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Abstract: Inverse problems occur in a wide range of practical 

scientific investigations where the variables of interest are only 

observed indirectly, such as magnetic and seismic imaging in 

geophysics, electrical tomography in industrial process monitoring, or 

PET scanning in medicine. Linear inverse problems can be thought of 

as highly multivariate regression problems with strong 

multicollinearity where the aim is to interpret regression parameters-

prediction is not of interest. Estimation, to give a fitted model, is 

known as an inverse problem which can be ill-posed and ill-

conditioned, making estimation using least-squares or maximum 

likelihood unstable or even impossible. Instead, one approach is to 

introduce additional constraints through a penalty term and a penalized 

least-squares or penalized maximum likelihood approach taken. The 

major cause of numerical problems in the estimation is noise in the 

data and hence using a pre-processing which reduces noise may be 

helpful. Wavelet thresholding has proven to be highly efficient at 

separating useful information from noise but there has been very little 

work considering the use of wavelet methods for inverse problems. 

Hence it is of great interest to investigate the usefulness of this as an 

additional step in estimation for inverse problems. In particular a two 

stage process is proposed combining inversion and wavelet 

thresholding. The thresholding will be considered as either a pre-

inversion or post-inversion filter and the results compared. A 

simulation investigation is described and reported which compares 

these two alternative, and also which uses a minimum mean-squared 

error approach to choose the penalty parameter, in the inversion, and 

the threshold, in the wavelet thresholding, either sequentially or jointly. 

The results demonstrate that a combined approach is worthwhile and 

that for the piecewise constant test function considered, it is better to 

post-process after the inversion step than it is to use the more intuitive 

wavelet thresholding pre-processing step for noise reduction before 

inversion. This new approach hence has the potential to enhance the 

estimation results in a wide range of applied inverse problems. 

 

Keywords: Inverse Problems, Penalized Likelihood, Wavelet 

Thresholding 

 

Introduction 

Inverse problems are ubiquitous in science and 

engineering and have received widespread attention 

from scientists, including in areas such as geophysics, 

engineering and medicine. Many of these can be 

classified as function estimation or image processing 

problems, Aykroyd (2015). In a statistical context key 

challenges include dealing with the large number of 

unknown parameters compared to the amount of data 

and the highly multicollinear nature of the design 

matrix. In regression, a common approach would be to 
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perform lasso (Tibshirani, 1996) or ridge regression 

(Hoerl and Kennard, 1970) to stabilize estimation. 

These work well in standard model selection type 

regression problems (Zou and Hastie, 2005)-but the 

theme of this paper is function estimation, rather than 

variable selection or prediction, and such shrinkage 

estimators are not appropriate as they would effectively 

introduce a bias towards zero. Instead, some form of 

assumption about the smoothness of the unknown function 

is more appropriate and hence additional constraints in the 

form of local differences are widely used. 

Inverse problems can be divided into two main 

types, linear and non-linear inverse problems. The 

most common being linear problems, the theme of this 

paper, which can be defined by the following vector-

matrix model:  

 

n m n
y Kf= + ε�� (1) 

 

with data vector yn×1 = {yi: i = 1,...,n}, kernel matrix Kn×m 

= {Kij: i = 1,...,n, j = 1,...,m}, vector of unknown 

parameters fm×1 = {fj: j = 1,...,m} and errors єn×1 = {єi: i = 

1,..., n}. Further, the errors are often assumed to be 

independent and identically distributed normal random 

variables, that is є∼Nn(0, σ2
In). Note that the use of 

notation fm for the vector of unknowns, rather than the 

more usual β in regression modelling and K rather than X 

for what would be called the design matrix, has been 

chosen to be consistent with the later notation for 

function estimation. 
As illustration and for later use in simulation 

experiments, consider the Blocks test functions 
(Donoho and Johnstone, 1994; Nason, 2010a) from 
the wavethresh package (Nason, 2010b) available in R 
(R Core Team, 2016). The piecewise constant nature 
of this function makes estimation a very challenging 
problem especially when tackled as an inverse 

problem, but it is well motivated by stratigraphy 
problems in archaeology (Allum et al., 1999). Next, 
consider Gaussian blurring leading to the kernel 
matrix, K, defined as: 
 

2

22

1
exp , 1,..., , 1,...,

22

ij

ijK i n j m
δ

δπδ

 
= − = =  

 
 (2) 

 

where, δij = i-j and δ is a positive parameter which 

controls the amount of blur. 

