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ABSTRACT

Different modes of vibration of the vocal folds contribute signifi-

cantly to the voice quality. The neutral mode phonation, often said

as a modal voice, is one against which the other modes can be con-

trastively described, called also non-modal phonations.

This paper investigates the impact of non-modal phonation on

phonological posteriors, the probabilities of phonological features

inferred from the speech signal using deep learning approach. Five

different non-modal phonations are considered: falsetto, creaky,

harshness, tense and breathiness are considered, and their impact on

phonological features, the Sound Patterns of English (SPE), is inves-

tigated, in both speech analysis and synthesis tasks. We found that

breathy and tense phonation impact the SPE features less, creaky

phonation impacts the features moderately, and harsh and falsetto

phonation impact the phonological features the most.

Index Terms— Phonological features, non-modal phonation,

phonological vocoding

1. INTRODUCTION

Pathological speech is characterised by soft volume, monotone,

hoarseness, breathiness, imprecise articulation and vocal tremor [1].

The project1 titled “Analysis by Synthesis of Severely Pathological

Voices”, conducted at Head and Neck Surgery, UCLA School of

Medicine, concluded, that “No accepted standard system exists for

describing pathological voice qualities. Qualities are labeled based

on the perceptual judgments of individual clinicians, a procedure

plagued by inter- and intra-rater inconsistencies and terminological

confusions. Synthetic pathological voices could be useful as an

element in a standard protocol for quality assessment. . . ”

Even if we do not consider analysis and synthesis of pathological

voices, non-modal (or aperiodic) phonation of “healthy” speakers

poses challenges in current speech technology as well. For example,

an American English speaker (labelled BDL) in the ARCTIC speech

database [2], often used in current text-to-speech (TTS) research,

happens to regularly produce creak in parts of his read sentences.

This led some recent works to focus on improvements of analysis

and synthesis of creaky voices [3, 4].

∗Thanks to 2016 JHU workshop for funding. . .
1http://www.seas.ucla.edu/spapl/projects/

pathological.html

Recent work on non-modal phonation focuses on detection [5],

analysis [6, 7] and synthesis [8] of speech with non-modal phona-

tion. Modern computational paralinguistics tries to 1) get rid of

non-modal phonation, or 2) model it, for example, for classification

purposes [9]. However, the production of speech sounds with non-

modal phonation has been less studied. Speech sounds can be well

characterised by phonological features, and thus, we aim to study in

this work the impact of non-modal phonation on phonological fea-

tures. The goal is to identify the invariant, and the most impacted

phonological features, and use these patterns in future work on anal-

ysis and synthesis of pathological speech.

For studying the speech with non-modal phonation, we used

the read-VQ database [10], the recording of which was inspired by

prototype voice quality examples produced by John Laver [11]. Five

different non-modal phonations are considered: falsetto, creaky,

harshness, tense and breathiness. Analysis of phonological features,

the Sound Patterns of English (SPE) features [12], was performed by

the PhonVoc toolkit [13]. Consequently, the inferred probabilities of

the SPE features, called also phonological posteriors, were used for

the re-synthesis of the speech signals. Thus, we used the analysis-

by-synthesis approach to study the impact of non-modal phonation

on phonological features. We analysed and re-synthesized both

original Laver’s recordings and the read-VQ recordings, and statis-

tically evaluated differences on modal and non-modal phonological

posteriors.

2. NON-MODAL PHONATION

We follow Laver’s terminology [11] for using the term of voice qual-

ity, that is defined in a broad sense as the characteristic auditory

colouring of an individual speaker’s voice, and not just in a narrow

sense coming from laryngeal activity. Such voice quality impacts

the produces speech sounds, and we hypothesised that these changes

might be captured by changes of phonological posteriors.

Different modes of vibration of the vocal folds contribute sig-

nificantly to voice quality. The modal (periodic) phonation, is one

against which the other modes can be contrastively described, called

also non-modal (aperiodic) phonations.

Breathy and creaky voices belong to the most studied non-modal

phonation types. In breathy phonation, the vibration of the vocal

folds is accompanied by aspiration noise, that causes higher first

formant bandwidth and missing third formant [14] due to steeper

spectral tilt [15]. In creaky phonation (refereed also as vocal fry,



laryngealisation), secondary vibrations occur, produced with lower

fundamental frequencies. Creaky voice is a “characteristic” phona-

tion, studied also in sociolinguistics.

Tense voice is produced with higher degree of overall muscular

tension involved in whole vocal tract. The higher tension of the vocal

folds does not result into irregularities that is seen in harsh voice. It

is characterised by richer harmonics in higher frequencies due to a

less steep spectral tilt. Harsh voice is a result of very high muscular

tension at the laryngeal level. Pitch is irregular and low, and the

speech spectrum contains more noise.

