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ABSTRACT 

We perform finite element analysis of the mechanical response of random RVEs representing the 
microstructure of a unidirectional (UD) fibre composite, predicting its anisotropic stiffness and 
damping properties and their sensitivity to temperature and frequency, using as inputs only the 
measured response of the constituents. The simulations are validated by DMTA measurements on a 
UD composite; then, the numerical predictions are compared to those of previously published 
theoretical models. New equations are proposed to predict the viscoelastic constants, providing better 
accuracy than existing models. The accuracy of these new equations is tested, over wide ranges of 
fibre volume fractions and stiffness ratios of the constituents, against the numerical predictions. 
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1. INTRODUCTION 

Fibre composites are being adopted in automotive and aerospace constructions due to high specific 

stiffness and strength, superior to that of metallic alloys. Composites with a viscoelastic polymer 

matrix also exhibit relatively high damping, compared to metals of similar stiffness, which makes 

them suitable for all components subject to vibrations. There has been growing research to measure 

and predict such damping properties, to allow the design of optimised components. Damping of 

laminates can be increased by incorporation of viscoelastic damping layers in the laminate [1–7], 

however such layers reduce the stiffness, thereby offsetting weight saving. Composite laminae with 

higher intrinsic damping are therefore needed and it is therefore essential to be able to predict the 

viscoelastic response of a UD composite over a range of operating conditions, including different 

temperature and pressure.  Predictions should be performed using as inputs only the measured 

properties of the constituent materials, to allow an assessment of the composite’s response prior to 

manufacturing.  

Damping properties of fibre composites can be tailored by controlling different parameters at both 

microscopic level (constituent materials, fibre volume fraction, fibre aspect ratio) and at laminate level 

(stacking sequence); we refer the reader to recently published reviews on such aspects of the design 

[8,9]. The majority of the research to date has focused on laminate level analyses [10] and specifically 

on the optimisation of composite layups to maximize damping and stiffness, using as an input the 

properties of individual  UD plies and making use of the elastic-viscoelastic correspondence principle 

[11,12]; Adams and co-workers [13,14]  also carried out extensive measurements on the damping 

response of UD fibre composites and laminates. 

     Several studies have analysed the effect of the properties of the constituent materials and of fibre 

volume fraction upon the stiffness and damping properties of a single UD ply, taking analytical 

[15,16], numerical [17–20] or experimental [1,2] approaches to the problem; this is also the purpose 

of the present study. Willway and White [21] and Akay [22] found that existing theoretical models 

under-predict  the measured flexural damping and this was attributed to a relatively low length to 

thickness ratio, inducing shear deformation in the specimen, as well as to frictional losses at the fibre-

matrix interface. Bogren et al. [23] found that theoretical models predict elastic properties with a 

margin of error of order 10% but underpredict the damping properties by more than 60%; again this 

was attributed to frictional losses due to poor adhesion between fibres and matrix. Similar observations 

were made by Shokrieh et al. [24] for the case of glass-epoxy composites. Chandra et al. [25] 

performed a comparative study between FEM and existing  micromechanical models to assess their 

effectiveness, however these results were not validated with experiments. Tsai and Chi [26] and Pathan 
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et al [27]  assessed the effect of different periodic arrangement of fibres on damping and found the 

loss factors to be strongly dependent on the spatial distribution of the fibres. 

     The main drawback of existing research is in the fact that the mechanical properties of the 

constituent materials used in predictions are taken from the work of others or from the manufacturer’s 

datasheets. In addition, only a few existing studies are measuring or predicting the full transversely 

isotropic viscoelastic tensor, but most are limited to selected loading cases. Much of the published 

research investigated either elastic properties or damping properties; comparison of predictions to 

experiments is very often conducted on the response of laminates rather than of single plies, making 

validation of the predictions difficult. Existing experimental studies come to contrasting conclusions 

and measurements of damping of similar materials may differ by up to an order of magnitude. The 

study on the dependence of damping on temperature and frequency has been limited[28], despite 

knowledge of this dependence is needed by design engineers, who also lack simple equations to 

calculate accurately the viscoelastic ply properties.  

     This study addresses all the limitations outlined above. We manufacture, in a controlled laboratory 

environment, thin UD composite plates made from carbon fibres impregnated with an epoxy resin. 

We measured the viscoelastic response of the constituents and that of the UD plates along different 

directions and at different temperatures and frequencies. We then construct random RVEs of the ply 

microstructure employing a previously developed algorithm [27,29,30] which guarantees effectively 

random arrangements of fibres and perform Monte Carlo analyses in the commercial FE solver 

ABAQUS/standard. The numerical predictions are validated by the measurements and are compared 

to a number of existing theoretical models, in order to rank their effectiveness. Finally, we propose 

new equations to make accurate predictions of the viscoelastic properties of UD composites. 

The outline of the paper is as follows: in Section 2 we discuss the manufacturing of the composite and 

the testing methods. Section 3 presents the details of the numerical models, while results are discussed 

in Section 4.  

