Monte Carlo simulations (Nsim). This shows no
evidence of clustering around the massive star candidates.

to the Monte Carlo simulation sets discussed in the previous sec-
tion. Two apertures were used to estimate the number of excess
stars relative to the background and foreground stars. An inner
aperture of 5 pc and an field aperture of 10 pc, which are de-
noted as NNinner and NNfield, respectively. We define the num-
ber of excess stars (field star corrected) in the inner aperture as
Nexcess = (NNinner − NNfield) × π r2 where r = 5 pc. Upon
comparing the number of excess stars to the number of expected
stars if a cluster is present from the simulations (see Table 3) we
see no evidence for clusters around the candidates.

5.3. Mass and age discrepancies

We use the spectral types of our candidates to derive their age
and masses via Weidner & Vink (2010) as shown in Table
1, but these properties can also be obtained from other meth-
ods. To assess potential uncertainties we have also obtained
physical parameters using the Galactic spectral type-T eff cal-
ibration of Martins et al. (2005). Absolute visual magnitudes
were obtained by correcting the photometry from Evans et al.
(2011) for the effects of extinction, with stellar luminosities es-
timated from the bolometric correction calibration of Martins
et al. (2005). Masses and ages follow from comparison with
non-rotating, LMC metallicity stellar evolutionary models and
isochrones (Meynet et al. 1994; Lejeune et al. 1997).

We acknowledge that the use of an alternative spectral type-
Teff calibration (e.g. Massey et al. 2009) may lead to increased
stellar luminosities/masses. Conversely, decreased stellar masses
would be inferred from contemporary evolutionary models al-
lowing for rotation (Maeder & Meynet 2001; Brott et al. 2011).
Results are presented in Table 4, although refined parame-
ters await detailed analyses, which are currently in progress.
Individual stellar masses are on average <25% below those de-
rived using spectral types (Weidner & Vink 2010). Nevertheless,
our key conclusions are unaffected by the method used to derive

Table 4. Comparison of candidate masses using both evolution-
ary models with isochrones and Weidner & Vink (2010) models.

VFTS log(Teff) log(L) Age Mass MassWV10

[K] [L⊙] [Myr] [M⊙] [M⊙]

089 4.58 4.91 1.5 25 33
123 4.58 4.91 1.5 25 33
208 4.57 5.62 3.5 43 46
216 4.63 5.79 2.2 57 53
382 4.62 5.04 0.0 29 48
385 4.62 5.36 1.8 37 48
392 4.58 4.82 0.0 24 33
398 4.60 5.36 2.5 36 36
470 4.58 4.81 0.0 24 44
488 4.59 5.10 2.0 29 36
537 4.61 4.88 0.0 25 44
577 4.59 4.97 1.0 27 36
581 4.62 5.01 0.0 29 48
706 4.58 4.96 2.0 26 33
849 4.57 4.91 2.5 24 30

Notes. Derived properties of our isolated candidates (O-stars) from
comparisons with evolutionary models and isochrones with a
metallicity appropriate to that of the LMC (Meynet et al. 1994; Lejeune
et al. 1997). Although the masses differ to those in the last column
from Weidner & Vink (2010), our key conclusions are unaffected.

masses since the parent clusters, if present, would still be observ-
able. Except for VFTS 682, all candidates (including VFTS 208)
would meet our criterion and be assigned grade 1 or 2 according
their estimated ages under this method.

5.4. Filamentary structures in 30 Doradus

The 30 Doradus region is largely affected by R136. The gaseous
filaments that we consider in method four for associating with
the O-stars (see Sect. 3) could possibly be problematic for the
slightly older stellar population. In particular, the grade 3 candi-
date, VFTS 208, since the filaments that such a star formed in,
could have been moved/destroyed by feedback from the nearby
R136 cluster (e.g. Tenorio-Tagle et al. 2006).