Figure 1 shows three examples with n = m = 64 

and σ = 1 but for a range of values of δ. In each the 

same red dashed line shows the true, but in practice 

unknown, function which is to be estimated, then the 

black solid line shows the blurred result of applying a 

kernel matrix and finally the points show typical data. 

In (a) there is no blur and hence the points are 

scattered equally around the true function. As the 

blurring increases, the edges of the true step function 

are rounded, as in (b) and then all detail is completely 

lost, as in (c). The examples in (b) and (c) correspond 

to moderate and large blurring of the underlying 

function and hence moderate and difficult inverse 

problems - the reciprocal condition numbers are 

6×10
−4

 and 4×10
−20

 with values close to 1 indicating a 

well-conditioned problem (Golub and Van Loan, 

1989). Estimation should be easy in (a), accurate and 

reliable in (b), but might be essentially useless in (c). 

The rest of this paper is structured as follows. Section 

2 provides key properties of inverse estimation and 

Section 3 an introduction to wavelet methods. Section 4 

describes the proposed two-stages approach with a 

simulation study to investigate estimation properties in 

Section 5. The final summary and conclusions are 

presented in Section 6. 

 

 

 

Fig. 1. Typical data (points) derived from the Blocks test function (dashed line) along with blurred test function (solid line) for 

different levels of blur, (a) no blur (δ = 0), (b) moderate blur (δ = 0.02), (c) large blur (δ = 0.08) 
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Inverse Estimation using Penalized 

Likelihood 

From the above mathematical statements it is now 

possible to define the log-likelihood: 

 

( ) ( ) ( )
2

1

2

T
f y Kf y Kf

σ
= − − −ℓ  (3) 

 

with the maximum likelihood estimate of f given by: 

 

( ) 1ˆ .T T

MLf K K K y
−

=  (4) 

 

Note that our aim is not to fit a model to allow the 

prediction of y but to interpret the estimates of f. This 

means that stable estimation of f is a requirement of the 

procedure. In inverse problems, however, estimation of 

this unknown parameter vector is not straight forward as 

either: (i) no solution exists, (ii) there are multiple 

solutions or (iii) the solution does not depend smoothly 

on the data as small changes in the noise can lead to 

wildly different estimates - these properties define an 

inverse problem (Hadamard, 2014). Reinterpreting these 

conditions into statistical terminology. The first reason is 

that the number of parameters is larger and sometimes 

much larger, than the number of observations. The 

second reason is that even when the number of 

parameters is fewer than the number of data points there 

can still be problems due to collinearity, which is the 

condition where the independent variables are strongly 

correlated with each other. 
Hence, in many inverse problems it is not possible to 

calculate the inverse, (K
T
K)

−1
, as the system has fewer 

equations than unknowns or is ill-conditioned being nearly 

multicollinear. To solve this problem, additional constraints 

are introduced leading to a penalized log-likelihood: 

 

( ) ( ) ( ) ( )
2

1
, , 0

2

T

p f y Kf y Kf R fκ κ κ
σ

= − − − − >ℓ  (5) 

 

where, R(f) is a penalty function with small values of 

R(f) indicating preferred choices of f. The parameter κ is 

chosen to balance the relative weight given to the 

likelihood and penalty terms. Before moving on, it is 

worth noting that the penalized log-likelihood can be 

interpreted in a Bayesian setting as log-likelihood plus 

log-prior, but that approach will not be adopted here. 

