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Abstract

Under conditions of high stress or low temperature, glide of dislocations plays an important role in

the deformation of UO2. In this paper, the Peierls-Nabarro model is used to calculate the core widths

and Peierls stresses of ½<110> edge and screw dislocations gliding on {100}, {110}, and {111}.

The  energy  of  the  inelastic  displacement  field  in  the  dislocation  core  is  parameterized  using

generalized stacking fault energies, which are calculated atomistically using interatomic potentials.

We use seven different interatomic potential models, representing the variety of different models

available for UO2. The different models broadly agree on the relative order of the strengths of the

different slip systems, with the 1/2<110>{100} edge dislocation predicted to be the weakest slip

system and 1/2<110>{110} the strongest. However, the calculated Peierls stresses depend strongly

on  the  interatomic  potential  used,  with  values  ranging  between  2.7-12.9  GPa  for  glide  of

1/2<110>{100} edge dislocations, 16.4-32.3 GPa for 1/2<110>{110} edge dislocations, and 6.8-

13.6 GPa for 1/2<110>{111} edge dislocations.  The glide of 1/2<110> screw dislocations in UO2 is

also found to depend on the interatomic potential used, with some models predicting similar Peierls

stresses  for  glide  on  {100}  and  {111},  while  others  predict  a  unique  easy  glide  direction.

Comparison with previous fully atomistic calculations show that the Peierls-Nabarro model can
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accurately predict dislocation properties in UO2.
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1. Introduction

UO2 is  a common oxide of uranium, and the primary fuel material  for nuclear reactors. Under

normal conditions, UO2 adopts the fluorite (CaF2) structure, with the U4+ ions arranged in a face

centered cubic lattice and eight-fold coordinated by O2-. UO2 also occurs naturally as a mineral,

known as uraninite or pitchblende. Uraninite is the most abundant uranium bearing mineral, and is

an important economic source of uranium. Dislocations, a type of linear topological defect that act

as carriers of plastic strain, are produced by interaction with radiation during burn-up [1, 2] and are

important  for  understanding  the  mechanical  properties  of  UO2,  especially  at  low temperatures.

Additionally, due to the substantial distortion of the crystal lattice in the vicinity of a dislocation,

they can also serve as hosts for impurity atoms in UO2, including fission products such as Ru [3]

and the noble gas Xe [4].

There  are  four  main  dislocations  observed  in  UO2, 1/2<110>{100},  1/2<110>{110},  and

1/2<110>{111} edge dislocations, and a screw dislocation with Burgers vector 1/2<110> [5, 6]. Of

these, the 1/2<110>{100} edge dislocation is the weakest (ie. moves under the application of the

lowest  resolved shear  stress),  while  the  1/2<110>{110} is  the  strongest.  Computational  studies

show that the screw dislocation has the lowest energy, while the 1/2<110>{110} edge dislocation

has the highest energy [7, 8]. Under the action of an applied shear stress,  a dislocation can be

displaced from its equilibrium position and, if the stress exceeds some critical value (referred to as

the Peierls stress,  σp), the dislocation may begin to move.  The Peierls stress and elasticity tensor
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together  determine  dislocation  mobility  below  the  athermal  limit  (the  temperature  above  which

dislocation velocities are controlled by dislocation-dislocation interactions rather than the Peierls stress) , and

can be used to model the critical resolved shear stresses, dislocation velocities, and strain rates for a

given  slip  system,  as  functions  of  temperature.  At  stresses  below  σp,  dislocation  glide  occurs

through the thermally activated nucleation and migration of kink-pairs [9]. The velocity at which a

dislocation glides is related to the rate of sustainable kink-pair nucleation, the activation energy of

which depends on the elastic constants of the material, and on the Peierls barrier. If the activation

energy  for  sustainable  kink-pair  nucleation  at  zero  applied  stress  ∆E0 is  known,  the  stress

dependence of the activation energy is

 ΔE (σ )=ΔE0 (1 − ( σ /σ p )p )q (1)

where  p  and  q  are  exponents  whose  values  must  be  determined  by fitting  to  experimental  or

simulation data [10]. 