However, others argue that since the ISM is filamentary and
heterogeneous (e.g. André et al. 2010; Bergin & Tafalla 2007),
the effects of ionising sources on the gas will be less significant
than what Tenorio-Tagle et al. 2006 show in their simulations
(e.g. Dale & Bonnell 2011).

Note that as an additional constraint on the association be-
tween stars and gas, we measured line-of-sight gas velocities
from the [NII]6583, [SII]6717, [SII]6731, and Hα nebular emis-
sion lines superimposed on the stellar spectrum (see Table 1).
When multiple gas velocity components are identified, only the
one that is closest to RVstar is presented. We can see that 7 of the
16 candidates have a radial velocity for the ionised gas (RVISM)

within ∼5 km s−1 of the mean RVstar, while the agreement be-
tween RVISM and RVstar is within 15 km s−1 for most candi-
dates.

5.5. Bow-shocks and the ISM in 30 Doradus

Gvaramadze et al. (2010) discovered bow shocks around two
isolated massive stars a few hundred pc away from R136. They
argue that these OB stars are consistent with being ejected from
the stellar cluster. Their discovery proves that bow shocks can
form in the 30 Doradus region (or at least in its surroundings)

10



E. Bressert et al.: The VLT-FLAMES Tarantula Survey IV: Candidates for isolated high-mass star formation in 30 Doradus

Fig. 11. From left to right, the 5×5 pc (20”×20”) images of the simulated MASSCLEAN clusters of 420, 1000, and 4000 M⊙. The
images were made of simulated clusters, with HST ACS resolution, at the distance of the LMC in the V-band. The green diamonds
mark the brightest/most massive star in the cluster. The red circles indicate stars that would have been detected on the actual images
(see Fig. 3). In all cases, the underlying cluster would have been detected.

Fig. 12. [From left to right] The expected number of observable stars associated with a 25, 40, and 100 M⊙ massive star in 420,
1000, and 4000 M⊙ clusters, respectively based on the 30,000 Monte Carlo simulation runs. The black solid lines are the mean
number of stars per mass bin and the dashed red lines are the 1σ dispersion. Stars with masses below 3 M⊙ are greyed out on the left
hand side of the plot, as those to the right of it are observable. The expected number of observable stars with a 1σ dispersion from
the mean are 11, 53, and 148 assuming AV ∼ 1. According to the estimated number of excess stars for the candidates (see Table 3)
we should have detected such cluster presence around the 25 M⊙ candidates at minimum.

and that these structures can be detected in Spitzer 24 µm im-
ages. So, while the presence of a bow shock suggests the run-
away nature of an isolated OB star (Gvaramadze et al. 2010),
what can one conclude for the isolated candidates presented in
this paper that do not show evidence of bow shocks? We can es-
timate the minimum required runaway velocity to explain the ap-
parent isolation of the candidates considered in this paper. From
the observed projected distance d from R136 (14 to 130 pc ) and
assuming an age t ≤ 1Myr

v ≥ 9.8

(

d

10 pc

) (

t

Myr

)−1

km s−1

we obtain minimum runaway velocities between 14 and 130
km s−1. These velocities are higher than the isothermal sound
speed in a warm ISM. In the case of 30 Doradus the average
gas temperature is estimated to be around 104 K, with radiation
pressure appearing to be negligible outside 10 pc from the cen-
tral cluster R136 (Pellegrini et al. 2011; Peimbert 2003). This
results in an isothermal sound speed of order 10 km s−1. Inside
the cavities containing hot, low density gas, the sound speed can
increase up to 100 km s−1. However such cavities are mostly ob-
served in the inner region of 30 Doradus (Pellegrini et al. 2011).
Therefore, if our isolated massive stars are runaways, they are
likely to be moving supersonically with respect to the local ISM.

In a fraction of supersonically moving runaway OB stars, the
interaction between the stellar wind and the ISM will produce
observable bow shocks (e.g. Comeron & Kaper 1998). This is
supported by observations of such objects, both in the Galaxy
(e.g. van Buren et al. 1995; Huthoff & Kaper 2002; Gvaramadze
& Bomans 2008) and in the Magellanic Clouds (Gvaramadze
et al. 2010, 2011).