In many situations the penalty can be written in terms 

of a matrix, that is R(f) = Rf and in these cases the 

solution of the penalized likelihood problem produces 

the estimation equation: 

 

( ) 1ˆ κ
−

= +T T Tf K K R R K y  (6) 

Common choices of R can be derived based on 

assumptions about the smoothness of f. If it is believed that 

the function is not different from a constant, then this 

suggests considering the first derivative of f which can be 

approximated by the first difference and then 

( ) ( )( ) ( )
22

1 1
ˆ ˆ
i i

R f f t dt f f +′∝ ∫ ≈ −∑ . Note that this equals 

zero if and only if ( )f̂ t is constant. Then, the corresponding 

matrix representations, R1 can be written as: 

 

1

1 1 0 0 0 0 0

0 1 1 0 0 0 0
.

0 0 0 0 0 1 1

R

− 
 − =
 
 

− 

…

…

⋮ ⋮ ⋮ ⋮ … ⋮ ⋮ ⋮

…

 

 

This leads to what is called first-order smoothing. 

The idea can be extended to higher order smoothing, but 

the first-order generally works very well even when the 

unknown function is not a constant. 

To measure the accuracy of the fitted function, 

{ }1
ˆ ˆ : 1,...,
m j

f f j m× = = , the mean squared-error can be 

calculated and then the best value for the penalty parameter, 

κ, found by minimising this mean-squared error, that is: 

 

( )ˆ arg min ,MSE
κ

κ κ= where ( )2

1

1 ˆ .
m

j j

j

MSE f f
m =

= −∑  (7) 

 

Although, in practice, the true function is unknown it 

is usual to either have training data or be able to perform 

realistic simulations. Further, simulation also allows a 

comparison of different estimation approaches. 

To illustrate standard function estimation using 

penalized likelihood inversion, consider Fig. 2 and 3 

which use δ = 0.02 and δ = 0.08 respectively - these are 

the same cases as shown in Fig. 1 corresponding to 

moderate and large blurring of the underlying function. 

When δ = 0.02, Fig. 2, κ̂  = 0.011 and ( )ˆMSE κ  = 6.83. 

Although in (a) it is not clear that the estimate is better 

than the data, noting that the MSE of the data is 9.75 

reveals a substantial improvement has been achieved. 

In Fig. 3, with δ = 0.08 the situation is a little different. 

In (b) the location of the minimum is poorly defined - in 

contrast to the well-defined minimum in Fig. 2b – with all 

κ values above about 0.01 producing a similar MSE but 

with κ̂  = 0.060 and MSE ( κ̂ )= 20.76 compared to a data 

MSE of 26.18. The estimate clearly follows the true 

function slightly better with the peaks and troughs more 

pronounced. These examples, however, have highlighted 

the main drawback of estimating piecewise constant 

functions using smoothing penalties - that is the estimates 

are smooth and are not piecewise constant. 
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Fig. 2. Inversion, (a) estimate (solid black line) of Blocks test function (red dashed line) from n = 64 data values (points) with δ = 

0.02, (b) Mean-squared error (black line) as a function of the penalty parameter κ showing the minimum MSE value (point) 

 

 
 
Fig. 3. Inversion, (a) estimate (solid black line) of Blocks test function (red dashed line) from n = 64 data values (points) with δ = 

0.08, (b) Mean-squared error (black line) as a function of the penalty parameter κ showing the minimum MSE value (point) 

 

Wavelet Representations and Thresholding 

Methods 

The Discrete Wavelet Transform 

Wavelet theory can be applied in many fields and 

applications (Young, 1993; Vidakovic, 2009) and can be 

explained in simple terms as describing a signal by a few 

wavelet coefficients, hence producing a sparse and 

multi-resolution representation. The most common way 

in which wavelets are applied is to de-noise signals 

which can be achieved through thresholding or shrinkage 

of the wavelet coefficients and then reconstruct of the 

signal - a straightforward introduction can be found in 

Vidakovic and Mueller (1994). This has the effect of 

both reducing the noise contribution and compressing 

the original data while keeping a good quality of 

approximation (Raimondo, 2002). 