 

2. EXPERIMENTAL METHODS 

2.1 Material manufacturing 

To manufacture a neat resin panel with minimal air bubbles we used the vertical sandwich panel 

method as described by Figliolini [31]. A mould cavity was created using 250 250 10 mm  heat 

treated glass plates, which were sealed on three sides using a rubber-o ring and toolmakers clamps. 

The inner surfaces of the glass plates were sprayed with multiple coats of a release agent (Freekote 

700NC) to allow for easy demoulding. The resin used was Prime20LV with the slow hardener, due to 
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its low viscosity and longer setting time, to allow manufacturing of void-free thin UD composite 

plates. The resin/hardener was mixed in the suggested ratio and degassed for 15 min at 30 C in a 

vacuum oven. The mixture was then poured in the mould cavity and was allowed to stand for 10 min 

to allow most air bubbles to travel to the top of the plate. The entire assembly was then transferred to 

the oven to cure at 50 °C for 16 hr, according to the manufacturer’s instructions. Beams of size 

50 6 2 mm   were manufactured using a water jet cutter and conventional milling; the specimens 

were stored in a plastic bag with a desiccant to avoid moisture absorption. The glass transition 

temperature (corresponding to a peak of loss factor) was found to be 81 C via a DMTA temperature 

sweep test (soak time of 5 mins, temperature ramp rate of 1 C/min); this value is in good agreement 

with the manufacturer’s value of 82.6 °C.  

     Elastic and damping properties of the T700 carbon fibres employed in this study were measured in 

single fibre tests, following ASTM C1557-14 [32]. Mounting tabs were made from a 200gsm paper 

sheet via automatic cutting. Single fibres were randomly pulled from a bundle using rubber-tipped 

tweezers; they were aligned and mounted on the tabs using a thin layer of a two-part epoxy adhesive. 

The adhesive was allowed to cure for three days, following which the specimens were analysed under 

an optical microscope to measure the diameter. The specimens were tested using a flat-faced tensile 

grips in a DMTA; the gauge length was limited to 30mm due to the limitations of the apparatus. We 

note that the carbon fibres were coated with an epoxy sizing to improve handling characteristics of the 

fibres, however the amount of sizing was 1%  in weight and hence its effect on the overall composite 

property is expected to be negligible. 

     A UD fibre composite plate measuring 300 300 mm  was manufactured using three layers of T700 

fibre fabric (Sigmatex UK, 150 gsm, 12K) and Prime20LV/Slow using the resin infusion under 

flexible tooling method. The panel was cured at atmospheric pressure for 16 hrs at 50 °C, i.e. in 

identical conditions as for the neat resin. In order to determine the fibre volume fraction, void fraction 

and nominal thickness, the cured plate was analysed in an optical microscope; the specimens were 

ground and polished to a surface roughness of 3µm and mounted on a Zeiss optical microscope system. 

High resolution images of regions of size approximately 550 450ȝm  were taken, as in Fig. 1a. These 

were then analysed using ImageJ. The measured fibre volume fraction was 63%, the average fibre 

diameter was 6.77ȝm , with a standard deviation of 0.335ȝm.  Beams of size 50 6 mm  were 

extracted from the plate such that the longitudinal axis of the beam formed angles of 0°, 90° and 45° 

with the carbon fibre direction.  

     The micrograph in Fig. 1a shows a resin region at the top of the composite plate; this represents a 

section of the resin-rich pattern left on the plate by the resin infusion mat used in the manufacturing. 
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This influenced the thickness of the specimen, which was irregular and varied periodically in the plane 

of the plate, measured at an average of 0.32 mm using several micrographs. The resin rich layer on 

average consisted of around 8% of the total specimen thickness. 

  

2.2 Mechanical testing 

Measurements of the stiffness and damping properties of the constituents and the UD composite was 

performed by the forced vibration (non-resonant) technique, making use of a DMTA analyser with 

load capacity of 35 N (RSA-G2 by TA instruments). Isothermal frequency sweeps in the range 0.1-

10 Hz were conducted at three different temperatures (25, 40 and 50°C). The maximum temperature 

was chosen to ensure a linear viscoelastic response of the matrix material, in line with the constitutive 

modelling strategy adopted in this paper; as the glass transition temperature for the resin used was of 

81°C, the test temperature was therefore limited to 50°C. In these tests, after applying a small pre-load 

to the sample, a sinusoidal displacement history of constant amplitude and varying frequency is 

imposed to the specimens, and the amplitude and phase of the resulting sinusoidal force are measured. 

Such measurements allow calculation of the storage and loss moduli of the material, which quantify 

stiffness and viscoelastic dissipation, respectively. The low capacity of the DMTA results in relatively 

small specimen size and, in turn, in the need for very precise manufacturing and positioning of the 

specimens. 