The absence of bow shocks in a large sample of isolated OB
stars could hint to the fact that not all of them are runaways.
Gvaramadze et al. (2010) found that ∼ 30% of the runaways in
their sample in the LMC had bow shocks. This is consistent with
Galactic studies of bow shocks as well where 20 − 40% of well
established runaway OB stars has a detectable bow shock (van
Buren et al. 1995; Huthoff & Kaper 2002). Hence, for the LMC
we would expect ∼ 5 of the 16 candidates to have bow shocks
if they are all runaways. While this argument is clearly not con-
clusive, in line with recent efforts of Gvaramadze et al. (2010,
2011), we suggest that the investigation of the presence/absence
of bow shocks around large enough samples of isolated O-stars
could be an important way to constrain their formation mecha-
nism.
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5.6. Number of isolated stars

What fraction of stars would we expect to form in isolation, gen-
erally? Not only does the answer depend on how the IMF is
formed (e.g. sorted or stochastic sampling) but also on the intrin-
sic spatial distribution of stars at the time of their formation, and
how this probability function is sampled. Historically, if one as-
sumes that all stars are formed in “clusters”, then clusters are the
basic unit of star formation, from which stars are then sampled.
However, if “clusters” in fact do not represent a basic unit of star
formation, but instead there exists a distribution of surface densi-
ties (where “clusters” merely represent the high-surface density
tail of the distribution) then one needs to know how the spatial
distribution is sampled. Thus, for each IMF sampling algorithm,
one would first need to draw the mass of the star, and then the
surface density distribution in order to make a stellar population.
At the moment, it is unclear how the surface or volume density
distribution of young stars depends on environment (see Bressert
et al. 2010), hence we cannot say what fraction of isolated stars
would be expected, within this scenario.

6. Summary and implications

We have presented a new method to identify massive stars
that formed in relative isolation. Applying the method to the
30 Doradus region in the LMC, 15 O-star candidates are found,
where 11 are Vz stars, that may have formed in isolation. The
method uses precise radial velocities of the stars to rule out mas-
sive binaries and runaways along the line of sight. Additionally,
high resolution imaging is used to constrain the possible pres-
ence of a stellar cluster around the stars. Using extensive Monte
Carlo stellar cluster simulations we confirm that our observa-
tions are sufficiently sensitive to rule out typical stellar clusters
that should be associated with the candidates if the mmax − Mcl

relation is correct. Finally, we search for gas/dust filaments that
are associated with the massive stars (at least in projection), i.e.,
the birth-sites of stars, to mitigate the possibility that the stars are
runaways in the plane of the sky. The gaseous filamentary struc-
tures were identified using a heterogeneous set of techniques,
wavelengths and instruments. This could be significantly im-
proved through the use of high-resolution mid-IR imaging of the
cold dust in the region, such as that provided by the Herschel
Space Telescope. The observations presented here can constrain
theories of massive star formation as well as scenarios for sam-
pling from the stellar IMF.

All the candidates, except VFTS 682, have met the criteria
presented in Sect. 3. We have mentioned several caveats, includ-
ing filamentary structures and stellar age issues and possible bow
shock association that could be problematic for grade 2 and 3
candidates. Hence, the best candidates of the 16 that withstand
the caveats are the 11 Vz (ZAMS) stars, where their likely young
ages, high mass, robustness to different stellar model parame-
ters, and general close agreement between RVstar and RVISM
is within 15 km s−1, with the exception of 682 (40 km s−1) for
which formal uncertainties in stellar RV measurement are likely
too low.

Isolated massive star formation is possible according to the
monolithic formation scenario (e.g., Krumholz et al. 2009),
whereas the competitive accretion scenario implies that massive
stars can only form in sufficiently massive clusters (e.g., Bonnell
et al. 2004). The observations presented here suggest that com-
petitive accretion might not be the only mechanism responsible
for the formation of massive stars. Whether a massive-star forms
in a cluster or not can be affected by an external agent, such as

triggering, but once star formation starts in the cluster radius of
the massive star, external triggering is no longer an important
factor (see Dale & Bonnell 2011).