In the standard setting, consider an unknown function 

f at a set of equally-spaced locations which is corrupted 

by noise. Consider a set of noisy data y = (y1,..., yn) that 

are observed values recorded at the same locations, then 

the model is given by: 

 

y f= + ε  (8) 

where, є is a vector of random variables such that є∼Nn(0, 

σ2
In) and n = 2

J
, for some index J ∈ℕ . Consider the 

wavelet transform of the unknown function f defined by: 

 

= T

fd W f  

 

where, W is an orthonormal matrix containing the 

wavelet basis. Hence, the unknown function f can be 

equivalently defined by its discrete wavelet transform df 

= {dij: i = 0,...,2
j−1

, j = 0,...,J-1} where J = log2(n). The 

wavelet decomposition of the data y can be written as: 
 

( )y fd Wy W f Wf W d η= = + = + = +ε ε  (9) 

 
where, dy and df are vectors of the wavelet coefficients of 

y and f respectively. Thus, the model in (9) can be 

written equivalently as: 
 

.y fd d η= +  (10) 

 
The orthogonality of matrix W and normality of the 

noise vector є implies the noise vector  η is also 

normal with the same structure as є, that is η∼Nn(0, 

σ2
In). 
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Fig. 4. Wavelet tableaux of Blocks test function, for δ = 0, 0.01, 0.1 (columns) and σ = 0, 5 (rows) 

 

Figure 4 shows empirical wavelet coefficients for the 

Blocks test function sampled at m = 64 equally spaced 

points with δ = 0, 0.01, 0.1 (columns) and σ = 0, 5 (rows) - 

all panels have common scale to allow direct comparison. 

Hence, (a) shows the wavelet coefficients of the true 

function, then moving along a row shows the effects of 

increased blur and moving down a row corresponds to 

increased noise. As the blur increases the non-zero wavelet 

coefficients become closer to zero, whereas as the level of 

noise becomes large, the number of non-zero wavelet 

coefficients in the finer levels increases. 

Wavelet Thresholding 

Wavelet thresholding is a non-parametric and non-

linear technique used in function estimation based on a 

concept of sparseness. Hence, thresholding of the 

empirical wavelet coefficients works best in problems 

where the underlying set of true coefficients is sparse. It is 

assumed that the majority of the wavelet coefficients are 

small, which are set to zero and the remaining few are 

large, which are kept. This is sometimes described as 

those below a threshold are “removed” while the others 

are “kept”. The aim is that the resulting adjusted wavelet 

coefficients contain less noise whilst retaining important 

information. The simplest example is the Hard 

thresholding rule which is defined as: 

0, | |
ˆ

, | |f

y

if d
d

d if d

λ
λ

≤
=  >

 (11) 

 

where, λ is the threshold. The set of wavelet coefficients 

after thresholding ˆ
fd are then taken as estimates of the 

true wavelet coefficients df. Then, an estimate of the 

function f, using the estimates of df, is defined as: 

 
ˆ ˆ .T

ff W d=  (12) 

 

In the wavelet shrinkage approach, a big challenge is 

to find an appropriate threshold value λ (Raimondo, 

2002). Note that when λ = 0 all the coefficient are kept, 

while λ = ∞ means that all the coefficients are shrunk. 

The thresholding rule works better if the thresholding 

value is specified well, see for example Nason (1996). 

Considering again Fig. 4 emphasises that this is a 

difficult aim to achieve as the blurring reduces the 

contrast in magnitudes between coefficients and the 

noise hides what differences remain. 