Despite their importance for modeling dislocation velocities and hence strain rates during glide-

controlled creep, the Peierls stresses of the major dislocation slip systems in UO2  remain poorly

constrained. However, one previous study has used atomistic simulations to calculate the Peierls

barrier (which approximately proportional to σp) of edge dislocations in UO2, whose values have the

relative  ordering  1/2<110>{100}  <  1/2<110>{111}  <  1/2<110>{110}  [7].  High-temperature

molecular dynamics calculations of critical shear stresses show that the Peierls stresses of the edge

dislocations in UO2 follow the same relative ordering seen in [7], and indicate σp is at least several

GPa  for  all  three  slip  systems  [11].  Atomistic  simulations  have  also  shown  that  glide  of

1/2<110>{100} edge dislocations occurs via a thermally activated mechanism below 2000 K, which

is  consistent  with  a  relatively  high  (>1  GPa)  Peierls  stress  for  this  slip  system  [12].  Hyper-

stoichiometry is known to affect the slip systems of UO2, reducing the critical resolved shear stress
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[6, 13]. The magnitude of this effect is greater on the {111} slip plane than on the {100} slip plane

[6],  causing  their  critical  resolved  shear  stresses  to  converge  at  high  temperature  and  oxygen

fugacity. 

Peierls stresses can be calculated directly using atomistic methods, either by applying a stress/strain

to a supercell and determining the stress required to move the dislocations or by calculating the

energies of structures intermediate between adjacent dislocation energies, giving an energy profile

whose derivative is proportional to the Peierls stress. A simpler alternative to the fully atomistic

approach is the Peierls-Nabarro (PN) model, which uses a hybrid continuum-atomistic approach to

model dislocations. In the PN model, a dislocation is represented as a finite distribution of partial

dislocations,  whose elastic  interactions are balanced by some inelastic  restoring force [14,  15].

Atomistic simulation methods can be used to parameterize this force by introducing a generalized

stacking fault (GSF) into a simulation cell, which is done by displacing one half of the cell with

respect to the other [16]. One clear advantage of the PN model over fully atomistic simulations is

that  the  bulk  of  the  computational  cost  is  incurred  in  the  generalized  stacking  fault  (GSF)

calculations used to parameterize the inelastic forces. As these contain far fewer atoms than are

found in the simulation cells used to perform fully atomistic calculations of dislocation properties,

the PN method can be used to calculate dislocation widths and Peierls stresses far more quickly and

at lower computational cost than is possible with fully atomistic calculations.

The Peierls stress is an important parameter governing glide mobility of dislocations, knowledge of

which is essential to accurately model glide-controlled creep processes during, for example, burn-up

of UO2. In this study, we use the Peierls-Nabarro model to calculate the dislocation misfit profiles

and Peierls stress for the most important slip systems in UO2 To do this, we first calculate the  γ-

surfaces (ie. GSF energies over a range of different stacking fault vectors) corresponding to the

main slip systems, using seven different interatomic potentials for UO2. This subset of potentials
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was chosen to cover the range of possible parameterizations available in the literature and typically

used to model UO2. The models include full- and partial-charge models, rigid ions, shell models,

and a recent  many-body model,  and allow us  to  infer  the general  behavior  of these classes  of

parameterizations for modeling dislocations in UO2. From the Peierls-Nabarro model, we are then

able to use these γ-surfaces to calculate misfit profiles and Peierls stresses for the 1/2<110>{100},

1/2<110>{110}, and 1/2<110>{111} edge dislocations and the 1/2<110>{110} screw dislocations

in  UO2.  In  addition  to  providing  intrinsic  dislocation  properties,  allowing  us  to  compare  the

suitability of different interatomic potentials for dislocation modeling, and evaluate the viability of

using the PN method to study dislocations in UO2.

2. Computational Methods

2.1 The Peierls-Nabarro Model

In  the  Peierls-Nabarro  (PN)  model,  a  dislocation  with  finite  core-width  is  represented  as  a

distribution of partial dislocations along the glide plane, whose shape is determined by the balance

between the elastic  energies  acting between its  constituent  partial  dislocations and the inelastic

energy introduced by the presence of a disregistry  u in the material at the glide plane, with the

former acting to broaden the dislocation distribution and the latter serving to constrain it. The PN

model,  as used in this study, is briefly summarized below. For a more complete treatment,  see

Bulatov and Cai [17]. 

The value of the total energy of such a finite distribution of dislocations at a distance R from the

dislocation line is

ETOT ( R )=EELASTIC+EMISFIT+Kb
2
lnR                            (2)

where K is an energy prefactor whose value depends on the elastic constants and the dislocation
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orientation, and b is the Burgers vector magnitude. EELASTIC is the elastic interaction energy between

the partials, EMISFIT the energy due to the inelastic displacement of atoms at the glide plane, and final

term gives the strain energy due to the long-ranged elastic strain field of the dislocation. As the

long-ranged term is independent of the core structure and EWORK is zero in the absence of an applied

stress, the solution to PN model is the dislocation distribution that to minimizes the energy function 

E INTERNAL=EELASTIC+EMISFIT                         (3)

If u(x) is the disregistry across the slip plane and ρ ( x )=d u i ( x )/dx  is the associated dislocation

density distribution, then the elastic energy of the dislocation is the work required to insert this

disregistry into an infinite elastic medium:

