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The scope of physiologically based pharmacokinetic (PBPK) modeling can be expanded by assimilation of the mechanistic
models of intracellular processes from systems biology field. The genome scale metabolic networks (GSMNs) represent a
whole set of metabolic enzymes expressed in human tissues. Dynamic models of the gene regulation of key drug metabolism
enzymes are available. Here, we introduce GSMNs and review ongoing work on integration of PBPK, GSMNs, and metabolic
gene regulation. We demonstrate example models.
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Physiologically based pharmacokinetic (PBPK) modeling

has delivered considerable impact in drug development

and has become the industry standard for prediction of

drug-drug interactions (DDIs), formulation effects, and phar-

macokinetics in human populations. As a bottom-up, litera-

ture-based, mechanistic computer simulation approach, it

shares general methodology with the computational sys-

tems biology, in which molecular biology knowledge is

assimilated into molecular network models. In particular,

reconstruction of genome scale metabolic networks

(GSMNs) has led to mechanistic models incorporating a

whole set of metabolic enzymes expressed in human tis-

sues. Moreover, dynamic models of the expression of key

drug metabolism enzymes are available. Currently, PBPK

models account for about 20 genes involved in drug metab-

olism, already allowing prediction of the impact of genetic

variability on drug population pharmacokinetics (PKs) as

well as identification of individual genetic backgrounds lead-

ing to drug concentrations outside of the therapeutic win-

dow. The scope of this pharmacogenetic modeling can be

naturally expanded by assimilation of GSMNs as mechanis-

tic models of tissue intracellular space compartments within

PBPK. Genetic polymorphism in thousands of metabolic

enzyme genes accounted for by GSMN can be mechanisti-

cally linked to drug PKs, bringing PBPK to the pharmaco-

genomic domain. Mechanistic models of the intracellular

space can be further expanded by assimilation of the

dynamic models of gene regulation, which increasingly

becoming available for key drug metabolism enzymes.

Although these models add only a few genes, they account

for complex dependencies of drug metabolism enzyme

activities on endogenous metabolites, such as cortisol.

Moreover, drug-drug interactions (DDIs) involving com-

pounds, such as pregnane X receptor (PXR) ligands, which

bind to transcription factors rather than metabolic enzymes,

can be modeled with more mechanistic detail.
In this tutorial, we will describe how the scope of PBPK

models can be extended by accounting for whole-cell
metabolism and gene regulation of key drug metabolism
enzymes. We assume that the reader is familiar with ordi-
nary differential equations (ODEs) and we will introduce
PBPK very briefly. The PBPK tutorial has been previously
published.1 We will introduce GSMNs in much more detail
as this is an emerging approach in the systems pharmacol-
ogy field. A brief review of dynamic models available for
drug metabolism enzyme genes will be also provided. We
will then proceed to describe the current state of the art in
integration of GSMNs and PBPK. Subsequently, we will
provide a working example model in which liver-specific
GSMN is integrated with a general PBPK model and a
model of the induction of drug metabolizing enzyme by cor-
tisol and PXR ligands. The example will focus on identifica-
tion of genes affecting the PK of toxic drug metabolites. We
hope that this tutorial will draw the attention of the modeling
community in pharmaceutical industry to new avenues of
mechanistic modeling opened by molecular network models
developed in systems biology.

PHYSIOLOGICALLY BASED PHARMACOKINETICS: A

BOTTOM-UP MECHANISTIC MODELING

The wide adoption of PBPK in drug development demon-
strates the value of bottom-up, whole-system scale, and the
literature-based mechanistic modeling approach. Current
PBPK models are composed of hundreds of ODEs assimi-
lating literature knowledge and data on the physiological
processes involved in drug absorption, distribution, metabo-
lism, and excretion. For example, simulation of full PBPK
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model available in the Simcyp simulator involves about 450
ODEs, which have been defined and parameterized by
research and development teams scrutinizing about 17,000
publications since 2012. The PBPK models provide whole-
system scale description in a sense of including all major
physiological compartments in the body. The granularity of
this description is being continuously increased by versions
of the model expanding mechanistic detail of selected com-
partments. For example, to model oral drug administration,
the gut compartment may be split into lumen (unabsorbed
drug) and enterocyte (absorbed drug). As the models
advance, each compartment is further split into a number
of subcompartments describing different regions of the gas-
trointestinal tract, such as the stomach, duodenum, jeju-
num, ileum, cecum, and colon. Likewise, other
compartments, such as the liver and the lungs may be fur-
ther divided. Incorporation of additional mechanistic detail
into the model poses a challenge, as the values for addi-
tional parameters need to be determined either from litera-
ture or parameter estimation from available data. On the
other hand, mechanistic detail enables extrapolation from in
vitro data – some model parameters are intrinsic properties
of tissues or enzymes that can be measured in vitro without
the need of animal or clinical studies. Furthermore, increas-
ing the granularity of the model may be essential when a
particular application requires the presence of certain varia-
bles that influence the compound PKs being investigated.
For example, simulation of DDI requires a resolution of indi-
vidual enzymes and transporters that compounds bind to.
Last but not least, mechanistic detail allows incorporation of
parameter values and their distributions in populations for
subsequent prediction of compound PK variability in the
specific target population. For example, the model that
resolves liver and kidney clearance can be used for simula-
tion of populations with liver or kidney impairment. Correla-
tions among body weight, age, and blood flows can be
used to simulate virtual clinical trials and improve experi-
mental design. Therefore, although the level of abstraction
in a mathematical model is an arbitrary decision of its
authors, an increase of granularity increases the scope of
questions the model can potentially address. It is also gen-
erally accepted that mechanistic models are more likely to
extrapolate and predict beyond the data used for parameter
estimation than abstract phenomenological models.

The PBPK models, as the name implies, are concerned
with physiological rather than molecular level variables. The
notable exception is drug metabolizing enzymes and drug
transporters, which are described by mechanisms of com-
pound binding, transport, and enzymatic reaction, familiar
to a biochemist. Apart of application in DDI, mentioned
above, molecular level mechanistic detail enables account-
ing for genetic polymorphism. For a number of molecular
variants, the binding constants and maximal velocities have
been determined in vitro. Therefore, data on allele frequen-
cies in the population can be used in virtual trial simulation.
In personalized medicine context, patient’s genotype can
be used to inform decisions about individual dosing regi-
men. This in turn opens an avenue for future assimilation of
the wealth of information resulting from genomics revolu-
tion, such as the 100,000 genomes project already funded

by the United Kingdom government.2 This in turn, brings

PBPK close to systems biology, in which mechanistic

modeling of genotype-phenotype relationship is a prominent

interest. Mechanistic models of intracellular networks cre-

ated in the systems biology field are a natural, further

mechanistic extension of PBPK, as they provide detailed

description of intracellular space, which has been so far

modeled as a uniform, well-stirred compartment. Assimila-

tion of these models would immediately provide more varia-

bles directly associated with genes, thus extending the

scope of pharmacogenomic predictions and extending the

use of genomics data in simulation of populations and

individuals.

GENOME SCALE METABOLIC NETWORKS

The reconstruction and constrained-based modeling of

GSMNs is an area of computational systems biology, which

to a remarkable extent shares methodology of the PBPK.