     Tests on the single carbon fibres were conducted in the axial mode, subjecting the fibre to an axial 

tensile force; measurements on the neat resin and on the composite beams were performed in three-

point bending mode, due to the limited capacity of the DMTA. Preliminary experiments showed that 

clamped bending fixtures and simple support by knives provided similar measurements of elastic 

moduli, however clamped bending fixtures provided more repeatable damping measurements, 

especially for the case of the thin composite laminae tested. For simply supported composite laminae, 

any small non-planarity of the specimen or edge defects, as well the coupling between in-plane normal 

and shear strains (for off-axis composite specimens), resulted in rubbing of the specimen against the 

supporting rollers and in a higher and less repeatable measured damping. For this reason clamped 

bending fixtures were preferred in this study. The clamped boundary condition induces stretching 

along the axis of the beam which scales, in first approximation, as  
2

2 / L , where , L  are the 

deflection and length of the specimen; calculating the bending strain field via beam theory, the ratio 

of the strain energies associated to axial stretching and beam bending is  
2

/ / 4H , where H is the 

beam thickness. For the small peak deflections in our tests, this ratio is smaller than 0.1 for the thin 

composite beams (and negligible for the thicker neat resin beams); for this reason axial strains are 
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neglected in the analysis. A correction for the compliance of all loading fixtures was automatically 

performed by the DMTA, making use of factory calibration curves.  

     Tests were performed using the available fixture of maximum span (32mm). This gave a length-

to-thickness aspect ratio for the neat resin specimen of l/t= 16, in accordance with the ASTM D5418 

[33] testing standard for homogenous materials. For the case of fibre composite specimens, the 

corresponding aspect ratio was 50, which is in line with the recommendations of ASTM D790 [34] 

for flexural testing of fibre composites.   

 

2.2.1 Response of the neat resin 

Epoxy beams were first subject to a strain amplitude sweep, to identify the limiting strain amplitude 

to give inelastic deformation. This was done by imposing sinusoidal deflection histories of increasing 

amplitudes on the beams at 1 Hz frequency and until loss of the linear correlation between modulus 

and strain. Subsequently, frequency sweeps were conducted in the range 0.1-10 Hz, with a pre-load of 

1 N and a strain amplitude of 0.04%, chosen to give a maximum deflection well below the linearity 

limit. 

     Five samples were tested at 3 selected temperatures and the response was repeatable within a 10% 

margin; Fig. 2 shows averages of the storage modulus and the loss factor of the matrix measured in 

the DMTA experiments. Note that the loss factor is defined as the ratio between the imaginary and 

real parts of the complex modulus. The storage modulus and loss factor are sensitive to frequency and 

temperature; the modulus increases monotonically with the applied frequency (i.e., strain rate); the 

loss factor decreased with frequency, as expected for viscoelastic materials in glassy region. An 

increase in temperature results, as expected, in a decrease of storage modulus and an increase in the 

loss factor in a non-linear manner. Experimental results of the elastic storage modulus and loss factor 

for neat resin are given in Table 1 for 1 Hz loading frequency at different temperatures. 

 

Table 1: Stiffness and damping properties of neat resin obtained from DMTA testing at different temperatures at 1Hz 

loading frequency 

  25°C 40°C 50°C 

E (GPa) 2.70 2.42 2.22 

E
 % 1.55 1.64 2.18 
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2.2.2 Response of the single carbon fibres 

Both the axial modulus and the axial damping of the T700 carbon fibres were measured, to inform 

numerical models. The longitudinal damping of UD fibre composites is substantially influenced by 

the damping of the fibres, which is often neglected in the literature on the ground that loss factors for 

fibres are typically one order of magnitude lower than those of the matrix. On the other hand the fibres 

occupy the majority of the composite volume and store a very large fraction of the total strain energy 

in the composite. The test method used is unable to measure the radial properties of the fibres; in the 

numerical simulations presented below we shall assume that fibre damping is isotropic, while the 

radial modulus is taken as   10% of the measured axial modulus, following [35–38]. 

     Frequency sweeps were performed in the DMTA in axial mode and at different temperatures, 

following a preliminary strain amplitude sweep test.  The imposed pre-load was 0.08 N, while the 

imposed strain amplitude was 0.1%. Tests were repeated 15 times on different specimens; averages of 

the measurements at 25°C are shown in Fig. 3, where the error bars indicate the measured ranges. The 

mean measured storage modulus  of 225 GPa is in good agreement with the value reported by the 

manufacturer (230 GPa), as well as with measurements from other authors [39]; the scatter in modulus 

was of order 7%. The loss factor of the fibres had mean 0.0033 but showed a greater variation around 

this value, of order 100% as indicated by the error bars in Fig. 3b. 

     It is clear from Fig. 3(a) that the modulus of carbon fibre is scarcely sensitive to the imposed 

frequency in the range investigated. In view of the large scatter observed in the measured loss factor 

of carbon fibres in Fig. 3(b), no definitive trends could be established and hence it was assumed that 

the damping of carbon fibre was insensitive to frequency. Preliminary experiments conducted at 50°C 

showed no difference with measurements at 25°C; this is expected for this material, and in line with 

results in the literature: Saunder et al. [40] found a decrease of less than 5% in modulus at 1000°C 

respect to room temperature, for various types of carbon fibres; Feih and Mouritz [39] found similar 

results up to 500°C for the T700 fibre considered in this study. Given the narrow temperature range 

investigated here, the viscoelastic properties of the carbon fibres will be considered insensitive to 

temperature in the numerical simulations. 