EELASTIC [ ρ ( x ) ]=− K∬ ρ ( x ' ) ρ ( x ) dx ' dx (4)

It is worth noting that the effect of the elastic energy is to cause the dislocation to spread out so that,

if there were no restoring force, the dislocation density distribution would be zero everywhere (but

with finite integral). In real crystals, it is the energy penalty associated with introducing misfit on

either side of the slip plane that provides this opposing force, and constrains dislocations to have

finite width. For a given  disregistry profile u(x), the inelastic energy is

EMISFIT=∑
n

γ (u ( nap ))a p (5)

where ap is the spacing between adjacent atomic planes and γ, called a γ-line in one dimension and

the  γ-surface in two, is a function that gives the energy required to displace one half of a crystal

with respect to the other by u [16]. The misfit energy can also be written as an integral, in which

case the dislocation energy is invariant under translation, implying that the dislocation is mobile
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under  the  application  of  an  infinitesimal  external  stress.  When calculating  the  dislocation  core

structure numerically, the misfit profiles is expanded as a sum of arctangent functions (ie. partial

dislocations), as

u ( x )=b

π
∑

i

A i arctan( x− x0, i

c i
)− C (6)

where C is b/2 for the component of misfit parallel to the Burgers vector and zero otherwise. The

parameters  x0,i, Ai, and  ci  are found by minimizing equation (3), with the elastic and misfit terms

represented by equations (4) and (5), respectively, with the disregistry function given in the form of

equation (6). 

The evolution of the disregistry profile under the action of an applied stress  σ is computed by

adding EWORK=σ∫ u (x ) dx to  the  total  internal  energy  (equation  3)  of  the  dislocation  and

minimising the energy functional as before. At the Peierls stress,  σp, the energy barrier inhibiting

free translation of the dislocation disappears, allowing it to glide indefinitely.

There are two key assumptions in the PN model as given in the preceding discussion. The first is

that  non-linear  interactions  between  adjacent  partial  dislocations  in  the  dislocation  density

distribution ρ(x) are negligible, so that equation (5) can be written as a linear sum of GSF energies,

and this is generally true. The second assumption is that the dislocation core structure is planar, and

localized on the glide plane. This is generally correct in the case of pure edge dislocations, but may

fail for some screw dislocations if they spread on multiple glide planes, as is the case for [001]

screw dislocations in  forsterite [18],  which glide via a locking-unlocking mechanism [19].  If  a

screw dislocation exhibits non-planar core-spreading, the PN model still provides a lower bound on

the Peierls stress, as dislocations with planar cores are more mobile than those with non-planar
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cores.

2.2 Generalized stacking fault calculations

The  γ-surface energy used to calculate the inelastic energy of a dislocation density distribution is

constructed from generalized stacking fault (GSF) energies obtained from atomistic calculations.

This  is  done  for  each  slip  system  by  taking  an  appropriately  oriented  supercell  of  UO2 and

displacing the top half of the construction simulation cell along a grid of stacking fault vectors and

relaxing  the  atomic  coordinates,  subject  to  the  constraint  that  both  U  and  O  can  only  relax

perpendicular to the slip plane. The excess energy of the slipped cell is obtained by comparing the

energy of the undeformed crystal with that of the fully relaxed supercell. As the simulation cell is

3D periodic, this construction actually inserts a pair of  equivalent stacking faults into the cell (at

z=0  and  z=0.5),  so  that  the  GSF energy  is  1/2  the  calculated  excess  energy  of  the  deformed

supercell.

The  dependence  of  the  generalized  stacking  fault  energies  on  the  simulation  cell  thickness

(perpendicular to the slip plane) was tested for each lattice orientation. For {100} and {111} slip

planes, atomic slabs 10 unit cells thick were sufficient to converge the calculated 1/4<110> stacking

fault energies on each surface to within < 2%, while for the {110} slip plane, the fully converged

simulation cell was 14 unit cells. These simulation cells are displayed in Fig. 1.