Falsetto voice is the most opposite to modal voice [11]. The

voice is produced with thin vocal folds, that results into a higher

pitch voice with a steeper spectral slope.

3. EXPERIMENTAL SETUP

We use our open-source phonological vocoding platform [16] to per-

form phonological analysis and synthesis. Briefly, the platform is

based on cascaded speech analysis and synthesis that works inter-

nally with the phonological speech representation. In the phonolog-

ical analysis part, phonological posteriors are detected directly from

the speech signal by Deep Neural Networks (DNNs). Binary [17]

or multi-valued classification [18, 19] might be used. In the latter

case, the phonological classes are grouped together based on place

or manner of articulation. We followed the binary classification ap-

proach in our work, and thus each DNN determines the probability

of a particular phonological class.
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Fig. 1. Phonological analysis and synthesis.

Fig. 1 shows the phonological analysis and synthesis. We used

the Sound Patterns of English (SPE) feature set [12] for training

of the DNNs for phonological posterior estimation. The mapping

used to map from phonemes to SPE phonological classes is taken

from [20]. The distribution of the phonological labels is non-

uniform, driven by mapping different numbers of phonemes to the

phonological classes.

3.1. Training

To train the DNNs for phonological analysis, we first trained a

phoneme-based automatic speech recognition system using mel

frequency cepstral coefficients (MFCC) as acoustic features. The

phoneme set comprising of 40 phonemes (including “sil”, repre-

senting silence) was defined by the CMU pronunciation dictionary.

The three-state, cross-word triphone models were trained with the

HMM-based speech synthesis system (HTS) variant [21] of the

Hidden Markov Model Toolkit (HTK) on the 90% subset of the

WSJ si tr s 284 set [22]. The remaining 10% subset was used for

cross-validation. The acoustic models were used to get boundaries

of the phoneme labels.

Then, the labels of phonemes were mapped to the SPE phono-

logical classes. In total, 13 DNNs were trained as the phonological

analyzers using the short segment (frame) alignment with two out-

put labels indicating whether the k-th phonological class exists for

the aligned phoneme or not. In other words, the two DNN outputs

correspond to the target class vs. the rest. Some classes might seem

to have unbalanced training data, for example, the two labels for

the nasal class are associated with the speech samples from just 3

phonemes /m/, /n/, and /N/, and with the remaining 36 phonemes.

However, this split is necessary to train a discriminative classifier

well, as all the remaining phonemes convey information about all

different phonological classes. Each DNN was trained on the whole

training set. The DNNs have an architecture of 351×1024×1024×
1024× 2 neurons, determined empirically based on the authors’ ex-

perience. The input vectors are 39 order MFCC features with the

temporal context of 9 successive frames. The parameters were ini-

tialized using deep belief network pre-training done by single-step

contrastive divergence (CD-1) procedure of [23]. The DNNs with

the softmax output function were then trained using a mini-batch

based stochastic gradient descent algorithm with the cross-entropy

cost function of the KALDI toolkit [24].

Training of the phonological synthesis starts with preparing in-

put features from the TTS database by performing the phonological

analysis using the analysis DNNs. We used the Nancy database pro-

vided in the Blizzard Challenge 2011, that consits of 16.6 hours of

high quality recordings of natural expressive human speech made in

an anechoic chamber. The output features – modelled speech param-

eters – are extracted by the LPC analysis. Cepstral mean normali-

sation of the output features is applied before DNN training. The

DNN is also initialised by pre-training, and is trained with a linear

output and the mean square error cost function. The synthesis DNN

is trained again with the Kaldi toolkit.

3.2. Evaluation data

We used the read-VQ database [10] in this work. Participants, 2

males and 2 females, were asked to read 17 sentences in six different

phonation types: modal, breathy, tense, harsh, creaky and falsetto.

The sentences were chosen from the phonetically compact sentences

in the TIMIT corpus [25], four of which contained all-voiced sounds.

451 sentences were chosen in order to obtain a wide phonetic cov-

erage, and as it is likely that it can be very difficult for speakers to

maintain a constant type of phonation over a long utterance.

Participants were given prototype voice quality examples, pro-

duced by John Laver [11] and the John Kane [10], and were asked

to practise producing them before coming to the recording session.

For the recordings participants were asked to produce the strong ver-

sions of each phonation type and to maintain it throughout the utter-

ance. During the recording session participants were asked to repeat

the sentence when it was deemed necessary. The recordings with

modal phonation were 2.2 minutes long, and the remaining record-

ings with non-modal phonation were 2 minutes long each (i.e., al-

together about 12.2 minutes of recordings). Both Laver’s and the

read-VQ data were used in the evaluation.