 

2.2.3 Anisotropic response of the UD composite 

The UD composite was tested along three different directions, such that fibres were oriented 

longitudinally, transversely or at 45° with respect to the axis of the beam. Following a strain amplitude 

sweep, frequency sweeps were conducted in the range 0.1-10 Hz, with a strain amplitude of 0.02%. 

Again, testing was performed at temperatures of 25, 40 and 50°C. 
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     Experiments were repeated 5 times and beam theory was used to extract the axial storage modulus 

and loss factor of the material at each orientation. The scatter in these measurements was less than 

15% for the stiffness and less than 50% for the damping properties. Averages of the measurements are 

presented in Figs. 4-9; Figures 4-6 compare the measurements to existing analytical models and 

numerical predictions described below; Figures 7-9 show measurements and numerical predictions of 

the response at different temperatures. As expected it was found that, for all orientations, storage 

moduli increase and loss factors decrease with increasing frequency, as it is visible in Figs. 4-6. 

Conversely, an increase in the test temperature resulted in a decrease of storage moduli and an increase 

in loss factors (see Figs. 7-9). 

 

2.2.5 Data reduction for axial shear modulus 

The in-plane complex shear modulus *

12G  is calculated from the measured complex bending stiffness 

*

xxE  of the off-axis (45°) specimen, using the rule of material property transformation [41] 

 

4 4

* * *

11 22 12

* 2 2 *

12 11

1 cos sin

21

sin cos

xxE E E

G E

 



 

 
  

     (1) 

 

where,  

12
 is the composite Poisson’s ratio (calculated using rule of mixtures) 

*

11
E  Axial complex Young’s modulus 

*

22
E  Transverse complex Young’s modulus. 

  

 

3. NUMERICAL ANALYSIS 

3.1 Generation of the random RVEs 

Virtual microstructures of UD composited were generated using an algorithm based on optimization 

techniques and previously proposed by the authors [29]. In brief, this algorithm allows randomly 

placing a number of fibres, of arbitrary shape, in a stochastic volume element (SVE) of square cross-

section in the isotropic plane. Geometric analysis of the SVEs revealed that the microstructures 

generated are effectively random when their size L is greater than 8 times the fibre radius R, i.e. 

/ 8L R   . Mechanical analysis [27] revealed that in order to obtain predictions of the viscoelastic 

properties insensitive to SVE size, and associated to an intrinsic of scatter less than 5%, it is necessary 
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to enforce / 24L R   . In other words, the minimum size of an RVE [19] is equal to 24 times the 

fibre radius for the case of circular fibres. For this reason in this study we analyse random RVEs of 

size 24  . These RVEs have thickness 4t R  along the fibre direction, as it was previously shown 

in [42] that predictions are insensitive to t for 4t R . The radius of the carbon fibres was taken to as 

6.77 m, as suggested by image analysis of optical micrographs. Example of an analysed RVE of 

0.63f   and 24   is as given in Fig. 1(b). A total of 10 repeated simulations were performed, in 

each case, on different realizations of the microstructure. 

 

3.2 Details of the FE simulations 

Analyses of the response in the frequency domain were conducted with the commercial FE software 

Abaqus/standard  [43], performing periodic steady-state analysis (steady-state direct in the jargon of 

Abaqus). The RVEs were subject to three different harmonic loading cases, i.e. uniaxial stress along 

the fibres and in the transverse direction, as well as axial shear. The macroscopic strains imposed on 

the RVEs were pure sine waves of amplitude arbitrarily set to 0.01 and varying frequencies; the 

analysis allowed calculation of the corresponding macroscopic stress histories; such histories were 

interpreted as phasors and split into two components, in-phase and out-of-phase with respect to the 

imposed strain. The ratio of the in-phase stress amplitude to the corresponding strain amplitude 

provided the values of the storage moduli; similarly, the ratio of the out-of-phase stress amplitude to 

the strain amplitude gave the imaginary (or loss) modulus. 

     The microstructures were meshed using a combination of hexahedral and tetrahedral finite elements 

with linear shape functions (C3D8 and C3D6). A mesh sensitivity study was performed to determine 

the optimal element size in each loading case, to guarantee mesh-insensitive predictions. It is widely 

accepted that periodic boundary conditions (PBC) are the most appropriate boundary conditions to 

analyse a geometrically periodic RVEs [44,45] and PBCs are imposed on the domains analysed here, 

following, e.g., [46] or [42]. Loading was applied by imposing nodal displacements on appropriate 

dummy nodes via the method of macroscopic degrees of freedom, as introduced by Michel et al. [47] 

and used by Tucker and Liang [48]. A steady-state dynamic analysis in the frequency domain was 

performed and allowed calculation of the corresponding stress histories, from which real and 

imaginary components of the stiffness matrix were extracted from resultant forces at the dummy 

nodes. 