In  this  study,  seven  different  interatomic  potentials  are  used  to  calculate  the  properties  of

dislocations  in  UO2.  In  addition  to  the  highly-accurate  embedded atom potential  developed by

Cooper  et  al.  [20],  we use the Arima potential  [21],  which is  a  rigid-ion model  that  treats  all

interatomic  interactions  using  the  Buckingham potential,  and the  Goel  potential  [22],  which  is

similar to the potential developed by Arima et al., but treats the polarizability of the O ions using a

shell  model  [23].  Additionally,  we  use  the  Morelon  potential  [24],  which  simulates  the  O-O
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interactions with a Buckingham 4-range potential, and has previously been used by Parfitt et al. [7]

to study dislocation motion atomistically, and the potentials developed by Basak et al.  [25] and

Yakub et al. [26, 27], which are rigid ion models, including Morse terms to simulate the covalent

part of U-O pair interactions. Finally, we also use the Read potential, in which a Buckingham 4-

range potential is used to model the O-O interactions and includes shells for the O ions [28]. Both

the Arima and Read potentials take the charges on the U and O atoms to be equal to their formal

charges, while the other five potentials are partially ionic. For convenience, these potentials will be

referred to henceforth as Arima05, Basak03, Cooper14, Goel08, Morelon03, Read10, and Yakub10.

All  atomistic  calculations  of  GSF energies  are  performed using  the  molecular  mechanics  code

GULP [29, 30].

3. Results and discussion

The  {100},  {110},  and  {111}  γ-surfaces  calculated  using  the  seven  interatomic  potentials  are

displayed in Fig. 2, with the important stable and unstable stacking fault energies listed in Table 1.

Note that the shape of the {111} gamma surface presented here differs from that in  [11] because

there are two non-equivalent heights at which the slip plane may intersect the simulation cell,  either

separating a layer of U atoms and a layer of O atoms, or two adjacent layers of O atoms. Here, the

latter choice is used as it gives lower generalized stacking fault energies and a simpler  γ-surface

shape, whereas Fossati et al. appear to have placed the slip plane between the U and O layers. These

layers are closely spaced, such that atoms sometimes pass close to one another,  resulting in an

irregular γ-surface characterized by high maximum GSF energies.

As can be seen from Fig. 2, the seven potentials can be separated into two broad groups based on

the shape of the {100} γ-surface. In the first group, which comprises Arima05, Goel08, Morelon03,

and Read10, the 1/4<110> generalized stacking fault corresponds to a saddle point of the γ-surface.
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In contrast, this stacking fault vector is associated with a local maximum of the γ-surface energy for

the Basak03, Cooper14, and Yakub10 potentials. Furthermore, this group of potentials all show a

local minimum along <100>, which is deepest for the Cooper14 potential and shallowest for the

Basak03 potential. Despite the disparity in the shapes of the γ-surfaces calculated using the different

potentials,  the 1/2<110>{100}, 1/2<110>{110},  and 1/2<110>{111}  γ-lines remain qualitatively

similar (see Fig. 3), although the range of stacking fault maxima predicted for each line is quite

large.  The  shape  of  these  γ-lines  will  largely  determine  the  properties  of  their  associated  slip

systems, indicating that the qualitative features predicted for the major slip systems in UO2 are

likely  to  be similar  for  all  seven potential  models,  although the dislocation widths  and Peierls

stresses may vary greatly. 

From  these  γ-surfaces,  dislocation  misfit  profiles  were  calculated  for  the  three  types  of  edge

dislocation and 1/2<110> screw dislocations gliding on {100}, {110}, and {111}. Although we

performed all calculations using the 2D Peierls Nabarro model, no spreading perpendicular to b was

found for any of the slip systems (ie. for all i corresponding to the perpendicular component). This

means that the three edge dislocations are not predicted to have a screw component,  while the

1/2<110> screw dislocation has no edge component. For consistency between the static structures

and Peierls stresses, the misfit energy has been calculated using a sum over discrete lattice planes

rather  than  the  integral  formulation.  For  the  edge  dislocations,  the  interlayer  spacing  is  b,  the

Burgers vector thickness. For 1/2<110> screw dislocations gliding on {100}, the interlayer spacing

is likewise b, while for screw dislocations spreading on {110} or {111}, the interlayer spacing is a/2

(where a is the lattice parameter) and b√ (2 )/2 , respectively. Calculated dislocation widths and

dislocation energies are listed in Table 2 for all of the potentials, while representative disregistry

profiles  and  their  associated  dislocation  density  distributions  (obtained  using  the  Cooper14

potential) are plotted in Fig. 4. 
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One of the key parameters defining a dislocation core is the core width, defined as distance over

which the disregistry field changes from -b/4 to b/4. For all potentials examined in this study, the

1/2<110>{100} edge dislocation had the widest core and the <110>{110} screw dislocation the

narrowest. The Arima05, Goel08, and Morelon03 potentials had unusually narrow 1/2<110>{100}

and 1/2<110>{111} edge dislocations, while the Basak03 potential predicted an unusually wide

core for the 1/2<110>{100} edge dislocation, compared with the other potentials. Predictions for

the shape of the 1/2<110>{111} misfit profile were particularly consistent between the different

potentials,  with  a  minimum  width  of  2.471  Å  (Basak03)  and  a  maximum  width  of  2.776  Å

(Morelon03).  The  shapes  of  the  1/2<110>{110}  edge  and  screw dislocations  were  remarkably

consistent between the seven potentials. As can be seen in Table 2 and Fig 4d, the 1/2<110> screw

dislocations has a particularly narrow core, and the widths of screw dislocations spreading on {110}

and {111} are considerably less than that of a screw dislocation spreading on {100}. This indicates

that the 1/2<110> screw dislocation is  essentially planar,  and that its  Peierls stress can thus be

calculated using the PN method. 