Like PBPK models, the GSMNs are large, whole-system

scale models created by assimilation of scientific literature

describing mechanistic detail. In the case of GSMNs, the

system under consideration is metabolism of a living cell

(i.e., the system of coupled, enzyme catalyzed, chemical

reactions providing energy, building blocks, and reducing

power for the cell). Although quantitative parameterization

of the ODEs representing whole-system models involving

several thousands of chemical reactions is still not possible,

the constraint-based modeling (CBM)3,4 approach allows

quantitative analysis of metabolic flux distribution at steady

state. This enables investigation of the effects of genetic

polymorphism for a whole set of human metabolic genes

as well as mechanistic interpretation of gene expression

data.

Flux balance analysis: A constraint-based approach
The GSMN is a system of thousands of coupled chemical

reactions involving thousands of metabolites. Metabolism is

the best studied organization level of the cell and there is

sufficient knowledge to write chemical reaction formulas

defining connectivity and stoichiometry of this system. How-

ever, quantitative parameterization of the ODE model, simu-

lating time evolution of each metabolite concentration is still

not possible. The flux balance analysis (FBA)4 allows

modeling of the steady-state distribution of reaction fluxes,

without the knowledge on kinetic parameters and initial con-

centrations required by an ODE model, which is sufficient

for prediction of the metabolic conversions feasible in

GSMN. Apart of qualitative prediction of metabolic function

feasibility, quantitative prediction of reaction fluxes is also

possible, if sufficient data are available for rate limiting

nutrient transport uptake and secretion rates. The FBA has

been first proposed by Fell & Small5 to study fat synthesis

in adipose tissue. Early introduction to the method can be

found in the classical metabolic engineering textbook of

Stephanopoulos et al.6 The study by Lewis et al.7 applied

FBA to modeling whole-cell metabolism based on genome

annotation of metabolic enzymes and transporters, which

has led to evolution of the prominent field of systems
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biology, best reflected by a phylogenetic tree of constraint-

based approaches originating from FBA.
To introduce the mathematical formulation of FBA, let us

consider the system of N coupled chemical reactions

involving M metabolites (Figure 1). Chemical reaction for-

mulas with stoichiometric coefficients are represented by M

3 N stoichiometric matrix S, where Si,j is a stoichiometric

coefficient of metabolite i in reaction j. The variables of an

FBA model are reaction fluxes in concentration per time

units, rather than metabolite concentrations. Let v be a vec-

tor of M reaction fluxes and vi the flux of reaction i. At

steady state, the FBA model is defined by the following

equation:

dc
dt

505Sv (1)

where c is a vector of M metabolite concentrations. There-

fore, an FBA model is represented by a system of ODEs at

steady state. When reaction fluxes, rather than concentra-
tions, are used as variables, the linear model is obtained.
This model defines the convex solution space containing all
flux distributions v satisfying Eq. (1). The solution space
constitutes a null space of stoichiometric matrix and a vari-
ety of linear algebra approaches have been introduced to
explore its properties. This includes formal definitions of
metabolic pathways based on analysis of support vec-
tors.8,9 In more intuitive terms, Eq. (1) states that for each
metabolite the sum of fluxes producing and consuming this
metabolite equals 0 – a formal statement of steady-state
assumption. The flux balance equations constrain the solu-
tion space by allowing only flux vectors v, where production
and consumption fluxes balance for each metabolite.
Hence, the method is referred to as an FBA and together
with approaches that extend it by incorporation of other
constraints is known in systems biology as CBM.

In most applications, the linear system defined by Eq. (1)
is underdetermined. There are not enough reactions for

Figure 1 Flux balance analysis – a constraint based approach. (a) Example metabolic network. External metabolites representing
nutrients available in cellular microenvironment are labeled by “xt.” Production of metabolite X is the metabolic capability of interest. (b)
Stoichiometric matrix S and equation defining flux balances at steady state for network shown on a. Note, that external metabolites are
assumed to be unbalanced sources and sinks and are not included. (c) In an unconstrained network, fluxes can assume any value.
Imposition of steady-state balance constraints (S v 5 0) defines convex solution space. The volume of this space can be further
decreased by introduction of bounds representing thermodynamic constraints on reaction reversibility as well as existing quantitative
measurements of fluxes. The linear programming is used to maximize objective function Z. The value of Z is guaranteed to be maxi-
mal, but there may be many alternative solutions v with the same maximal value of Z. (d) Determination of the maximal synthesis rate
of metabolite X in an example network shown in a. Reaction v7 is assumed to be reversible, all other reactions are irreversible. No
quantitative measurement of fluxes is available, so arbitrary value of 1 is used as a flux bound. There are three alternative solutions
with the same maximal value of objective function. Further constraints would decrease degeneracy of the solution. For example, mea-
surement of M1xt, M2xt, M3xt, and M4xt consumption/release would allow constraining of transport reactions R1, R2, R3, and R7,
which would lead to one of the three solutions having the largest value of Z. Reaction R1 (red box) is essential for production of X.
Constraining of R1 to (0, 0) will make all three solutions not feasible. The network is robust, only R1 is essential. Any other single reac-
tion deletion would not abolish production of X.
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which fluxes have been measured to determine the remain-
ing flux values by inversion of matrix S. Instead, linear pro-
gramming (LP) is used to determine whether specific
metabolic function is feasible and what would be its maxi-
mal capacity, given model constraints. The following LP
problem is solved:

Maximise : z5
XN

i51

ai vi

Such that :

05Sv

li < vi � ui

(2)

where z is an objective function, ai is an objective function
coefficient for reaction i, l is a vector of lower bounds of N
reactions, and u is a vector of upper bounds of N reactions.
The LP solver finds maximal value of z given flux balance
constraints defined by Eq. (1) and arbitrary, additional con-
straints defined as flux bounds. Because this is a linear
problem with a convex solution space, the solver is guaran-
teed to find the maximal possible value of z. However, there
may be many different solutions for v, for which z assumes
its maximal value.

The objective function z represents metabolic function of
interest defined as a linear combination of reaction fluxes.
For example, z could be a sum of fluxes producing adeno-
sine triphosphate, bile acid secretion flux, or biomass reac-
tion flux. Even if there is no quantitative information about
any of the fluxes, LP maximization of z would test stoichio-
metric feasibility of the metabolic function of interest. The
existence of the feasible solution where z 6¼ 0 would indicate
that metabolic function can be realized. Otherwise, meta-
bolic function is not possible in the system of stoichiometric
balanced, coupled chemical equations. This qualitative sim-
ulation can be already used to make useful predictions. For
example, “druggable” metabolic vulnerabilities of cancer cell
lines or bacterial pathogens can be identified by in silico
essentiality screen, in which each reaction is removed from
the model and feasibility of biomass synthesis is tested.10 If
quantitative measurements are available for some of the
fluxes, those can be incorporated by setting them as flux
bounds. As quantitative information is incorporated, the vol-
ume of the solution space decreases and the model gradu-
ally increases its qualitative level of detail. The ability to
draw useful conclusions from qualitative data alone and
then gradually introduce quantitative description, as data
become available, is a major feature of FBA enabling simu-
lation of whole-cell scale models. The bounds are also
used to set reaction reversibility, the lower bound of 0
allows only positive flux values, whereas unconstrained
reaction can assume both positive and negative fluxes. Fur-
thermore, reaction bounds can be used to implement model
perturbations. In the essentiality scan example, setting
reaction flux bounds to (0, 0) is equivalent to removing it
from the model. Last but not least, the bounds are used to
define boundary conditions of the model (i.e., sources and
sinks of metabolic flux). The source is defined as the reac-
tion that does not have balanced substrates and the sink is

defined as the reaction that does not have balanced prod-
uct. FBA assumes the availability of source metabolite and
the capacity of the sink are unlimited. In many software
and models, including our own, these reactions feature
external metabolites, which make reaction formulas more
readable, but do not feature in stoichiometric matrix S and
do not contribute to Eq. (1). Setting the bounds of source
and sink reactions determine which metabolites are avail-
able as the nutrients, which are secreted, and what is the
maximal capacity of the uptake or secretion.