Following the approach taken above for choosing the 

value of the penalty parameter κ, the best value for the 

threshold, λ, will be found by minimising the mean-

squared error, that is: 
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( )ˆ arg min .MSE
λ

λ λ=  (13) 

 

Again, this is appropriate when there is training data 

or access to realistic simulated data. 

A Two-Stage Wavelet-based Inversion 

Method 

General 

The previous sections have introduced two ideas, 
inverse problems and wavelet methods. The aim now 
is to combine them together to produce a novel 
method to analysis linear inverse problems and to 
investigate the interplay between the choice of penalty 
parameter, κ, in the inversion method and the 
threshold parameter, λ, in wavelet thresholding. Two 
approaches are studied which depend on the order of 
inversion and wavelet thresholding. In the first 
method, wavelet thresholding is used as a noise-
reduction method before inversion with an expectation 
that this second stage will be better defined and hence 
more reliable. In the second method, inversion 
followed by wavelet thresholding is considered in the 
expectation that using a Haar wavelet in the final step 
will promote estimation as a step function. 

Method 1: Thresholding then Inversion (TI) 

The first step is to perform the wavelet thresholding, 

based on the Haar wavelet, to remove noise and hence to 

estimate g = Kf - the noise-free data. This can be 

described, by a function T, as: 
 

( ) ( )ˆ ,g T yλ λ=  

 

which depends on threshold parameter λ. The second 

step is to perform the inversion. Suppose that this is 

represented by a function I so that: 

( ) ( )( )ˆ ˆ ,f I gκ λ κ=  

 

which depends on an inversion parameter κ. This may 

take the form of an explicit equation, such as Equation 

6, or the numerical maximization of a likelihood. This 

two-stage process can be written in a single equation: 

 

( ) ( )( )ˆ , , , .κ λ λ κ=f I T y  

 

The use of the double argument, (κ, λ), 

acknowledges the fact that the wavelet-inversion 

estimate depends on two parameters. 

The value of the wavelet threshold, λ, is chosen as: 

 

( ) ( ) ( )( )2

1

1ˆ ˆarg min , where
λ

λ λ λ λ
=

= = −∑
m

j j

j

MSE MSE g f
m

 (14) 

 

and then the value of the penalty parameter, κ, as: 

 

( ) ( ) ( )( )
2

1

1 ˆ ˆˆ arg min , where ,
κ

κ κ κ κ λ
=

= = −∑
m

j j

j

MSE MSE f f
m

 (15) 

 

As illustration consider Figs. 5 and 6. When δ = 

0.02 there are clear minimum values in the MSE 

allowing well-defined parameter estimates as λ̂  = 

2.73 and κ̂  = 0.01. The corresponding mean squared 

errors are 9.32 and 6.65 compared to that of the data 

at 9.75. For the δ = 0.08 cases, in contrast, minimum 

values are less well defined and hence many values of 

the parameters will give similar function estimates. 

Here λ̂  = 0.0 and hence the corresponding mean 

squared error and the estimate itself are the same as 

with the data with MSE of 26.18, then κ̂  = 0.06 with 

mean squared error 20.76. 
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Fig. 5. Wavelet thresholding then inversion with δ = 0.02: (a) true function (dashed), data (points) and estimate (solid) after 

thresholding, (b) MSE(λ), (c) true function (dashed), data (points) and estimate (solid) after inversion, (d) MSE(κ) 

 

 

 

 

 

Fig. 6. Wavelet thresholding then inversion with δ = 0.08: (a) true function (dashed), data (points) and estimate (solid) after 

thresholding, (b) MSE(λ), (c) true function (dashed), data (points) and estimate (solid) after inversion, (d) MSE(κ) 
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The above approach involves sequential estimation of 

the penalty parameter κ and the wavelet threshold λ. 