While the ordering of the energies for the three edge dislocations considered here agree with the

fully atomistic calculations of Murphy et al. [8], we find that the 1/2<110>{100} edge dislocation

has a lower energy than a 1/2<110> screw dislocation spreading on {100}, whereas they reported

that screw dislocations have the lowest line energy. However, this disparity can be attributed to the

fact that Murphy et al. report the relative ordering of the dislocation energies at a distance 40 Å

from the dislocation line. In atomistic simulations, the dislocation energy as a function of radius is

ETOT=ECORE+Kb
2 ln ( R /R core ) .  At large distances from the dislocation line, the total energy is

dominated by the second term, which is the elastic energy of the dislocation strain field. Since the

energy coefficient K for a screw dislocation is necessarily lower than that of an edge dislocation (for

an isotropic material, Kedge = Kscrew/(1-ν), where ν > 0 is the Poisson's ratio) the energy of a screw
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dislocation at a distance of 40 Å from the dislocation line (the distance at which Murphy et al.

calculated dislocation line energy) will usually be lower than that of an edge dislocation with the

same magnitude Burgers vector. 

Perhaps more relevant are the core (ie. inelastic) energies obtained by Parfitt et al. [7], where the

order of the calculated core energies is E<110>{110} > E<110>{111} > E<110>{100}, a result identical to that

found for five of the seven potentials in this study. The exceptions are the Morelon03 and Read10

potentials, with  the  former  predicting  that  the  1/2<110>{111} is  the  lowest  energy dislocation,

whereas the latter actually predicts that the 1/2<110>{100} dislocation has the highest energy of the

three major slip systems. Contrary to the atomistic calculations in [8], the PN model predicts that

1/2<110> screw dislocations  in  UO2 have higher  core energies  than any of  the 1/2<110> edge

dislocations. However, this discrepancy may be attributed to the presence of the elastic energy term,

as Parfitt et al. use a cutoff radius of 30 Å to fit the core energy, and the trade-off between the

parameters  ECORE and  RCORE mean  that  their  reported  core  energy  will  contain  a  substantial

contribution from elastic strain energy of the region R < RCORE.

Peierls stresses are calculated using the applied stress method for all three edge dislocation slip

systems,  and for  1/2<110> screw dislocations  gliding on {100}, {110},  and {111}. The values

calculated are listed in Table 3. For all seven potentials, slip on the {110} plane is associated with

the  highest  Peierls  stresses,  consistent  with  experimental  observations  of  relative  slip  system

strengths, with predicted stresses for glide of the edge dislocation in this direction as great as 32.3

GPa (Arima05), although the other six potentials predict somewhat lower values (16.4-22.9 GPa).

Of the potential models used in this study, six predict that the 1/2<110>{100} slip is weakest, as has

been  found  in  experiments.  The  lone  exception  is  the   Read10  potential,  for  which  the

1/2<110>{100} edge dislocation has a Peierls stress of 12.9 GPa, compared with a σp of 8.1 GPa

for glide of the 1/2<110>{111} edge dislocation. Comparing calculated Peierls stresses for Read10
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with  those  of  the  other  six  potential,  it  appears  that  the  specific  problem  is  that  Read10

overestimates the strength of the 1/2<110>{100} slip systems, as the calculated Peierls stresses for

dislocation glide on {110} and {111} are broadly similar to those obtained with other potentials.

While the Morelon03 potential still predicts that 1/2<110>{100} will be softer than 1/2<110>{111},

the contrast is much less than for the other potentials. 