The LP is the most frequently used approach to explore
a solution space defined by Eq. (1), but it is not the only
one. Null space analysis of S has been already mentioned
above,8,9 but its disadvantages are that it does not use
quantitative reaction flux bounds and leads to combinatorial
explosion of alternative pathways conducting particular met-
abolic function. Recently, methods using Markov Chain
Monte Carlo sampling of solution space gain promi-
nence.11,12 Briefly, the stochastic process is created, in
which solutions are randomly generated within reaction flux
bounds. Solutions are retained if they fulfill stoichiometric
constraints defined by Eq. (1) or rejected otherwise. The
sample is then analyzed to identify metabolic functions of
the model. The advantage of this method over FBA is that
it does not involve maximization of the objective function,
which is a frequently questioned assumption, and identifies
correlations across different feasible solutions. The disad-
vantage is the increase in computational cost and a lack of
a definitive answer, which can be used as a proof. If the
FBA objective function is 0, this proves that there is no
solution representing a particular metabolic capability. A
Monte Carlo sample does not provide such a proof and
very large samples are needed to reject existence of meta-
bolic function based on low probability.

Reconstruction of genome scale metabolic networks
The GSMN is created in the reconstruction process (Figure
2), in which the first step is identification of all genes in the
genome of the organism of interest, which encode meta-
bolic enzymes and transporters. This is based on existing
genome annotation or additional sequence analysis and
literature-based annotation performed within reconstruction
project. In the case of human and other multicellular organ-
isms, further literature information as well as transcriptomic
and proteomic data are used to determine which of the
genes are expressed in the tissue of interest. Subsequently,
the knowledge about metabolic and transport reactions cat-
alyzed by products of metabolic genes is used to create
the system of coupled chemical reactions representing the
first draft of the GSMN. These reactions should be a stoi-
chiometric mass and charge balanced, which requires
assumption of cellular pH and additional assumptions for
intracellular metabolites that involve pools of heterogeneous
molecules (i.e., lipids of different hydrocarbon chain
lengths). Furthermore, each reaction is set to be reversible
under physiological conditions or not reversible, based on
literature data or free energy calculations. Once the first
draft is available, the stoichiometric matrix and reaction flux
bounds are created and the FBA is used to test whether
the model is capable of reproducing known metabolic
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conversions performed by cell/tissue under investigation.

As described in the previous section, these metabolic capa-

bilities are mathematically represented as objective func-

tions. For example, a liver GSMN should be capable of

converting lactate to glucose and producing bile acids. Fre-

quently, the biomass reaction is formulated, which groups

all metabolites that are considered to be biomass compo-

nents. The flux of this reaction calculated in FBA simulation

equals the growth rate of cells under investigation and can

be directly compared with experimental data. This is partic-

ularly useful in modeling bacterial pathogens and cancer

cell lines.
The first draft of the model based on genome annotation

alone usually fails to reproduce known metabolic functions

and does not represent feasible cellular metabolism. This

prompts an iterative process of model refinement. The

most common refinement step is gap filling. Due to errors

in genome annotation, some of the reactions are missing

and metabolic conversions reported in literature cannot be

reproduced. The gaps are filled by introducing additional

reactions, which are not associated with enzymes. These

should be supported as much as possible by literature

evidence on the particular metabolic step, but arbitrary

assumptions are inevitable. The list of GSMN reactions

for which enzymes and genes are not known in itself

represents a useful set of experimental leads. Further

experimental studies can be conducted to identify the

enzymes and transporters catalyzing hypothetical meta-

bolic steps.
All reactions in the GSMN, for which enzymes or trans-

porters are known, are linked to genes in the genome by

Boolean statements using gene names as variables. If the

reaction is catalyzed by a multisubunit protein, the genes

encoding individual subunits enter Boolean expression as

terms of AND operator. If the reaction can be catalyzed by

alternative enzymes, the genes are connected by OR oper-

ator. More complex Boolean expressions can be used to

describe the reactions that can be catalyzed by many differ-

ent multisubunit enzymes or transporters. Some modeling

groups prefer to create multiple copies of reactions that can

be catalyzed by multiple enzymes and use only AND state-

ment. Some models use more complicated rules, in which

Figure 2 Reconstruction of genome scale metabolic networks. The process starts with full genome sequence and its annotation by
sequence analysis approaches. A database of elementally and charge balance reactions, representing known activities of metabolic
enzymes is required. The first step is to extract from reaction database those reactions, which are associated with enzymes encoded
by the genome. Gene-reaction association rules are created. The scientific literature is curated to identify metabolic capabilities and
possibly essential genes of cell/tissue under investigation. External metabolites and transport reactions are defined and flux balance
analysis simulation is used to compare predicted metabolic capabilities of the model with literature knowledge. This usually leads to
the conclusion that the model requires gap filling (i.e., incorporation of enzymatic reactions for which genes are not yet identified in the
organism of interest). This model revision is supported by further literature curation and exploration of metabolic reaction databases,
such as KEGG or Reactome. The model reproducing basic metabolic function is then compared with further data available from litera-
ture or experiments performed within the project. Additional constraints, such as gene expression in particular tissue may be incorpo-
rated. Finally, a variety of approaches can be used to integrate transcriptomic and proteomic data and create model specific to tissue
and condition (context) of interest.
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genes are associated with proteins and proteins are associ-

ated with reactions. In general, we will refer to the Boolean

rules describing the association between genes and reac-

tions as gene-protein-reaction association rules.

DYNAMIC MODELS OF GENE REGULATION

A major component of the body’s strategy to survive in a

complex chemical milieu is the use of gene regulation to

allow metabolic adaptation. The body has a base metabolic

state that corresponds to healthy physiology. Exposure to

external chemicals, or changes in levels of endogenous

chemicals, will lead to deviations from this base state,

increasing the risk of adverse health outcomes. The body’s

response to this chemical challenge is to alter the meta-

bolic state such that the body moves back to the base

state, usually referred to as homeostasis.13,14 This

response can be divided into three stages: first, the chemi-

cal environment must be sampled; second, gene regulation

must be initiated if a move away from homeostasis is

detected; and third, once the environment returns to the

base state, gene regulation must also return to that

observed prior to the challenge.13,14

Sampling of the chemical environment within a cell is

achieved through a number of protein sensors. A major

class of these sensor proteins is the ligand-activated tran-

scription factors, which only activate gene transcription

upon binding of their specific ligands. In addition, as ligand

binding is an affinity-driven process, receptor occupancy is

a determinant of the impact on the gene regulatory network

(GRN). Genes encoding drug-metabolizing enzymes and

drug transporters have their expression controlled by mem-

bers of the nuclear receptor family of ligand-activated tran-

scription factors, and these have some unique properties.15

To be able to sense and respond to thousands of chemi-

cals, the nuclear receptors must show a high degree of pro-

miscuity in their regulation of gene expression, allowing

them to balance the body’s response to multiple chemicals.