     For a linear viscoelastic solid, the shear and volumetric response are independent and characterized 

by the complex shear and bulk modulus, * *andG K , or equivalently by the shear storage modulus 
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' ,G  the corresponding shear loss factor 
G , the bulk storage modulus 'K  and the volumetric loss factor

Kn , where the following identities hold 

    * ' * '1 ; 1G KG G i K K i     .  (2) 

    Due to lack of availability of independent characterization of matrix in shear mode of deformation, 

the matrix was modelled as isotropic viscoelastic solid and the damping response was assumed to be 

same in both dilation and shear i.e.  m m

K G  . However, the true viscoelastic behaviour of the resin 

is expected to lie somewhere in between the two extreme assumptions of (i) same damping in dilation 

and shear and (ii) viscoelastic only in shear and elastic in dilation  m m

G K  . In order to study the 

effect of this assumption on the homogenized macroscopic properties, we performed two additional 

simulations on same microstructure, each modelled with the above mentioned assumption. We find 

that the homogenized elastic properties as well as the axial loss factor  11  are insensitive to this 

assumption. However, we obtain on average 20% higher prediction of the axial shear loss factor  12  

and 8% lower prediction of the transverse loss factor  22 of the composite for the assumption of 

 m m

K G   as compared to  m m

G K  . Hence, it is expected that compared to the true material 

property of resin, current modelling technique will lead to higher (lower) predictions for 12 22  . 

 

The frequency and temperature dependence of the matrix was explicitly modelled by providing 

frequency- and temperature-dependent modulus and loss factors, according to the measurements in 

Fig. 2. Three sets of simulations were performed imposing a uniform temperature field of 25, 45 and 

50 °C, as in the experiments. The Poisson’s ratio of the polymeric matrix was taken as 0.38m   based 

on literature [49,50] and was assumed to be independent of temperature and frequency for the given 

testing range. To determine the sensitivity of the numerical macroscopic predictions on the assumption 

of constant matrix Poisson’s ratio, we performed two simulations on the same microstructure 

considering two ‘extreme’ values of matrix Poisson’s ratio of 0.32 and 0.45, at 25 °C. We found that 

the predictions of homogenized elastic moduli (loss factors) were higher (lower) for higher matrix 

Poisson’s ratio, with 18% and 7.8% higher predictions for the case of transverse Young’s moduli and 

axial shear moduli, respectively and 10.7% and 1% lower predictions of the transverse and in-plane 

shear loss factors, respectively. However, in the current study we only examine narrow ranges of 

temperature and frequency, in which the matrix Poisson’s ratio is only expected to only increase by 

5% in the frequency range of 0.1-10 Hz [51,52]. With regards to temperature dependence, appreciable 
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variations in the matrix Poisson’s ratio are only seen in the vicinity of glass transition temperature 

[53], which in current study is 82 C, while maximum testing temperature is 50 C. Hence, it is 

concluded that the assumption of constant matrix Poisson’s ratio scarcely affects numerical predictions 

in this study. 

 

     In this study we take into account the damping of fibres by modelling them as transverse isotropic 

elastic solid with isotropic damping (i.e. 11 22 12 23       in the usual notation). The measured axial 

fibre modulus is used to calibrate the constitutive model; due to difficulties in measuring the transverse 

Young’s modulus of carbon fibre, '

22 fE was taken as 25 GPa i.e. (10%  '

11 fE ) with '

23 9.62 GPafG 

and 12 0.2f  . In absence of consensus on the axial shear modulus of carbon fibre in literature, we 

used a value of '

12 40 GPafG  based on inverse modelling to fit elastic predictions of the numerical 

model to the experiments. The above mentioned fibre elastic properties are assumed to be independent 

of temperature and frequency. As there is no support for anisotropic viscoelastic constitutive response 

in Abaqus, we developed a UMAT (user material interface) to implement linear viscoelasticity in the 

frequency domain. The UMAT was validated by performing uniaxial stress tests (along different 

directions) on a single C3D8 finite element. We omit here the details of the implementation of this 

subroutine for the sake of brevity.  

 

4. RESULTS AND DISCUSSION 

In this section we compare the DMTA measurements to the numerical predictions and to a number of 

established theoretical models. Several theoretical approaches have been proposed to date to predict 

the viscoelastic properties of fibre composites. Here we choose to assess the following models: (i) a 

direct rule of mixture (ROM), or Voigt bound [54], based on the assumption of equal strains in the 

fibres and in the matrix; (ii) an inverse rule of mixtures (IROM), or Reuss bound [55], derived upon 

assuming equal stress in fibres and matrix; (iii) upper and lower bounds developed by Hashin [56] and 

Hill[57] (denoted as (Hashin+, Hashin- in the following, respectively); (iv) a model developed by Mori 

and Tanaka[58] (denoted as Mori-Tanaka) based on the Eshelby’s result for dilute strain-concentration 

tensor [59] and the assumption that the far-field strain equals the average strain in the matrix, and (v) 

a model developed by Lielens (Lielens, [60]).  

     We begin by considering measurements and predictions of the response to frequency sweeps at a 

temperature of 25°C; then, we examine separately the effects of an increasing temperature on the 

material response. We stress here that in the following we provide ensemble averages of the FE 

predictions; the scatter in these predictions did not exceed 5%, as discussed in Section 3.1. 
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4.1 Anisotropic viscoelastic response of UD composite ply at 25°C 

Measurements and numerical predictions of the material response at 25°C and frequency in the range 

0.1-10 Hz are presented in Figs. 4-6. The figures include theoretical predictions from the models 

detailed in Section 4. Figure 4 refers to loading in the fibre direction (or direction 1); the axial storage 

modulus (fig. 4a) is scarcely dependent upon frequency and temperature in the ranges explored, as 

expected, and in good agreement with the FE simulations and all theoretical predictions shown in the 

figure. The corresponding measured axial loss factor (Fig. 4b) shows significant scatter and appears 

scarcely sensitive to frequency; the simulations agree with all the theoretical models shown, but appear 

to underestimate the loss factor with an error of around 15-20%. 