For screw dislocations, the line vector  ξ and Burgers vector  b are parallel. Consequently, screw

dislocations can glide on any plane whose normal is perpendicular to  b. For the 1/2<110> screw

dislocation  in  UO2,  possible  glide  planes  include {100},  {110},  and {111},  and the  calculated

Peierls stresses for these possible slip systems are presented in Table 3. As can be seen, the relative

ease of screw dislocation glide on the different planes is strongly dependent on the interatomic

potential used. The Basak03 and Yakub10 potentials both predict that 1/2<110> screw dislocations

glide most easily on {100}, while glide is most difficult on {110}. The calculated value of σp for

glide on {111} is intermediate between the two. This is also the case for calculations performed

using the Cooper14 potential, although in this case the Peierls stresses for glide on {100} and {111}

are more similar. While the Arima05, Goel08, and Morelon03 potentials find that {110} glide has

the highest Peierls stress, all three give almost identical Peierls stresses for glide on {100} and

{111}. For the Arima05, Cooper14, Goel08, and Morelon03 potentials, the similarity of the Peierls

stresses  for  slip  on  {100}  and  {111}  suggests  that  cross-slip  between  these  planes  should  be

possible. Finally, as is the case for the edge dislocation slip systems, the Read10 potential predicts

substantially different relative ordering of the Peierls stresses, with the Peierls stress for glide on

{111} (11.1 GPa) is lower than those for glide on {100} or {110}, for which the calculated values

of σp are 16.2 and 16.7 GPa, respectively. 

There is no apparent systematic variation in the Peierls stress with the oxygen polarisability, except
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that shell models predict marginally a lower value for the Peierls barrier of the 1/2<110>{111} edge

dislocation. However, the difference is no larger than the variation seen within the rigid models.

Similarly, there is no systematic difference between models with formal charges and those that use

partial ionic charges. From this, we conclude that variations between the different models are a

consequence of the values of the fitted parameters, rather than the style of model used.

While, of the seven potentials considered in this study, for only one (Read10) are the calculated

values of  σp inconsistent with the known relative strengths of the {100}, {110}, and {111} glide

planes, the scatter in the calculated values is quite high. Below the athermal limit, the activation

energy for glide creep is given by the expression for the critical energy for sustainable kink-pair

nucleation (equation (1)). This depends on the value of σp which, as has been shown, depends on the

choice  of  potential.  Indeed,  since  dislocation  velocities  and  strain  rates  have  an  Arrhenius

relationship to the activation energy, high temperature simulations of glide-controlled creep will be

more sensitive to the choice of potential than might be expected judging from the Peierls stresses

alone. This means that future attempts to model deformation via glide-controlled mechanism will

have to be careful in interpreting their results, as these will depend on the potential used.

The  Peierls  potential  is  the  energy  barrier  separating  adjacent  minima  of  the  dislocation.  For

undissociated dislocations, the approximate shape of the Peierls potential may be calculated from

the Peierls stress and Burgers vector magnitude as 

W P ( X )=
σ p b

2

2π [1− cos( 2π x

b )] (5)

It follows that the maximum height of the Peierls potential (also called the Peierls barrier) is simply

W p , max=
σ pb

2

π
.  For the Morelon03 potential,  using the Peierls  stresses from Table 3 and the
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Burgers  vector  magnitude  b =  3.852  Å,  the  Peierls  barriers  for  glide  on  1/2<110>{100},

1/2<110>{110}, and 1/2<110>{111} edge dislocations are 0.17 eV/Å, 0.50 eV/Å, and 0.25 eV/Å,

respectively. For comparison, Parfitt et al. [7] used fully atomistic calculations (with interatomic

interactions treated using the Morelon03) potential, together with the nudged elastic band (NEB)

method to directly calculate Peierls barriers for the three edge dislocations, obtaining values of 0.25

eV/Å, 0.46 eV/Å and 0.31 eV/Å for 1/2<110>{100}, 1/2<110>{110}, and 1/2<110>{111} edge

dislocation. The value for the Peierls barrier of the 1/2<110>{110} slip system is well reproduced

by the PN model. In contrast, the 1/2<110>{100} and 1/2<110>{111} slip systems are moderately

lower  than  those found by Parfitt  et  al,  which  may be  because  slip  paths  found in  their  NEB

calculations do not correspond to the global minimum energy pathways or a consequence of the

relatively short cut-off (25 Å) used in their simulations, which may have allowed the dislocations to

interact with the boundary of the simulation cell, creating an artificial barrier to glide. Alternatively,

the difference may indicate the presence of non-planar dislocation core spreading in the atomistic

calculations which, as previously discussed, would result in higher Peierls stresses than those found

for the labile planar dislocations produced by PN modeling. Nevertheless, it should be noted that

the Peierls barriers calculated using the PN model are of the same order of magnitude as those

found  by  Parfitt  et  al.  [7],  and  that  both  methods  predict  the  same  order  for  the  slip  system

strengths. 