For example, glucocorticoids may bind and activate the

mineralocorticoid receptor, glucocorticoid receptor (GR),

and PXR. However, affinity for these receptors varies over

four orders of magnitude, with Kd values of approximately

1 nM (mineralocorticoid receptor), 10 nM (GR), and 10 lM

(PXR).16–18 This allows different sets of GRNs to be regu-

lated at different glucocorticoid concentrations, expanding

the dynamic range over which the body can sense and

respond to glucocorticoids. In addition to this property of

one ligand-many receptors, nuclear receptors also demon-

strate one receptor-many ligands; for example, the PXR

may be activated by a wide range of therapeutic agents

and is considered a general xenosensor.19 These two

design properties allow nuclear receptors to sense a wide

range of chemicals over a large dynamic range, and coordi-

nate body responses to most effectively meet the chemical

challenge while maintaining homeostasis.15 However, this

promiscuity raises the potential of chemical-drug interac-

tions, and predicting these is an important component of

the drug development process.20,21

Quantitative, ODE models of metabolic enzyme gene
regulation
There are numerous examples of ODE-based models that
reconstruct chemical-mediated alterations in gene expres-
sion of drug-metabolizing enzymes. Of particular relevance
to drug metabolism are interactions with the nuclear recep-
tor PXR, which regulates the expression of many drug-
metabolizing enzymes (both phase I and II) as well as drug
transporters.15 Bailey et al.22 examined the role of negative
feedback in regulating PXR target gene expression. They
demonstrated that negative feedback was an important fac-
tor to prevent hyperexpression of PXR target genes, which
could cause an exaggerated response to chemical expo-
sure. The consequence of such an exaggerated response
could range from a simple increase in the time required to
return to homeostasis, to premature cessation of drug
action. Such negative feedback loops exist for other nuclear
receptors, such as the GR, PXR, and the androgen recep-
tor.23–25 In addition, there are interactions between nuclear
receptors helping to coordinate the body’s response to its
chemical environment. For example, Kolodkin et al.26 exam-
ined the interactions between the glucocorticoid cortisol
and its cognate receptors PXR and GR. They simulated
both the binding of cortisol with GR (high affinity) and PXR
(low affinity), as well as the impact of activated GR on the
expression of GR (negative feedback23) and PXR (positive
feedforward27). They demonstrated that these interactions
were necessary to regulate both the amplitude and duration
of the response to cortisol challenge, balancing the biologi-
cal response to stress (e.g., fight or flight response) vs. the
adverse health outcomes associated with prolonged cortisol
stimulation (e.g., obesity, cancer, and diabetes).

The examples above demonstrate how the use of ODE-
based models of the gene regulation of drug-metabolizing
enzymes can lead to biological insights into how the body
responds to chemical challenge. In addition, robustly parame-
terized ODE models allow the accurate reproduction of
concentration-time curves for the response to chemical chal-
lenge. This is important for predicting the body’s response to
both individual and concomitant exposure scenarios.

Qualitative, nonparametric simulation of metabolic
enzyme gene regulation dynamics
The reconstruction of ODE-based networks requires a high
degree of parameterization, and this may limit the scale of
generated models. In addition, the time required to build
such highly detailed mechanistic models is not inconse-
quential, and may be an important factor for individuals
beginning a project. An alternate approach to highly
detailed ODE models is the use of approaches that repre-
sent network connectivity in a more qualitative manner. Per-
haps the simplest way to qualitatively model GRNs is
through the use of the Boolean network.28,29 Here, each
gene is represented as either “active” or “inactive,” and
interacts with other genes through experimentally deter-
mined molecular interactions. As coverage of the genes
within an organism increases, so does the degree of inter-
connection within the network. The result is a complex con-
nectivity map that can determine the state of a gene (active
or inactive), dependent upon the state of its interacting
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genes. However, Boolean networks have a number of cav-
eats; most notably, the exponential growth of connections
as the network grows makes the model solution complex.
In addition, it is difficult to represent unknown data within
simple Boolean networks, meaning that problems rapidly
become unfeasible for all but the best described biological
networks. These problems can be addressed through the
use of more complex approaches, such as probabilistic
Boolean networks,30 or through model reduction to identify
the minimal model that can reproduce the desired behav-
ior.31 Such approaches have allowed the examination of
the design principles behind GRNs, both in normal biol-
ogy32,33 and following drug exposure.34,35 For example,
Arshad et al.34 used a Boolean network to describe the
interaction of cancer chemotherapeutics with pathways
commonly mutated in breast cancer. Using this approach,
they were able to predict the efficacy of combination
therapies.34

An alternative, or at least complimentary, approach to the
use of Boolean GRNs is bipartite graph approaches, such
as Petri nets. They provide both an established graphical
notation and formal mathematical semantics that are ideal
for describing GRNs. In a Petri net, places represent spe-
cies (i.e., genes, proteins, and chemicals, etc), whereas
transitions represent reactions (e.g., enzymatic conver-
sions, and translocations, etc). Places are connected to
transitions via arcs, which indicate the nature of the interac-
tion; one transition may have one or more inputs (pre-pla-
ces) and products (post-places). Places contain tokens,
with the number and location of these tokens across the
network indicating its current state (or marking).36 Extended
Petri nets add reading and inhibition arcs, representing
interactions that do not consume a token upon transition fir-
ing (e.g., enzyme catalysis). Petri nets have been used to
model the behavior of molecular networks, including
GRNs.37–40 Their application toward examining body
responses to drug exposure has been more limited,
although (extended) Petri nets have been used to examine
more complex drug interactions, including the prediction of
combination therapies.41 The quasi-steady-state Petri Net

approach of Fisher et al.42 uses Petri nets to represent
GRNs, which then interact with a GSMN to examine cell-

scale metabolic adaptations to a chemical challenge.42,43

They demonstrated how interactions between nuclear
receptor-mediated GRNs and post-translational modifica-
tions underpinned the coordination of the liver responses to

cholesterol challenge.42

MULTISCALE MODELS INTEGRATING PBPK, GSMN,
AND GENE REGULATION OF METABOLIC ENZYMES
Quasi-steady-state approximation and model-coupling

approach
In recent years, several successful multiscale modeling
approaches connecting PBPK with GSMNs have been pub-
lished (Table 1).43–46 The computational approach to cou-

pling both types of models is based on quasi-steady-state
assumption first introduced in dynamic FBA simulation of
bacterial batch cultures.47 Metabolic reactions in the cell
are much faster than processes of drug absorption, distri-

bution between physiological compartments, and clearance.
Therefore, one can assume that a GSMN model reaches
steady state within the timescale of PBPK simulation time-

step. This dictates basic model coupling strategy shown in
Figure 3, first formulated by Krauss et al.44 First, the varia-
bles linked between two models are identified as well as
equations describing their dependencies. For example, met-

abolic enzyme inhibitor concentration in tissue compart-
ment calculated by a PBPK model can be linked to reaction
flux bounds in GSMN through classical enzyme inhibition

equation. The uptake flux calculated by a GSMN model to
be required for a particular objective may be used as a
drug metabolism rate in PBPK simulation. Following the ter-
minology of Krauss et al.,44 the feedforward coupling intro-

duces dependence of GSMN flux bound on the
concentration calculated by PBPK and feedback coupling
uses FBA solution to set the rates of metabolic processes

in a PBPK model. During the simulation, a time-step, typi-
cally of the order of few minutes, is introduced. Within each
time-step, four basic steps, depicted in Figure 3, are

Table 1 Summary of multi-scale models coupling GSMNs and ODE-based models

Description GSMN ODE model Objectives Ref.