     We anticipate that for all load cases the measured loss factors of the UD composite will be slightly 

higher than the corresponding numerical predictions. We recall that, in the real tests, other dissipative 

mechanisms exist, in addition to the internal viscosity of the material, and these cause an increase of 

the apparent measured material damping; such mechanisms are the interaction of the specimen with 

the surrounding air [61] and the loading fixtures. The order of magnitude of the energy dissipated by 

aerodynamic forces can be calculated by simple considerations and it can be shown to be negligible, 

compared to the material dissipation. On the other hand friction between the loading fixture of the 

DMTA and the material specimens can be considerable, in consideration of the very small volume of 

the composite specimens, but is difficult to quantify. The discrepancy of 15-20% between predicted 

and measured damping is small compared to previously published studies. We conclude that our 

simulations predict correctly the axial loss factor.  

     The results for transverse loading are presented in Fig. 5. The measured storage modulus in 

direction 2 is in excellent agreement with the numerical predictions (Fig. 5a). In contrast, none of the 

theoretical models provides effective predictions of the transverse modulus; experimental results lie 

roughly mid-way between the predictions of the Lielens and Mori-Tanaka models. The measurements 

of transverse loss factor show significant scatter and are scarcely sensitive to the imposed frequency. 

The corresponding numerical predictions are in good agreement with the measurements (again, the FE 

simulations slightly underestimate the measurements) while again the theoretical models fail to predict 

accurately this material property; the Mori-Tanaka model provides the most accurate predictions. 

     For the case of the axial shear modulus, shown in Fig. 6a, we find that the experiments are again in 

broad agreement with the FE predictions, while the theoretical models fail to estimate the transverse 

storage modulus; both measurements and FE predictions show clear frequency dependency, with the 

modulus increasing with frequency. The measured sensitivity to frequency is higher than that predicted 

by the FE simulations; this may be a consequence of the fact that epoxy exhibits higher strain rate 

sensitivity in shear as compared to tension [62], while the input data used to calibrate the constitutive 
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model for the matrix was obtained from bending tests. Figure 6b presents predictions and 

measurements of the axial shear loss factor; the experiments are in good agreement with the FE 

predictions. The Reuss bound, the Hashin’s lower bound and the Mori-Tanaka model provide 

reasonably good results, while Lielens model underestimates the loss factors. The measurements and 

the FE predictions show a decreasing shear loss factor with increasing frequency. 

 

4.2 Effect of temperature on the anisotropic viscoelastic response. 

We proceed to examine the sensitivity of the measurements and FE predictions to temperature, by 

comparing the average measurements to the ensemble averages of the FE predictions in Figs. 7-9; the 

predictions of theoretical models are not included in the figures for the sake of clarity. 

     For the case of axial loading we find that FE predictions and measurements of the axial storage 

modulus (Fig. 7a) are in broad agreement; however the FE predictions are insensitive to temperature 

and frequency, while the measurements show a small sensitivity to temperature (with the storage 

modulus decreasing with increasing temperature). Similar results are observed for the corresponding 

loss factor, shown in Fig. 7b. 

     The sensitivity of axial viscoelastic properties to temperature is unexpected, as the axial response 

is dominated by fibre properties, which are known to be insensitive to temperature in the range 

explored. The measurements shown in Fig. 7a were conducted by clamping the specimens when both 

specimens and fixtures were at the correct test temperature; this practice reduced the sensitivity of the 

measured modulus to the test temperature. The measured sensitivity to test temperature was due to the 

presence of a resin-rich, irregular layer on the surface, as shown in in Fig. 1a. Additional simulations 

were performed to investigate this further, details of which are given in Appendix A; in brief, the 

presence of the layer resulted in a lower measured stiffness and higher measured damping.  

     For the case of transverse loading (Fig. 8), the FE simulations effectively predict the observed 

dependence of the response on temperature and frequency. The experiments show a sensitivity to 

temperature slightly higher than that predicted by the FE simulations, however measurements and 

predictions are in good agreement.  

     In Fig. 9 we report measurements and predictions of the shear modulus and corresponding loss 

factor at different temperature and frequencies. Again the FE simulations capture correctly the effects 

of frequency and temperature observed in the experiments. A comparison of the numerical and 

experimental results is provided in Table 2 for the case of 1 Hz loading frequency and different 

temperatures. 

 

 



14 

 

Table 2: Comparison of experimental results and numerical predictions of the anisotropic viscoelastic response of UD CFRP 

at 1 Hz frequency at 25, 40 and 50°C. 