The close comparison between the results presented here and fully atomistic calculations suggest

that the PN model can be used to accurately model the mobility of dislocations in UO2. However,

previous  studies of dislocation glide [7,  11,  12] used the same potential  (Morelon03) to model

interatomic interactions. Murphy et al [8] compared UO2 dislocation core structures predicted by a

range of different potentials, and found that several of them produced highly disordered dislocation

core structures, with a substantially non-planar character. As discussed in the methods section, the
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particular formulation of the PN model used here is applicable only to dislocations with a planar

core, as it assumes that the disregistry field is localized on the glide plane. However, the disordered

cores  found  for  some  of  the  potentials  are  likely  a  consequence  of  the  fact  that  the  input

displacement fields were derived from classical elasticity theory, leading to high stresses near the

dislocation line (especially for the 1/2<110>{110} edge dislocation), and substantial forces on some

of the individual atoms. Given the large number of degrees of freedom available in a fully atomistic

calculation, it is plausible that the non-compact, disordered core structures found in [8] for some of

the potentials actually reflects relaxation of the dislocation into a local energy minimum. That this

might be the case is supported by the fact that the core width predicted for each dislocation is

relatively  consistent  across  the  seven  potentials,  with  the  greatest  spread  (~1  Å)  seen  for  the

1/2<110>{100} edge dislocation. Moreover, all of the potentials predict that the 1/2<110> screw

dislocation and the 1/2<110>{100}, 1/2<110>{110}, and 1/2<110>{111} edge dislocations in UO2

have narrow cores, with no apparent splitting into partial dislocations. 

In this study, we have focused on dislocations moving in point defect-free UO2. However, the PN

method of modeling dislocation glide also allows the effect of point defect-dislocation interactions

on the Peierls stress of a dislocation to be calculated straightforwardly. To do this, point defect of

the desired type are inserted at or near the slip planes in generalized stacking fault calculations,

whose energies are processed to produce the g-line/surface which enters the expression for the

inelastic misfit energy (equation (5)) in a PN model. This approach has been used previously to help

explain  the  mechanisms  by  which  interstitial  hydrogen  atoms  [31]  and  lattice  vacancies  [32]

lubricate dislocation glide in fcc Al. The PN model has also been used to show that Sn alloying

reduces the Peierls stress of basal dislocations in Zircaloy, relative to pure Zr [33], and that alloying

with Yt similarly enhances basal glide in Mg metal [34]. In UO2, oxygen hyper-stoichiometry (ie.

O/U > 2) reduces the measured critical resolved shear stress, and changes the relative strengths of
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the 1/2<110>{100} and 1/2<110>{111} slip systems by enhancing the mobility of the latter [6, 13].

The precise mechanism by which this occurs is unclear, but one possibility is that the presence of

oxygen defects incorporated at interstitial sites reduces the Peierls stress [35]. Since the PN method

can be  used to  calculate  σp for  the  major  edge dislocation  slip  systems in  stoichiometric  UO2

returning values comparable to those calculated from atomistic simulations, it is likely that the PN

will also be can also be applied to dislocation glide in hyper-stoichiometric UO2+x. 

4. Conclusions

Using several commonly used interatomic potential models, we studied the structures and mobilities

of the major dislocation slip systems found in UO2 using the Peierls-Nabarro model parameterised

with generalized stacking fault energies obtained from atomistic calculations. It was found that all

three edge dislocations  have no screw component,  and that  the  screw dislocation  had no edge

component.  For  all  seven  potentials,  the  1/2<110>{110}  edge  and  screw  dislocations  had  the

highest core energies. For the Read10 and Morelon03 potentials, it was found that the calculated

core  energies  for  1/2<110>{111}  edge  dislocations  exceed  those  of  the  1/2<110>{100}  edge

dislocations, contradicting the results for the other five potentials as well as previous computational

studies[7, 8]. 

Of  the  seven  potential  models  considered  here,  only  Read10  fails  to  correctly  identify  the

1/2<110>{100} slip system as having the lowest Peierls stress.  Looking at the other six potentials,

we found that the Peierls stresses are strongly dependent on the model used with, for instance,  σp

for the dominant 1/2<110>{100} slip system varying from as little as 2.7 GPa (Basak03) to as much

as 5.8 GPa (Morelon03). However, all six predict that the order of the dislocation slip systems, from

weakest to strongest, is 1/2<110>{100} < 1/2<110>{110} < 1/2<110>{111}, consistent with both

experiments [5, 6] and fully atomistic calculations [7, 11] showing that, where suitable potentials
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are available, the Peierls-Nabarro approach can be used to predict dislocation properties in UO2.