Pioneering approach of

PBPK and GSMN

integration

HepatoNet1 – liver model Generic PBPK model created

using parameter values

available in the literature

Allopurinol effects on uric acid

metabolism.

Ammonia detoxification.

Paracetamol toxicity.

45

Blood glucose regulation Recon1-derived adipocyte,

hepatocyte, and myocyte

GSMNs

PBPK model tailored for

insulin-glucagon-glucose

metabolism

Drug-induced and genes

knockout effects on whole

body glucose levels

49

Levodopa and amino

acid metabolism

Enterocyte specific GSMN

(sIEC)

ACAT model (whole body

PBPK model with advanced

parametrization of gastroin-

testinal compartments)

Relationship between levodopa

and amino acids metabolism

and kinetics

50

MUFINS Recon2 Glucose and lactate metabolic

model and detailed CYP3A4

signaling model

Multiscale integration of

GSMN, ODE-based meta-

bolic, and gene regulatory

models

43

ACAT, advanced compartmental absorption and transit; CYP, cytochrome P450; GSMN, genome scale metabolic network; MUFINS, multiformalism interaction

network simulator; ODE, ordinary differential equation; PBPK, physiologically based pharmacokinetic; sIEC, small intestine epithelial cell; WB-ACAT-sIEC,

whole body advanced compartmental absorption and transit model (PBPK) combined with enterocyte specific GSMN model.
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executed: (i) the GSMN bounds are set according to feed-
forward dependencies on compound tissue concentration;
(ii) the objective function is optimized by FBA and associ-
ated example flux distribution is stored; (iii) the objective
function value and/or solution fluxes are used to set the
metabolism rate in the PBPK model; and (iv) compound
concentration is updated by integration of the PBPK model
ODEs within simulation time-step. We note that nonunique
FBA solutions may pose the challenge of applying this gen-
eral approach in specific cases. If the GSMN model is not

sufficiently constrained, the LP solver will be free to “flip”
between alternative pathways corresponding to the same
maximal value of objective function. If the PBPK metabo-
lism rate is set to specific pathway fluxes, the arbitrary
choices of the FBA solver between equivalent solutions
may lead to discontinuity of ODE simulation between con-
secutive time-steps. Thus, we would recommend the full
protocol shown in Figure 3 to be used only in the case of
tissue-specific models being sufficiently constrained to pro-
duce a unique solution, at least for fluxes coupling GSMN

Figure 3 Integration of physiologically based pharmacokinetic (PBPK) and genome scale metabolic network (GSMN) in quasi-steady-
state framework. The tissue-specific GSMN is used as a mechanistic model of metabolism in the intracellular space of the PBPK com-
partment. For example, the HepatoNet1 model is used to represent liver metabolism. Simulation is performed in time-steps, which are
short compared to the timescales of drug distribution and clearance in PBPK model. The intracellular metabolism is assumed to be at
quasi-steady-state within each time-step. In a general case, each iteration of dynamic simulation consists of four steps. Step 1:
Selected flux bounds in the GSMN model are set according to the current drug concentration and/or metabolism rate in the PBPK
model. Step 2: The GSMN objective function and an example solution are calculated by flux balance analysis (FBA). Step 3: Objective
function value and/or example solution fluxes are used to set metabolism rates in PBPK model. Step 4: Drug concentration and metab-
olism rates are updated by one time-step of PBPK simulation. The objective functions, fluxes, and formulas used to calculate FBA
bounds vary depending on specific applications. In some cases, some of the four basic steps are not executed. For example, examina-
tion of the enzyme inhibitor pharmacokinetic effect on metabolic capabilities requires only feedforward of inhibitor concentration to
GSMN bounds, but does not require feedback of metabolism rates to PBPK. In this case, step 3 is not executed and the FBA objective
function and fluxes are used only as simulation outputs. The case in which the GSMN is used solely to calculate the scaling factor for
PBPK metabolism rate is also possible (step 1 not executed). GSH, glutathione.
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and PBPK models. Otherwise, useful multiscale simulation
can be constructed using exclusively feedforward or feed-
back coupling. For example, if the compound simulated by
PBPK model is an enzyme inhibitor, and not metabolized
by tissue represented in GSMN, only feedforward coupling
(step 1) is needed to simulate the effect of a drug on meta-
bolic capabilities. These capabilities may be evaluated as
separate objective functions for which the LP solver would
return unique maximal values. In another scenario, in which
the drug is metabolized but does not inhibit any intracellular
enzymes, the GSMN may be used to calculate the maximal
drug metabolism rate as a function of genetic perturbations.
In this case, the feedforward step is not needed and a
unique objective function value can be used to set the
metabolism rate in the PBPK model.

Gene regulation happens in timescales of hours and
quasi-steady-state assumption has been extensively used
in the systems biology field to couple dynamic models of
gene regulation to GSMNs. The original, regulatory FBA
method coupled Boolean GRN to FBA.48 Later, integrated
FBA and integrated dynamic FBA methods extended this
methodology to dynamic ODE models.49,50 Given that time-
scales of gene regulation and drug absorption, distribution,
and clearance are similar to those of gene regulation, the
integration of gene regulation and PBPK should be per-
formed within a dynamic modeling framework. In fact, sim-
ple gene induction models are already available in PBPK,
opening the avenue for incorporation of more sophisticated
networks from the systems biology field. Thus, in the quasi-
steady-state multiscale model integrating PBPK, gene regu-
lation, and whole-cell metabolism, steady state should be
assumed for GSMN, whereas both gene regulation and
PBPK should be represented by dynamic model.

Existing multiscale models integrating PBPK, GSMN,
and gene regulation of metabolic enzymes
Table 143–46 presents multiscale models that integrate
PBPK and GSMN or GSMN and GRNs in human tissues.
The example introduced below represents the first proto-
type of a PBPK model being integrated with both whole-cell
tissue-specific metabolic model and ODE system describing
gene regulation of drug metabolism enzyme.

Krauss et al.44 published the very first multiscale model
integrating GSMN and PBPK to study the PKs of allopurinol,
ammonia, and paracetamol in the context of a tissue-specific
model of liver metabolism (HepatoNet1)_ENREF_45. A
method, similar to the Krauss et al.44 approach, was further
incorporated in the subsequent two studies that used clinical
data to parameterize healthy and diseased populations to fully
use the multiscale modeling method.45,46 This created multi-
scale whole body metabolic models to improve current thera-
peutic approaches for Parkinson disease treatment and
suggested novel drug targets for treating type I diabetes.46

Additionally, a recently published multiscale modeling software
package named MUFINS (multi-formalism interaction network
simulator) demonstrated several multiscale models as part of
the software usability examples.43 The particular use case of
the MUFINS software described a multiscale model consisting
of GSMN model Recon2 coupled to an ODE-based model of
glucose and lactate metabolism and gene regulatory models.