Rather than this conditional approach, however, the two 

parameters could be found simultaneously, that is by 

joint minimisation of the mean squared error: 

 

( ) ( )
,

ˆ ˆ, arg min , ,
λ κ

λ κ λ κ= MSE

( ) ( )( )2

1

1 ˆ, where , .λ κ κ λ
=

= −∑
m

j j

j

MSE f f
m

 (16) 

 

Although not illustrated here, this approach will be 

considered in the main simulation study in the next 

section. 

Method 2: Inversion then Thresholding (IT) 

The first step is to perform the inversion which, as 

before, is represented by a function I so that: 
 

( ) ( )ˆ ,f I yκ κ=  (17) 

 

which depends on an inversion parameter κ. Note that this 

time, the output of stage one is also a direct estimate of the 

underlying function f rather than of the intermediate 

function g. In stage two, wavelet thresholding is used to 

produce a sparse representation which is in the form of a 

step function. This can be described as: 
 

( ) ( )( )ˆ ˆ, ,f T fκ λ κ λ=  (18) 

 

which depends on threshold parameter λ. This two-stage 

process can then be written in a single equation: 
 

( ) ( )( )ˆ , , , .f T I yκ λ κ λ=  (19) 

 

The value of the penalty parameter, κ is chosen as: 

( ) ( ) ( )( )2

1

1 ˆˆ arg min ,where
κ

κ κ κ κ
=

= = −∑
m

j j

j

MSE MSE f f
m

 (20) 

 

and the value of the wavelet threshold as: 

 

( ) ( ) ( )( )2

1

1 ˆˆ ˆarg min ,where ,
λ

λ λ λ κ λ
=

= = −∑
m

j j

j

MSE MSE f f
m

 (21) 

 

This approach is illustrated in Figs. 7 and 8 with δ = 

0.02 and δ = 0.08 respectively. In each, (a) and (b) show 

the results of the inversions - in fact these are a repeat of 

Figs. 2 and 3. Then, (c) and (d) show the results of 

subsequently applying wavelet thresholding to the results 

of the inversion. For δ = 0.02, λ̂ = 4.24 and κ̂ = 0.01, 

leading to MSE values of 6.83 and 6.18 after stages one 

and two respectively, compared to a MSE of the data of 

9.75. Corresponding values with δ = 0.08 are λ̂  = 1.01 

and κ̂  = 0.06, leading to MSE values of 20.75 and 20.70 

after stages one and two respectively, compared to a MSE 

of the data of 26.18. For each value of δ there is a clear 

visual improvement in the final estimate compared to that 

after only the inversion. In that a better defined step-

function is produced - this is especially worthwhile in the 

moderate blurring case. As with the inversion penalty 

parameters, κ, the minimum in the MSE is better defined 

when the blurring is moderate compared to large. 

Again, rather than sequential estimation of the 

parameters, estimates can be found simultaneously, that 

is by joint minimisation of the mean squared error: 
 

( ) ( )
,

ˆ ˆ, arg min , ,MSE
λ κ

λ κ λ κ=  

( ) ( )( )2

1

1 ˆwhere , , .λ κ κ λ
=

= −∑
m

j j

j

MSE f f
m

 (22) 

 
This approach will also be considered in the main 

simulation study in the next section. 
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Fig. 7. Inversion then wavelet thresholding with δ = 0.02: (a) true function (dashed), data (points) and estimate (solid) after 

inversion, (b) MSE(κ), (c) true function (dashed), data (points) and estimate (solid) after thresholding, (d) MSE(λ) 

 

 
 

 
 

Fig. 8. Inversion then wavelet thresholding with δ = 0.08: (a) true function (dashed), data (points) and estimate (solid) after 

inversion, (b) MSE(κ), (c) true function (dashed), data (points) and estimate (solid) after thresholding, (d) MSE(λ) 
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A Simulation Study of Wavelet-Inversion 

Methods 

The illustrative results in the previous section have 

given an indication of the properties of the two basic 

methods proposed, that is (1) wavelet Thresholding then 

Inversions (TI) and (2) Inversion then wavelet 

Thresholding (IT). To compare the estimates more 

precisely, however, the whole procedure will be replicated 

M = 100 times and boxplots used to compare the various 

examples. 