  25°C 40°C 50°C 

  Numerical Experimental Numerical Experimental Numerical Experimental 

11
E  (GPa) 140.75 138.64 141.21 136.64 140.84 133.00 

22
E  (GPa) 9.24 9.22 9.13 8.99 8.87 8.68 

12
G  (GPa) 4.74 5.17 4.53 4.72 4.37 4.63 

11
 % 0.338 0.357 0.339 0.298 0.342 0.423 

22
 % 1.05 1.18 1.15 1.45 1.47 1.71 

12
 % 1.51 1.72 1.59 2.08 1.92 2.24 

 

 

4.3. New equations to predict the viscoelastic properties of a composite lamina 

The FE predictions conducted in this study are in broad agreement with the measurements on a 

composite of fibre volume fraction 0.63. We have also shown, in Section 4.1 and Figs. 4-6, that none 

of the theoretical models examined provides accurate predictions for all viscoelastic properties. In this 

section we propose a new model to allow calculations of the viscoelastic properties with improved 

accuracy, using as input the properties of the constituent materials. 

     The existing theoretical models which better captured the measured response were Mori-Tanaka 

and Lielens. We recall that while Mori-Tanaka is physically-based, the approach of Lielens [60] is to 

conduct a simple weighted averaging of the results of the Mori-Tanaka model [58] and of the Inverse 

Mori-Tanaka Tanaka model [27]. If the complex stiffness tensors predicted by the Mori-Tanaka (MT) 

and Inverse Mori-Tanaka models are denoted by *

( )MTC  and *

( )IMTC , respectively, Lielens proposed a 

complex stiffness tensor calculated as 

    * * 1 * 1 1

( ) ( )[(1 ) ]LIELENS f MT f IMTC f C f C        (3) 

where  ff   is a non-dimensional weighting function of the fibre volume fraction, f . Based on the 

observation that experimental results tend to be closer to Mori-Tanaka model for low fibre volume 

fractions, while approach the Inverse Mori-Tanaka model at higher volume fractions, Lielens assumed 
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2( ) ( ) / 2f f ff     ; this choice however is not effective for the material investigated here. We 

therefore propose to use a different weighting function of general form 

  
1

1 n
i

f f

i

f
n

 


    (4) 

We note that for 2n   this equation coincides with that proposed by Lielens (eq. (4)). 

     We proceed to find the optimal value of n which yields predictions in line with the validated FE 

calculations presented here, over a wide range of volume fractions. To do this we perform additional 

simulations on RVEs of different volume fractions, in the range 0.2-0.7. For simplicity we consider a 

single temperature and frequency, arbitrarily chosen as 25 °C and 1 Hz, respectively. Ten repeated FE 

simulations are conducted and ensemble averages of all predicted viscoelastic properties are shown as 

a function of the volume fraction in Figs. 10-12, for the 3 loading cases investigated. The figures 

include our measurements, for reference, and the theoretical predictions of the Lielens and Mori-

Tanaka models. After a curve-fitting exercise on the data of Figs. 10-12, we find that the choice 5n   

provides a better fit through the results of FE predictions, for all loading cases. This corresponds to a 

complex stiffness tensor calculated as 

 

1
5 5

* * 1 * 1

( ) ( )

1 1

1 1
(1 )

5 5

i i

TP f MT f IMT

i i

C C C 



 

 

  
    

  
    (5) 

     The proposed *

TPC  tensor accurately predicts all viscoelastic lamina properties for the UD 

composite examined in this study. We proceed to investigate if this accuracy is maintained as the 

material properties of the constituents change; in particular we explore the effect of the contrast in 

stiffness of the constituents,' '/f mE E , as this is known to lead to increased RVE size [63] and to 

decreased accuracy of certain theoretical models [64].

     We perform additional simulation exploring the range' '/ 1 1000f mE E   . We consider 0.6f   

and cylindrical isotropic elastic fibres of properties 1fE   GPa and 0.2f  ; the matrix is modelled 

as an isotropic viscoelastic solid with storage modulus '

mE  of 1, 0.1, 0.01, 0.001 GPa; the loss factor 

of the matrix m  is given corresponding values of 0.001, 0.01, 0.1,1, respectively. Note that the mesh 

sensitivity studies were repeated for this set of simulations, due to the different contrast in material 

properties. The FE predictions are summarised in Fig. 13 for the case of transverse and shear loading; 

the case of axial loading is omitted because it is trivial (in the sense that all theoretical predictions 

coincide with the FE predictions, as in Figs. 4 and 10). It is clear that over the 3 orders of magnitude 
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investigated for the stiffness contrast' '/f mE E , the proposed model (eq.(5)) effectively predicts the 

results of FE simulations, independently of the choice of viscoelastic properties of the constituent 

material. The experimental validation of the proposed analytical model over a given range of fibre 

volume fraction is left for a future study. 

 

5. CONCLUSIONS 

Measurements and FE predictions of the anisotropic viscoelastic response of a UD carbon composite 

were presented and compared in this study; predictions are found to be in broad agreement with the 

experiments. The predictions inspired the construction of new simple equations to provide accurate 

values of the full set of viscoelastic properties of the UD composite. The concluding points of this 

study are follows: 

 In all load cases, the macroscopic material stiffness increases with increasing imposed frequency and 

decreases with increasing temperature. Conversely, material damping decreases with increasing 

frequency and increases with increasing temperature. The axial modulus and corresponding loss factor 

are scarcely sensitive to frequency and temperature for the carbon fibre composite considered here. 