Although this model did not include PBPK per se, it did

include physiological level variables describing blood concen-

trations, GSMN, and notably gene regulation of drug metabo-

lism enzyme. The CBM and multiscale approaches discussed

in this tutorial, together with their applicability under different

circumstances, are summarized in Table 2. The used case

below demonstrates simulation of a multiscale model integrat-

ing GSMN, gene regulation, and PBPK.

CASE STUDY

We demonstrated the multiscale model consisting of three

different modules: PBPK, GSMN, and gene regulation. We

show the potential of this model to analyze the PK proper-

ties of the drug and its toxic metabolite in the context of

various perturbations, such as exposure to chronic stress

and patient-specific liver metabolism (Figure 4). The multi-

scale model used in our example was built using MUFINS

software and simulated using the qsspn simulator (available

as part of the MUFINS package).43 The model and soft-

ware required for its execution are available in the Supple-

mentary Material online.
We have used the human PBPK model with an example

drug, as described in the previous tutorial of Jones & Row-

land-Yeo.1 We have extended this model by assuming that

the drug under investigation is metabolized by cytochrome

P450 (CYP)3A4 enzyme to a toxic metabolite. Although

this system is motivated by a well-studied example of para-

cetamol metabolism and N-acetyl-p-benzochinonimin, we

stress that we use example parameters within physiological

ranges and do not attempt to model the particular com-

pound. The model is meant to be an example of the simula-

tion approach. The PBPK model was connected with

HepatoNet1 GSMN.51 The nuclear receptor model control-

ling CYP3A4 was incorporated from a previously published

study.26 Overall, we demonstrate how to connect three dif-

ferent models into one multiscale system capable of calcu-

lating drug metabolism in the context of whole human body,

molecular liver metabolism, and nuclear receptor control

(Figure 4).

Example application 1: Discovery of metabolic

reactions affecting dynamics of toxic metabolite
We have further constrained HepatoNet1 to increase quan-

titative accuracy of predictions. We have used a high

throughput metabolomics dataset, published after original

publication of HepatoNet1, in which consumption and

release fluxes for over 200 metabolites were measured in

all cancer cell lines in the NCI-60 collection.52 Cancer cell

lines divide much faster than cells of any human tissue and

it is, therefore, reasonable to assume that no human tissue

would have uptake and release fluxes with a faster rate

than the maximum rate observed in cancer cell lines. We

have, therefore, set upper and lower bounds of consump-

tion and release fluxes according to the maximum con-

sumption and release fluxes observed in the NCI-60 cell

lines. Moreover, we limited a set of nutrient consumption

and release reactions to the physiological import and physi-

ological export set defined for liver tissue in HepatoNet1
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publication. Details of GSMN model parameterization are

given in Supplementary Text online.
The FBA allows the simulation of various liver functions,

such as glutathione (GSH) production or conversion of

ammonia to urea. In our example, the HepatoNet1 liver

model was coupled to the PBPK model via GSH production

flux, due to the GSH playing a crucial part in the detoxifica-

tion of drugs activated by the phase I metabolism. We set

GSH production as an objective function and, therefore,

used unique maximal value calculated by LP. This value

has been translated into scaling factor using the lookup

table presented in Supplementary Table S3 online. In this

particular case, the scaling factor was proportional to maxi-

mal GSH availability. The GSH conjugation rate in the

PBPK model was then scaled using the following formula:

GSH conjugation rate5SF GSHmaxð Þ � CLmet � Atox
Vli

� �
� fup

where, SF(GSHmax) is a scaling factor proportional to the

objective function value GSHmax calculated by LP of the

GSMN model.

At this stage, the model involved only a feedback integra-

tion: result of FBA was used to scale parameters in the

PBPK model. Because there was no change to the GSMN

reaction flux bounds during dynamic simulation, only one

evaluation of objective function was needed. Therefore, we

could apply a reaction essentiality scan to identify reactions

that affect GSH availability. In this in silico screening simu-

lation, each reaction in turn was inactivated by setting flux

bounds to (0, 0) and objective function was re-evaluated.

Reactions for which the objective function value was differ-

ent from the value in the unperturbed model are shown in

Table 3. As can be seen, the metabolic network is robust:

only 41 reactions influence maximal GSH production. Each

reaction listed in Table 143–46 constitutes a hypothesis that

certain intracellular enzyme affects GSH availability if sub-

jected to inhibition by a drug or xenobiotic or if its activity is

affected by genetic polymorphism. These reactions are

potential targets for safety or DDIs. Their influence on the

PBPK results can be further examined by creating a feed-

forward link between PBPK and GSMN.
To demonstrate multiscale simulation involving both feed-

back and feedforward steps, we have assumed that toxic

Table 2 Summary of CBM and multiscale methods discussed in this tutorial

Method Questions addressed by the simulation Considerations

Linear programming

optimization

� Is particular tissue capable of metabolic function of

interest?

� What is maximal possible metabolic capability*?

The linear programming solver returns maximal

value of objective function, but this value may cor-

respond to many alternative intracellular flux

distributions.

Reaction essentiality scan � Which metabolic enzymes are possible targets for inhi-

bition of metabolic function?

� Polymorphism in which genes has an effect on meta-

bolic function?

A “virtual screen” for potential drug targets, meta-

bolic enzymes involved in adverse outcome path-

ways, and gene-drug interactions.

Null space analysis � Which pathways/enzymes/genes can potentially partici-

pate in metabolic function?

This method is based on enumeration of all possible

pathways, which leads to combinatorial explosion

in the case of large models. It is not practical for

GSMNs.

Markov Chain Monte Carlo � What is distribution of flux through particular intracellu-

lar reaction?

� Which reactions are correlated?

Does not assume objective function. Computation-

ally expensive as large samples are needed. The

best way to explore intracellular flux distribution

and its changes upon perturbation.

Feedback integration of CBM

and PBPK

� Which metabolic enzymes have an effect on PK?

� Polymorphism in which genes has an effect on PK?

If there is no feed forward integration, the linear pro-

gramming needs to be evaluated only once and

maximal metabolic capability can be used as

parameter of PBPK model.

Feed forward integration of

CBM and PBPK

� How does maximal metabolic capability change along

PK time profile?

Full integration of CBM and

PBPK

� All questions answered by feedback and feed forward

integration.

If the intracellular fluxes rather than objective func-

tion values are fed back to ODE system, numeri-

cal problems may be caused by LP solver

arbitrarily switching between alternative solutions

corresponding to the same objective function

value. Full integration requires well constrained

GSMN.

Integration of PBPK, CBM, and

GRNs.

� All questions answered by feedback and feed forward

integration.

� How does the drug targeting transcription factor change

intracellular metabolism and PK?

� How does endogenous ligand binding transcription

change intracellular metabolism and PK?

Well constrained GSMNs are required. Incorporation

of gene regulation may help to constrain solution

space.