3.3. Analysis and synthesis

Phonological analysis starts by converting speech samples ~xn with

n ∈ N number of frames in the speech signal into a sequence of

acoustic feature observations X = {~x1, . . . , ~xn, . . . , ~xN}. Con-

ventional cepstral coefficients can be used in this speech analysis

step. Then, the analysis realised by DNNs converts the acoustic

feature observation sequence X into a sequence of vectors Z =
{~z1, . . . , ~zn, . . . , ~zN}. The vector of phonological parameters ~zn =
[z1n, . . . , z

k
n, . . . , z

K
n ]⊤ consists of phonological posterior probabili-

ties zkn = p(ck|xn) of K phonological features (classes) ck.



The matrix of posteriors Z thus consist of N rows, indexed by

the processed speech frames, and K columns. The following analy-

sis was done on non-silence speech frames of the evaluation data:

µk =
1

Ns

Ns∑

n=1

p(ck|xn), ∀n⇐⇒p(cSIL|xn) < 0.5, (1)

where cSIL is a posterior probability of silence class being observed,

and NS is the number of non-silence frames. First, modal voice was

analysed, followed by other non-modal phonations analysed defer-

entially (contrastively) to the modal voice:

∆µk = µ
modal
k − µ

non-modal
k . (2)

After obtaining the SPE phonological posteriors, we used the

posteriors also to re-synthesize the speech signal using the phono-

logical synthesis. The phonological synthesis was trained on Nancy

(female) speech with modal phonation, thus impacted (distorted)

phonological posteriors cased by non-modal phonation, should re-

sult in lower quality re-synthesized speech.

4. RESULTS

4.1. Analysis

We evaluated first original Laver’s recordings. They are consid-

ered as recordings of non-modal phonation with excellent quality,

however only one utterance per the phonation type is available, and

thus they are speaker-specific. Fig. 2a shows the analysis of Laver’s

recordings, followed by the analysis of the read-VQ evaluation data

in Fig. 2b.

Table 1 lists the invariant and the most different features between

speech with modal and non-modal phonations.

Table 1. The impact of non-modal phonation on the SPE posterior

features, measured as a difference between the mean phonological

posteriors of speech with modal phonation, and the mean phonolog-

ical posteriors with non-modal phonation

Phonation Invariant features Most different features

Breathy Strident, back, voice,

high

Vocalic, tense, nasal

Tense Strident, back, round,

coronal

Low, vocalic

Creaky Vocalic, round, high,

continuant

Coronal, consonantal,

nasal, back

Harsh Strident, tense Low, high, vocalic

Falsetto Strident, vocalic Consonantal, coronal,

voice, anterior

4.2. Synthesis

We evaluated synthesized speech of 2 female speakers from the read-

VQ database using the Mel Cepstral Distortion (MCD) [26] between

original and synthesized speech samples. Lower MCD values indi-

cate higher speech quality of the synthesized speech samples. Fig. 3

shows synthesis results of the read-VQ data.
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Fig. 3. Quality of non-modal speech synthesis, measured objectiv-

elly using Mel Cepstral Distortion in dB. The higher values indicate

worse speech quality.

4.3. Discussion

TODO: Add discussion about these results:

1. By visual comparison of Fig. 2a and Fig. 2b, we can conclude

that the impact of non-modal phonation on phonological pos-

teriors is roughly similar for both the Laver’s and read-VQ

recordings. Invariant phonological features were estimated

from the read-VQ analysis that is speaker-independent.

2. As shows Fig. 3, breathy and tense phonation impact the SPE

features less, creaky phonation impacts the features moder-

ately, and harsh and falsetto phonation impact the phonologi-

cal features the most.

3. As lists Tab. 1, strident, and less round and back features, are

more invariant features “resistant” to non-modal phonation,

the rest of the features is heavily impacted. The most im-

pacted features for breathy and tense phonations seem to be

related to vowels (such as low and nasal), creaky phonation

seems to be related to both vowels and consonants (such as

coronal and nasal), and harsh and falsetto phonations impact

mostly consonants (coronal, anterior, consonantal).

4. Linking of these findings to pathological speech. . .
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(a) Analysis of the Laver’s recordings. The stars next to the indices of the phonological classes indicate statistical significance of difference between the modal
and particular non-modal phonation.
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Fig. 2. Mean modal SPE posteriors µk (top-left figures) and differentials ∆µk of non-modal phonations with respect to the modal voice.
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