We have found 16 candidates in the LMC that most likely
formed in isolation or in sparse clusters that do not follow the
mmax − Mcl as reported by Weidner et al. (2010). This supports
the conclusions of Lamb et al. (2010) who studied O-stars in
the SMC which had sparse clusters associated with them. Both
studies attempt to remove the possibility that the O-stars investi-
gated are runaways from a nearby cluster. Chu & Gruendl (2008)
found that 4% of massive YSO candidates (with some contam-
inant, Gruendl & Chu 2009; Evans et al. 2011), in the LMC
were located far enough away from young clusters and/or asso-
ciations that they most likely formed in isolation. Additionally,
lower in the stellar mass range, a collection of Ae/Be stars have
recently been shown to not originate in clusters (Wheelwright
et al. 2010). Finally, Eldridge (2012) notes that γ-Velorum is a
∼ 65M⊙ WR+O binary system in a cluster with a total mass
of 250 − 350 M⊙, which is well below that expected from the
mmax − Mcl relation.

An additional constraint that not all of the surrounding O-
stars in 30 Doradus are runaways, can be obtained by comparing
R136 and the Galactic young massive cluster NGC 3603. The
clusters have similar ages, masses, and densities, yet NGC 3603
does not appear to have any massive stars outside the central
∼ 1 pc (Moffat et al. 1994). Since the number of runaways scales
with the central cluster density, NGC 3603 and R136 are ex-
pected to have similar numbers. Hence, the observed differences
are likely a reflection of the formation of the cluster and sur-
rounding environment.

Hence, the observations presented here (and those cited
above) appear to contradict the mmax − Mcl relation shown in
Weidner et al. (2010), in that large clusters are not necessary to
form massive stars. This favours a scenario that the stellar IMF is
sampled stochastically. Amongst the candidates, we have shown
that short-period binaries are very rare. There may be unresolved
lower-mass stars and a handful of long-term binaries that accom-
pany the candidates, however, if present these stars wouldn’t be
enough to raise the mmax − Mcl to fit the sorted sampling sce-
nario. The fact that the mmax − Mcl relation does not appear to
be causal, but rather statistical, raises questions regarding the
Integrated Galactic IMF (IGIMF) scenario (Weidner & Kroupa
2006), where galaxies that form only low mass stellar clusters
will never form high-mass stars. This has many potentially large
implications for extragalactic observations (c.f., Bastian et al.
2010), especially for low-mass galaxies.

The observation of the formation of high-mass stars in iso-
lation, along with the age spread within the 30 Doradus region
(e.g., Walborn & Blades 1997), is consistent with a hierarchical
distribution of star formation, in time and space (e.g. Efremov &
Elmegreen 1998, Bastian et al. 2009). This means that star for-
mation does not happen in a quantised way on the group level,
i.e., not all stars form in compact coherent structures like clus-
ters. The spatial distribution of star formation appears to be a
continuous distribution in surface density (Bressert et al. 2010)
of which the stars discussed here would fall into the extreme low
surface density end of the distribution. Additionally, clusters are
sensitive to how one exactly defines them, as the distribution of
clusters and associations seem so overlap at young ages (Gieles
& Portegies Zwart 2011).
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Table A.1. The details of the HST data used in this paper.