CBM, constraint-based modeling; GRN, gene regulatory network; GSMN, genome scale metabolic network; LP, linear programming; ODE, ordinary differential

equation; PBPK, physiologically based pharmacokinetic; PK, pharmacokinetic.
aMetabolic capability is represented by objective function defined in Eq. (2).
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metabolite in the PBPK model inhibits one of the reactions
limiting GSH availability. We established a further link
between PBPK and GSMN modules by creating the com-
petitive inhibition link of formyltetrahydrofolate dehydroge-
nase (FTHLDH) reaction (HepatoNet1 reaction name is
r0027) using the formula below, which is further detailed by
Krauss et al.44,46

Reaction activity5
1

11
I tð Þ
2�Ki

To calculate r0027 activity, we assumed the substrate con-
centration to be equal to the Km value and implemented Ki
of 50 mM. The calculated reaction activity state was set to
constrain r0227 reaction by implementing proportional
reduction in the upper bound reaction flux rate to the corre-
sponding reaction activity level (for example, the reaction

activity status of 50% constrained the flux values from 0.0–

1.0 to 0.0–0.5).
Simulation results of the multiscale model are shown in

Figure 5. Figure 5a shows production of toxic metabolite

under the unperturbed conditions (wild type). The inhibition

of FTHLDH and methenyltetrahydrofolate cyclohydrolase

(MTHFC) increases the concentration of the toxic

metabolite via reduction of the GSH flux rate. Additionally,

the inactivation of reaction methylenetetrahydrofolate dehy-

drogenase (MTHFD) completely blocks the production of

the GSH in the liver model and, as a result, severally

impacts the detoxification of the toxic metabolite (Figure

5b). These results should prompt further examination of

genetic polymorphism in FTHLDH, MTHFC, and MTHFD to

consider whether there are genetic backgrounds particu-

larly vulnerable to administration of the drug. In addition,

compounds inhibiting FTHLDH, MTHFC, or MTHFD are

Figure 4 Multiscale model composed of physiologically based pharmacokinetic (PBPK), genome scale metabolic network (GSMN),
and gene regulatory network. Figure schematically represents the multiscale model, created by combining the PBPK model with the
gene regulatory network of cytochrome P450 (CYP)3A4 and human liver genome scale metabolic model HepatoNet1. The CYP3A4
model is further connected to the cortisol bolus module, which allows it to simulate chronic exposure to the stress. The regulatory net-
work controls the total amount of CYP3A4 in the liver and defines the rate of drug being converted into the toxic metabolite. In addition,
the total glutathione (GSH) availability is modeled by the HepatoNet 1 liver model. The total amount of GSH in the liver is proportionally
scaled to the metabolic flux rate of GSH production at a steady-state condition. Additionally, we have included the competitive inhibition
of formyltetrahydrofolate dehydrogenase reaction dependent on the concentration of the metabolized example drug in the liver. The
perturbations in the GSMN model, such as gene knockout or modulation of reactions fluxes (change of rate in the uptake reactions) or
concentration-dependent enzyme inhibition, allows the assessment of the impact on the metabolism of the toxic compound in the liver
compartment of the PBPK model. The perturbations of the multiscale model evaluates the impact to the detoxification of the drug in
response to the various physiological factors, such as stress (concentration of the cortisol in the blood), enzyme activity related to the
genetic polymorphism, and molecular phenotype of the individual. GR, glucocorticoid receptor; PXR, pregnane X receptor.
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likely to interact with the drug by increasing the concentra-

tion of its toxic metabolite.

Example application 2: Integration of human

hepatocyte GSMN, gene regulation of CYP3A4, and

basic PBPK
In the second example, we further enhance the PBPK-

GSMN model by adding the GRN, which controls liver

CYP3A4 concentration in response to the cortisol-induced

signaling. Previously established dynamic ODE-based

CYP3A4 regulatory network was connected with the PBPK

model to regulate the rate of the phase I metabolism by

controlling CYP3A4 levels in response to cortisol

signaling.26 Therefore, the addition of the CYP3A4 regula-
tory network allows the investigation of the impact of envi-
ronmental perturbation, such as stress to the metabolism
and assesses the possible toxicity to the susceptible popu-
lation. The rate of drug metabolism within the PBPK model
was coupled to the total CYP3A4 amount in the liver
(705 nM), the percentage increase or decrease in CYP3A4
concentration directly correlated with changes in the rate of
drug metabolism (i.e., 10% increase in CYP3A4 amount
from 705 nm to 775 nM lead to 10% increase in rate of
drug metabolism). The connected CYP3A4 regulatory net-
work does not impact metabolism of the drug under the
normal homeostatic conditions (Figure 5c). In contrast, the

Table 3 Reaction essentiality analysis results

Reaction Flux rate Reaction definition

EX_Valine 0 Valine import

EX_Tyrosine 0 Tyrosine import

EX_Tryptophan 0 Tryptophan import

EX_Threonine 0 Threonine import

EX_Serine 0 Serine import

EX_Phenylalanine 0 Phenylalanine import

EX_Methionine 0 Methionine import

EX_Lysine 0 Lysine import

EX_L-Lactate 0 L-Lactate export

EX_Leucine 0 Leucine import

EX_Isoleucine 0 Isoleucine import

EX_Glutamine 0 Glutamine import

EX_Glucose 0 Glucose import

r0230 0.011 5,10-Methylene-THF(c) 1 Glycine(c) 1 H2O(c) <5> THF(c) 1 Serine(c)

r0293 0.011 5,10-Methylene-THF(c) 1 NADP1(c) <5> 5,10-Methenyl-THF(c) 1 NADPH(c)

r0663 0.809 3-Phosphoserine(c) 1 AKG(c) <– 3-Phosphonooxypyruvate(c) 1 Glutamate(c)

r0338 0.809 3PG(c) 1 NAD1(c) –> 3-Phosphonooxypyruvate(c) 1 NADH(c)

r0159 0.809 3-Phosphoserine(c) 1 H2O(c) –> Serine(c) 1 Pi(c)

r0227 0.845 10-Formyl-THF(c) 1 H2O(c) 1 NADP1(c) –> THF(c) 1 CO2(c) 1 NADPH(c)

r0371 0.848 5,10-Methenyl-THF(c) 1 H2O(c) <5> 10-Formyl-THF(c)

r0911 0.867 Proline(c) 1 Glutamate(m) <5> Proline(m) 1 Glutamate(c)

r1426 0.868 Proline(m) 1 H1(PG)(c) –> Proline(c) 1 H1(PG)(m)

r2539 0.986 2-Aminoadipate_6-semialdehyde(c) 1 L-2-Aminoadipate(m) <5> 2-Aminoadipate_6-

semialdehyde(m) 1 L-2-Aminoadipate(c)

r0594 0.986 2-Aminoadipate_6-semialdehyde(c) 1 NAD1(c) 1 H2O(c) <5> NADH(c) 1 L-2-