 Conducting Monte Carlo analysis of repeated FE simulations of the response of a random RVE was 

shown to be an effective method to predict the viscoelastic lamina properties at different frequency 

and temperature. Predictions of elastic properties are more accurate than those of loss factors, which 

are lower than measurements. The model was calibrated using exclusively the measured responses of 

the constituent materials and did not include any dissipation at the fibre-matrix interface, suggesting 

that this dissipation is not an important contributor to the loss factors of this CFRP lamina, in the range 

of frequency and temperatures investigated.    

 Several established theoretical models were tested against the experiments and the numerical 

predictions conducted in this study, and their accuracy was ranked. New equations were formulated 

to conduct accurate predictions of all the viscoelastic lamina properties of UD composites. These are 

expected to aid prototyping, design and optimisation of components made from fibre composites. 
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APPENDIX A.  

Effect of a resin-rich layer on the specimens’ surface 

An uneven resin-rich region was observed on one side of all composite specimens, as shown in Fig. 1; 

the mean thickness of this layer was 8% of the total thickness. This was due to the presence of resin 

infusion mat and peel-ply during composite manufacturing. Here we quantify the effect of presence 

of such layer by explicitly modelling the DMTA experiments conducted via FE simulations. 

We simulate steady state vibrations of fully clamped beams, for a single frequency of 1 Hz and with 

displacement amplitude of 0.2 mm, as in the experiments. Two types of specimens are considered in 

the FE simulations: (a) a homogeneous CFRP beam with a fibre volume fraction of 0.63 and (b) a 

CFRP beam of fibre volume fraction 0.68 adhered to  a resin layer on the top surface, of 8% of the 

total thickness, as in the micrographs of Fig. 1.  

The anisotropic viscoelastic constitutive response of the composite is modelled via a UMAT 

subroutine, similar to the UMAT used to model anisotropic viscoelastic response of single CF fibres 

considered in this study; the resin-rich layer is modelled by the same technique used in our Monte 

Carlo simulations of the response of RVEs. The viscoelastic properties of the uniform composite beam 

( 0.63
f
v ) are taken from the Monte Carlo simulations of RVEs of the same volume fraction; to obtain 

the properties of the composite layer with volume fraction 0.68 we use the analytical model proposed 

in this paper (this is to avoid repeating our computationally expensive Monte Carlo simulations). Two 

orientations of the composite layers were considered, with fibres oriented longitudinally or 

transversely to the beam span. 

Two different types of boundary conditions were considered: in a first set of simulations only the free 

length of the beams was modelled, with the clamped conditions imposed by restraining the 

displacements of the beam’s ends. In a second set, the clamps, of width 6 mm, were explicitly 

modelled as pairs of rigid plates making contact with the top and bottom surface of the beam; such 

contacts were modelled as tie constraints. 

For the ‘smeared’ composite beams of volume fraction 0.63, the predictions of the Monte Carlo 

simulations were recovered. The simulations on the inhomogeneous beams provided different values 

of elastic moduli and loss factors; the percent differences between such simulations and the Monte 

Carlo analyses are given in Table A1. 
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TABLE A1: Summary of FE clamped beam bending analysis of homogenous CFRP beams and CFRP beams with resin rich 

layer on top, for different fibre orientations, temperatures and modelling techniques. 

  0° CFRP Orientation 90° CFRP Orientation 

T 
Re sinCFRP CFRP

CFRP

RF RF

RF

  
Re sinCFRP CFRP

CFRP

 
Re sinCFRP CFRP

CFRP

RF RF

RF

 
Re sinCFRP CFRP

CFRP

 

  
Without 

clamps 

With 

Clamps 

Without 

Clamps 

With 

Clamps 

Without 

Clamps 

With 

Clamps 

Without 

Clamps 

With 

Clamps 

25°C  -12.21% -10.88% 0.58% 163.09% -4.19% 2.26% -1.28% 22% 

40°C -14.83% -14.92% 0.93% 189.14% -9.87% -9.45% -1.97% 24% 

50°C -17.35% -14.91% 1.57% 256.73% -8.33% -10.72% -0.42% 26% 

*RF = Reaction Force, subscripts CFRP+Resin denote beams with CFRP and resin-rich layer on top. 

 

For the case of elastic properties (represented by RF in Table 1a) both simulations (with and 

without rigid clamps modelled) give e similar results, with a maximum discrepancy in modulus 

of -17%. However for the case of corresponding loss factor, we found that simulations 

considering the clamps predicted a much larger discrepancy, due to the high additional 

dissipation, in shear, of the complaint resin-rich region sandwiched between the rigid clamps 

and the stiff composite beam. The maximum differences between the two simulation 

approaches are found at high temperature and in the longitudinal directions. FE simulations 

predict higher loss factors in presence of the resin-rich layer. These trends are in line with the 

observations in Figs. 4-9 and indicate a broad agreement between DMTA measurements and 

FE predictions.  
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