VFTS HST ID Filter Integration Time
[s]

089 APPP-LMC F814W 3200
123 9741 F814W 3200
208 9741 F814W 2800
216 9741 F814W 2800
382 8163 F814W 85
385 8163 F814W 85
392 8163 F814W 85
398 8163 F814W 85
470 8163 F814W 85
488 8163 F814W 85
537 8163 F814W 85
577 8163 F814W 85
581 8163 F814W 85
682 8163 F673N 2000
706 5114 F814W 1200
849 APPP-SFD F606W 1760

Notes. The completeness limit tests that we conducted were done on
VFTS 385, which is amongst the shortest exposure times. This means
that our completeness limit of 2 to 3 M⊙ is a worst-case scenario. The
HST ID column refers to the proposal IDs when available, otherwise
they refer to the APPP repository (Wadadekar et al. 2006).
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Appendix A: Hubble archival data

We make use of HST images that were retrieved through the
Hubble Legacy Archive web service. The images came from a
collection proposals and programs. A table is provided below
to summarise the different data and their properties which are
important for this paper.

Appendix B: Probability test for chance alignment

of runaway stars with filaments

Currently, there are no high-resolution, continuous, large field-
of-view maps of the 30 Doradus region that show where the star
forming filamentary gas and dust are. In the coming year this
deficiency will be resolved as the Herschel Space Observatory
survey maps of the LMC, HERschel Inventory of The Agents
of Galaxy Evolution (HERITAGE) (Meixner et al. 2010), will
be publicly released. By combining the HERITAGE maps with
the data presented in this paper one could reject the likelihood
of O-stars being runaways based on probability. We propose that
the definition of a filament from Herschel observations is best
defined by the 2nd differential maps Molinari et al. (2010) intro-

Fig. B.1. A diagram showing how the probabilistic method
should be conceptualised. The radius R = Rboundary−Rcluster.

All the stars outside of the cluster are initially assumed to be run-
aways for the binomial probability problem to calculate the like-
lihood of multiple alignment events between the runaways and
the filaments (grey clouds). The filaments at these scales, > 5 pc,
will not be affected by a single O-star such that nothing remains.

duced, where a physically relevant radius from the peaks of the
filaments can bear association to the stars.

To do this, we take O-stars similar to the ones discussed in
this paper and assume that they are runaways. Using the radial
velocity measurements from the Tarantula Survey, we approxi-
mate that there are roughly N number of runaways in total. Then
we place a circular boundary around R136 at distance R, where
R = Rboundary − Rcluster, and has area Aboundary. Within

R distance, let’s assume that gas/dust filaments covers an area
Afilament, such that Afilament ≤ Aboundary. Refer to Fig. B.1

for a visual context of the scenario we have now discussed.
With the above conditions, what is the probability that n of N

runaway O-stars line up with filamentary structures in the line-
of-sight? For simplicity, assume that the N O-stars are randomly
distributed within the boundary such that the probability of an
O-star lining up with a filament can be expressed as ρ.

ρ =
Afilament

Aboundary
(B.1)

To see what probability n of N (n ≤ N) O-stars is in the
line-of-sight with filaments we invoke the binomial probability
equation as shown below, where we assume that each line-of-
sight event is independent of one another.

P(n) =

(

N

n

)

ρn(1 − ρ)N−n (B.2)
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André, P., Men’shchikov, A., Bontemps, S., et al. 2010, A&A, 518, L102

13



E. Bressert et al.: The VLT-FLAMES Tarantula Survey IV: Candidates for isolated high-mass star formation in 30 Doradus

Baade, D., Meisenheimer, K., Iwert, O., et al. 1999, The Messenger, 95, 15
Banerjee, S., Kroupa, P., & Oh, S. 2012, ApJ, 746, 15
Bastian, N., Covey, K. R., & Meyer, M. R. 2010, ARA&A, 48, 339
Bastian, N., Gieles, M., Efremov, Y. N., & Lamers, H. J. G. L. M. 2005, A&A,

443, 79
Bastian, N., Gieles, M., Ercolano, B., & Gutermuth, R. 2009, MNRAS, 392, 868
Bastian, N. & Goodwin, S. P. 2006, MNRAS, 369, L9
Bergin, E. A. & Tafalla, M. 2007, ARA&A, 45, 339
Bertin, E. & Arnouts, S. 1996, A&AS, 117, 393
Bestenlehner, J. M., Vink, J. S., Gräfener, G., et al. 2011, A&A, 530, L14
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