Aminoadipate(c)

r0450 0.986 AKG(m) 1 L-2-Aminoadipate(m) <5> 2-Oxoadipate(m) 1 Glutamate(m)

r0180 0.986 H2O(m) 1 Saccharopine(m) 1 NADP1(m) <5> AKG(m) 1 NADPH(m) 1 Lysine(m)

r0658 0.992 ATP(m) 1 3-Methylcrotonyl-CoA(m) 1 HCO3-(m) <5> ADP(m) 1 Pi(m) 1 3-Methylglu-

taconyl-CoA(m)

r0655 0.992 Isovaleryl-CoA(m) 1 Ubiquinone(m) <5> 3-Methylcrotonyl-CoA(m) 1 Ubiquinol(m)

r0490 0.992 HMG-CoA(m) <5> 3-Methylglutaconyl-CoA(m) 1 H2O(m)

r0262 0.992 Leucine(m) 1 AKG(m) <5> Glutamate(m) 1 4-Methyl-2-oxopentanoate(m)

r0779 0.994 3-Hydroxyisobutyryl-CoA(m) 1 H2O(m) –> 3-Hydroxyisobutyrate(m) 1 CoA(m)

r0669 0.994 Methacrylyl-CoA(m) 1 H2O(m) –> 3-Hydroxyisobutyryl-CoA(m)

r0560 0.994 Isobutyryl-CoA(m) 1 Ubiquinone(m) –> Methacrylyl-CoA(m) 1 Ubiquinol(m)

r0482 0.994 3-Hydroxyisobutyrate(m) 1 NAD1(m) –> 2-Methyl-3-oxopropanoate(m) 1 NADH(m)

r0263 0.994 Valine(m) 1 AKG(m) –> Glutamate(m) 1 3-Methyl-2-oxobutyrate(m)

r0240 0.998 Threonine(c) <5> 2-Oxobutyrate(c) 1 NH3(c)

r0588 0.999 (S)-3-Hydroxybutyryl-CoA(m) <5> Crotonyl-CoA(m) 1 H2O(m)

r0541 0.999 Glutaryl-CoA(m) 1 Ubiquinone(m) <5> Crotonyl-CoA(m) 1 CO2(m) 1 Ubiquinol(m)

r0460 0.999 (S)-3-Hydroxybutyryl-CoA(m) 1 NAD1(m) <5> NADH(m) 1 Acetoacetyl-CoA(m)

PBPK and genome scale metabolic networks
Maldonado et al.

12

CPT: Pharmacometrics & Systems Pharmacology



perturbation of CYP3A4 homeostatic regulation by simulat-

ing chronic stress led to the drastic increase of the toxic

metabolite concentration (Figure 5d). Chronic stress condi-

tions increases and sustains higher blood cortisol concen-

tration, which impacts nuclear receptor signaling. As a

result, the increased cortisol signaling pathway leads to the

perturbation of homeostatic CYP3A4 concentration

(increase) and in turn elicits an impact to the metabolism of

the drug.

FUTURE PERSPECTIVES

In this tutorial, we have reviewed pioneering literature

describing multiscale models integrating PBPK and two

classes of models from the systems biology field: GSMNs

and quantitative dynamic models of GRNs. We have

constructed example models and made them available in

free software. We note that although most applications of

quantitative systems pharmacology focus on pharmacody-

namics, this tutorial shows how legacy of systems biology

can be used to increase mechanistic scope of literature-

based, bottom-up PK modeling.
We believe that the area of multiscale modeling pre-

sented here will expand in the future due to the following

motivation. First, the advent of next generation sequencing

brings full genome sequencing of individual patients closer

to clinical reality. This will motivate identification of intracel-

lular metabolism enzymes that indirectly affect PK to fully

use patient’s genetic information in personalized medicine

context. Our example model shows identification of reac-

tions that affect toxic metabolite dynamics indirectly through

limitation of GSH production in liver cells. In population con-

text, meta-analysis of data collected in genomewide

Figure 5 Metabolic analysis of the multiscale physiologically based pharmacokinetic (PBPK)/cytochrome P450 (CYP)3A4/liver model.
The concentration of the toxic metabolite is calculated using the PBPK model and expressed as concentration (mg/L) within the liver
compartment. (a) The unperturbed dynamic simulation of the PBPK model (blue line) calculates the dynamic rate of the toxic metabo-
lite, which is subjected to the production, and glutathione (GSH) conjugation rates. The coupled liver genome scale metabolic network
(GSMN) model calculates the GSH production rate at steady-state conditions and perturbations of the GSH production rate impact the
total GSH availability for the conjugation reaction. Inhibition of formyltetrahydrofolate dehydrogenase (FTHLDH) and MTHFC reactions
reduces the GSH flux rate and, as a result, leads to the increased peak of the concentration of the toxic metabolite. (b) The effect of
inactivating reaction identified in reaction essentiality scans of the GSMN. (c) The connected gene regulatory network under normal
homeostatic conditions does not affect the rate of drug metabolism. (d) Simulation of the chronic stress conditions increase and sus-
tains higher plasma cortisol concentrations, which leads to higher CYP3A4 expression rate. As a result, the increased CYP3A4 liver
concentration causes significantly higher phase I metabolism rates and production of the toxic metabolite. MTHFC, methenyltetrahydro-
folate cyclohydrolase; MTHFD, methylenetetrahydrofolate dehydrogenase.
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association studies can be used to determine distribution of

genetic polymorphism in the population.53 To make full use

of these data, mechanistic models need to include, in prin-

ciple, variables for all genes in the genome. Literature and

examples presented here show how the extension of PBPK

by models of intracellular metabolism, mechanistically

accounting for thousands of human genes, brings this

closer to reality. Another important motivation comes from

the growing area of quantitative systems toxicology. Con-

trary to pharmacology, in which the focus is on a single

compound optimized for specific binding to a known target

or a combination of a few such compounds, toxicology

deals with potentially weak, less specific binding of possibly

a large number of compounds to multiple targets. Again, to

address this challenge, molecular networks operating in

human tissues need to be mechanistically modeled. We

show an example model addressing this challenge by both

incorporation of whole-cell metabolism and steady state as

well as detailed quantitative model of the GRN playing a

key role in the response to xenobiotics. Last but not least,

biosimulation is gaining importance in the general area of

health care, in which mechanistic models can be used in

the future to support decisions about diet and lifestyle.

Although this is probably the most challenging task for

mechanistic modeling, we expect that PBPK formalism and

parameters will find applications for modeling of diet com-

ponents and substances made by the body, such as corti-

sol. Our example shows a simulation of how compound PK

is related to cortisol burst, which may be induced by stress

or other patient’s conditions.
The success of quantitative, mechanistic modeling

depends on availability of quantitative experimental data.

Here, we show how advances in �omics technologies can

be already used to quantitatively parameterize mechanistic

models of unprecedented scale. In our example, we use

the HepatoNet1 model that has been made liver-specific by

analysis of gene expression data. We have further con-

strained this model by providing biologically realistic, quanti-

tative, consumption, and release flux bounds for over 200

metabolites, based on in vitro metabolomics dataset. We

hope that development of genome-scale mechanistic mod-

els relevant to pharmacology, toxicology, and health will

motivate quantitative biology research, leading to increased

quantitative accuracy of the models. We note that the CBM

approach is particularly suitable in this context as it allows

to gradually increase quantitative detail as new data

become available.
In conclusion, we are convinced that multiscale models

integrating PBPK and GSMNs operating in human tissues

will gain importance in the near future. We hope that our

tutorial provides a useful introduction to this exciting field.
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