Method 1: Wavelet Thresholding then Inversion 

(TI) 

Figure 9 shows results for the two stage approach of 

wavelet thresholding then inversion where parameters λ 

and κ are chosen sequentially. In (a), the grey boxplots 

show the MSE after only the first stage of wavelet 

thresholding involving the estimation of threshold λ as 

shown in (b). There is a clear increase in the MSE as δ 

increases. Also, although there is a great spread in 

estimated λ values, the first few are reasonably 

consistent at about 2-2.5, then a substantial drop to 

around 1.5 for higher δ values. This reflect the effect of 

blurring on the true wavelet coefficients where large 

values get reduced as δ increases. Hence, the best 

threshold also reduces otherwise true coefficients are 

removed. In balance this also means that more noise 

remains. The black boxplots in (a) show the MSE after 

the second stage of inversion is completed and (c) shows 

the corresponding penalty parameter. Initially, that is for 

small δ, there is little improvement in the MSE due to 

the inversion, but as δ increases the effect if more 

substantial - as expected. Similarly, this is apparent in 

the estimates of κ where initially they are close to zero 

but then increase. Note that the reciprocal conditional 

number for δ = 0.02 is 6×10
−4

, which then jumps to 

2×10
−8

 for δ = 0.03 indicating a move from mildly to 

severely ill-conditioned. 

 

 

 
Fig. 9. Wavelet then inversion results showing boxplots: (a) MSE after thresholding (grey) and then after inversion (black) and 

estimated parameters (b) λ̂  and (c) κ̂  

 

 

 
Fig. 10. Inversion then wavelet results showing boxplots: (a) MSE after inversion (grey) and then after thresholding (black) and 

estimated parameters (b) λ̂  and (c) κ̂  
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Fig. 11. Comparison of Method 1 and Method 2 with sequential estimation of parameters - a negative value indicates that Method 1 

has a larger value. 

 

 
 
Fig. 12. Wavelet then inversion results, with joint estimation of parameters, showing boxplots: (a) MSE and estimated parameters (b) 

λ and (c) κ 
 

 
 
Fig. 13. Wavelet then inversion results, with joint estimation of parameters, showing boxplots improvement due to simultaneous 

estimation: (a) MSE and estimated parameters (b) λ and (c) κ - a negative value indicates a higher value for sequential 

estimation 
 

Method 2: Inversion then Wavelet Thresholding 

(IT) 

Similar results for Method 2 of inversion then 

wavelet thresholding are shown in Fig. 10. This time 

there is very little difference in the MSE values at the 

end of Stage 1 and Stage 2. The greatest benefit in terms 

of MSE is for small to moderate δ values, for example 

up to about 0.03 or 0.04. There is a very noticeable 

pattern in the estimated λ values used in the wavelet 

thresholding which is much more pronounced than in 

Fig. 10. Finally, Fig. 11 shows a comparison of the two 
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methods. In (a) there is a clear improvement in terms of 

MSE for δ in the range 0.0-0.03 by performing Inversion 

then wavelet Thresholding (IT) over vice versa (TI). There 

is also a clear pattern in the estimated λ values but nothing 

noticeable in the κ values. This indicates that inversion 

then wavelet thresholding is the best method in terms of 

MSE, but more importantly in terms of producing a 

function estimate resembling a step function. 

Comparison of Joint Estimation of λ and κ 

Before making final conclusions, in this section 

simultaneous estimation for the parameters λ and κ is 

considered. Figure 12 shows the results using wavelet 

thresholding then inversion with joint estimation of the 

wavelet threshold λ and the penalty parameter κ. Fig. 13 

compares the results with those from the separate 

sequential estimation of λ and κ. Given the very wide 

variability it is difficult to conclude more than that there 

is general agreement between the methods, but there are 

some consistent patterns which are worthy of comment. 