Unfortunately, since there are no experimental measurements or  ab initio  calculations of Peierls

stresses for individual dislocation slip systems in UO2, it is presently impossible to determine which

of the potentials considered here is best suited for modeling dislocations in UO2. 
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Tables

1/4<110>{100} 

(eV/Å2)

1/4<110>{110}

(eV/Å2)

1/4<110>{111}

(eV/Å2)

Arima05 0.2121 0.3754 0.2252

Basak03 0.1202 0.2701 0.1760

Cooper14 0.1522 0.2477 0.1620

Goel08 0.1358 0.2434 0.1445

Morelon03 0.1410 0.2156 0.1224

Read10 0.2090 0.2327 0.1598

Yakub10 0.1300 0.2372 0.1533

Table 1 Key generalized stacking fault energies, in for the {100}, {110}, and {111} planes
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Slip system Arima05 Basak03 Cooper1

4

Goel08 Morelon03 Read10 Yakub10

1/2<110>{100}

edge

ξ (Å) 2.926 3.552 2.932 3.090 2.776 2.478 2.929

E

(eV/Å2)

-0.472 -0.385 -0.298 -0.405 -0.227 -0.152 -0.269

1/2<110>{100}

screw

ξ (Å) 2.772 3.089 2.624 2.935 2.468 2.323 2.697

E

(eV/Å2)

-0.307 -0.268 -0.143 -0.282 -0.089 -0.062 -0.168

1/2<110>{110}

edge

ξ (Å) 2.310 2.317 2.469 2.472 2.468 2.478 2.466

E

(eV/Å2)

-0.154 -0.097 -0.158 -0.140 -0.140 -0.196 -0.137

1/2<110>{110}

screw

ξ (Å) 1.694 1.699 1.698 1.699 1.774 1.781 2.158

E

(eV/Å2)

0.216 0.172 0.39 0.137 0.089 0.099 0.132

1/2<110>{111}

edge

ξ (Å) 2.618 2.471 2.624 2.626 2.776 2.633 2.620

E

(eV/Å2)

-0.301 -0.184 -0.233 -0.221 -0.282 -0.250 -0.209

1/2<110>{111}

screw

ξ (Å) 2.156 2.085 2.161 2.163 2.237 2.168 2.158

E

(eV/Å2)

-0.052 -0.015 -0.033 -0.043 -0.088 -0.042 -0.029

Table 2 Dislocation core widths (ξ) and core energies calculated from each potential model 
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Potential

1/2<110>{100} 1/2<110>{110} 1/2<110>{111}

edge screw edge screw edge screw

Arima05 3.4(1) 10.6(1) 32.3(0) 31.0(2) 11.2(1) 13.9(2)

Basak03 2.7(1) 3.9(0) 22.9(1) 21.6(1) 11.0(2) 12.8(2)

Cooper14 5.2(0) 7.9(0) 19.4(1) 20.1(1) 13.6(1) 12.3(2)

Goel08 3.0(0) 8.3(3) 19.7(1) 18.7(1) 6.8(0) 8.9(0)

Morelon03 5.8(1) 9.0(1) 17.0(1) 16.6(0) 8.6(0) 10.2(2)

Read10 12.9(0) 16.2(1) 16.4(2) 16.7(0) 8.1(0) 11.1(1)

Yakub10 3.8(0) 5.4(0) 18.7(1) 18.0(1) 11.1(2) 12.7(2)

Table 3 Calculated Peierls stresses (in GPa) for the 1/2<110> edge and screw dislocations gliding

on {100}, {110}, and {111}. Numbers in parentheses are uncertainties, related to small asymmetries

in  the  underlying  parameterization  of  the  disregistry  function,  to  which  the  absolute  energy  is

relatively  insensitive,  but  have  a  modest  effect  on  the  calculated  Peierls  stress.  Values  for  the

uncertainties  are  derived  by  applying  both  positive  and  negative  stress  to  the  dislocation,  and

calculating the Peierls stress in that direction
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Figures

Fig. 1. Simulation cells used to calculate (a) {100}, (b) {110}, and (c) {111} γ-surface energies for

UO2.
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Fig. 2.  Calculated {100}, {110}, and {111} γ-surfaces (in eV/Å) for the seven different interatomic

potentials used in this study. For ease of comparison, all gamma surfaces have been plotted on the

same energy scale.
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Fig. 3. (a) 1/2<110>{100}, (b) 1/2<110>{111}, (c) 1/2<110>{110}, and (d) <100>{100} γ-lines for

UO2.
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Fig. 4.  (a) Misfit profiles for 1/2<110>{100} (circles), 1/2<110>{110} (diamonds), and 1/2<110>

edge dislocations in UO2, calculated using the Cooper14 potential. (b) Misfit profiles calculated

using the Cooper14 potential for 1/2<110> screw dislocations spreading on the {100 } (circles),

{110} (diamonds), and {111} (squares) planes. The dislocation density distributions corresponding

to these misfit profiles are plotted in (b) and (d) for the edge and screw dislocations, respectively. 
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