From Fig. 13(a) the median MSE is slightly better for 

joint estimation for small δ but very slightly worse for 

large δ. In (b) the joint estimate of λ is smaller for small 

values of δ and larger for larger values of δ in the joint 

estimation compared to the sequential. Finally, the 

values of κ̂ , compared in (c), are much more similar, 

though there is less variability for small δ. 

Figures 14 and 15 show similar comparisons for 
Method 2, that is inverse then wavelet thresholding, 
using joint estimation of λ and κ and compared to 
sequential estimation. In Fig. 14 there are very similar 

MSE values in (a) and estimates of κ in (b), but a 
different pattern in the λ values in (c). In Fig. 15, the 
improvements in MSE due to simultaneous estimation 
are clearly seen in (a) as in almost all cases there is a 
reduction in MSE. This appears to be mainly due to a 
change in the estimated wavelet threshold λ with smaller 

values for small δ and larger values for larger δ. There is, 
perhaps, an indication of smaller κ values in the joint 
estimation case. Hence, for this method there is a 
worthwhile improvement performing joint estimation of 
λ and κ compared to the sequential approach. 

 

 
 
Fig. 14. Inversion then wavelet results, with joint estimation of parameters, showing boxplots: (a) MSE and estimated parameters (b) 

λ and (c) κ 

 

 
 
Fig. 15. Inversion then wavelet results, with joint estimation of parameters, showing boxplots improvement due to simultaneous estimation: 

(a) MSE and estimated parameters (b) λ and (c) κ - a negative value indicates a higher value for sequential estimation 
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Fig. 16. Comparison of simultaneous estimation of λ and κ in terms of (a) MSE, (b) λ̂  and (c) κ̂ - a negative value indicates a 

higher value for IT estimation 

 

Figure 16 shows the final results which compare the 

MSE and the two sets of joint parameter estimates. In (a) 

the MSE is initially better for wavelet thresholding then 

inversion but for larger δ values inverse then wavelet 

thresholding is better. For smaller δ the estimated 

threshold λ̂  in (b) is larger for wavelet thresholding then 

inversion but smaller for larger δ values. There is no 

substantial pattern visible amongst the variability in (c) 

for the estimated κ. 

Discussion 

The aim of this work was to investigate the use of 
wavelet-based models for the estimation of piecewise 
constant functions in inverse problems. The nature of 
inverse problems means that some of the attractive 
computational properties of wavelets are lost, but they 

still present a useful modelling tool. Inverse problems 
are widely encountered in the applied sciences and 
assumptions of piecewise constant, or at least piecewise 
smooth functions, are appropriate. It is common, 
however, to use prior distributions on the function 
values themselves which usually lead to poor 

reconstruction-shrinkage type models move in the 
estimates towards zero whilst smoothing priors destroy 
sharp discontinuities. Hence, the approach proposed 
here has the potential to have significant impact on a 
wide range of practical problems. 

Conclusion 

From the results it is clear that for this type of 

function the best method is to use inversion then wavelet 

thresholding. This leads to a function estimate which 

more closely resembles a step function and generally has 

a smaller mean squared error. Although sequential 

estimation of the two parameters, λ in the thresholding 

and κ in the likelihood penalty function, is satisfactory 

there is still a further benefit from estimating them 

together. It is worth saying that for larger problems, then 

the sequential estimation is quicker and potentially more 

reliable than joint estimation. The comparisons here have 

estimated parameters by minimum mean squared error 

which is feasible when training data are available or for 

when realistic simulations can be performed, but in other 

situations other estimation approaches would be 

preferable. This is the theme of further work in this area. 

Also, it is our intention to evaluate the procedures on 

real data problems, in particular application to 

archaeological stratigraphy where data is 1D and a 

segmentation into occupation layers is required. 
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