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Abstract13

Wilting point is an important parameter indicating the inhibition of plant transpiration processes,14

which is essential for green infrastructures. Generalization of wilting point is very essential for15

analyzing the hydrological performance of green infrastructures (e.g. green roofs, biofiltration16

systems) and ecological infrastructures (wetlands). Wilting point of various species is known to be17

affected by the factors such as soil clay content, soil organic matter, slope of soil water characteristic18

curve at inflection point (i.e., s index) and fractal dimension. Therefore, its practical usefulness forms19

the strong basis in developing the model that quantify wilting point with respects to the deterministic20

factors. This study proposes the wilting point model development task based on optimization21

approach of Genetic programming (GP) with respect to the input variables (soil clay content, soil22

organic matter, s-index and fractal dimension) for various type of soils. The GP model developed is23

further investigated by sensitivity and parametric analysis to discover the relationships between24

wilting point and input variables and the dominant inputs. Based on newly developed model, it was25

found that wilting point increases with fractal dimension while behaves highly non-linear with26

respect to clay and organic content. The combined effect of the clay and organic content was27

found to greatly influence the wilting point. It implies that wilting point should not be28

generalized as usually done in literature.29

Keywords: Wilting point; soil fractal dimension; s index; clay content; organic matter; evolutionary30

algorithms31
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1. Introduction32

The wilting point (șpwp) is the soil moisture below which transpiration process tends to inhibit.33

It is usually estimated as the moisture content at a soil matric potential of -1500 kPa (Hillel,34

1971). It is one of the important parameters for design and analysis of crop performance35

especially under drought conditions [1-3]. Understanding of șpwp is one of the essential input36

functions, which is often used in interpretation of behavior of crop water consumption [4-6].37

Furthermore, the knowledge of șpwp are is fundamental in analyzing the hydrological38

performance of green infrastructures for stormwater management (e.g. green roofs,39

biofiltration units) and ecological infrastructure (wetlands). The soil-water characteristics40

influence the evapotranspiration (ET) in green infrastructures which regulates their41

hydrological performance by regenerating the retention capacity of the system [7, 8]. Actual42

ET rates fall exponentially in proportion to the substrate’s plant accessible moisture content43

limited by șpwp [9].  șpwp not only depends on plant species but also on soil characteristics44

such as fractal dimension (Ds), soil S index (slope of soil water characteristic curve (SWCC)45

at inflection point), clay content (C) and organic content (OM) [10-11]. This is because any46

changes in these soil properties could alter the soil-water relations and hence behavior of47

plant at wilting point (soil moisture) [12-13].48

49

Several researchers have studied wilting point and its estimation from other soil parameters50

[14-15] explored relationships of wilting point with the soil parameters. However, the51

approach used was traditional linear regression approach which relies on the statistical52

assumptions. This approach however, may not be able to take into account the interaction53

effects of parameters such as Ds, S index, C and OM on șpwp, in the model. Alternatively, the54

intelligent data-driven methods such as genetic programming (GP), artificial neural network,55
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support vector regression have achieved tremendous popularity [16-19] in developing the56

models in uncertain process behavior. These methods takes in the data of the input-output57

form and produces a model that predicts the output reasonably well.58

59

Among these methods, the GP algorithm produces the explicit models that represents a60

function between the output and inputs of the process [20, 21]. Therefore, it would be61

interesting to explore the competency of the GP algorithm in modelling wilting point (șpwp)62

of the soil. In this study, the GP approach is proposed to formulate the relationship between63

șpwp, and Ds, S index, C and OM. The data for all the five parameters is obtained (with Ds64

estimated) from the experiments. This data is then input into the framework of GP to produce65

the wilting point model. The statistical metrics indicating the performance of the model is66

evaluated. The relationships between (șpwp) and each of the input is revealed by the67

sensitivity and parametric analysis on the best GP model. The complete statistical analysis is68

then used to check if the understanding obtained from the numerical analysis is in line with69

experimental study.70

71

2. Soil properties and wilting point for various soils72

In this study, șpwp, Ds, S index, clay content (C) and organic content (OM) were collected or73

estimated from several comprehensive databases [21 - 25]. This includes a total of 161 data74

sets to be analyzed. Ds was estimated from the fractal model proposed in [26] as shown in75

Eq.(1).76

݅ߠ = ߶ ൬߰ܽ݁݅߰ݒ ൰ݏܦെ3
(1)77
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Where, ࢥ is the soil porosity, Ds is the fractal dimension,  și is the water content, ȥaev is the78

air entry value (kPa), and ȥi is the matric potential (kPa) at the ith time step of the79

measurement. Using the Laplace equation (relation between matric potential and pore radius80

of soil; e.g. ȥi ĝ1/ri and ȥaev ĝ1/rmax), Eq. (1), with Ds as the surface fractal dimension,81

represents the scaling of pore sizes retaining water at a certain capillary pressure. The82

relationship is represents the fractal version of Brooks and Corey model [27] (refer to Eq. (2))83 ݏߠߠ = ൬ ݒ݁ܽ߰߰ ൰െߣ
(2)84

Using correlation (Ȝ=3-Ds) of Ȝ and Ds proposed by Tyler and Wheatcraft [28], the value of85

surface fractal dimension was calculated for various soils using equations 1 and 2 and other86

parameters (șpwp, ȥaev and Ȝ) various databases selected in this study. Table 1 summarizes the 87

statistics of both input parameters (Ds, S index, clay content and organic content) as well as88

output parameter to be modeled (șpwp).89

90

Total of 60 data samples were obtained from this study. The four inputs/factors considered91

are fractal dimension (Ds) (x1,%), S-index (x2, unitless), clay content (x3,min), organic content92

(x4) and the output considered is wilting point (șpwp). Fig. 1 shows the nature of93

measurements of wilting point of soil. Higher variations of the data from Fig. 1 show that the94

wilting point data is inhibited with non-linearity because it is influenced by the several input95

factors. Fig. 2 shows the distribution (mean, median, maximum and minimum) of the four96

inputs and the wilting point. This accounts for higher non-linearity and interaction effect in97

the data. Choosing the appropriate training data set is important for faster and good learning98

capability of the GP approach. Therefore, based on the understanding of preliminary studies99

[20], the authors have applied 20-fold cross-validation algorithm for the generation of100

random 20 training and corresponding 20 test data sets [20]. This algorithm is well known for101
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dividing the data set into training (75%, 40 samples) and testing in such a way that the102

samples considered for training are inside domain of the test data set. The formulated wilting103

point model is then tested on the remaining 20 testing samples to determine the robustness in104

its prediction values.105
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Fig. 1 Line plot showing the nature of wilting point measurements107

108

109
Fig. 2 Distribution of experimental comprising of inputs and wilting point110
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3. Design of Genetic programming based wilting point model (GP_W)112
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This manuscript introduces evolutionary framework of Genetic programming (GP) (Fig. 3).113

The mechanism of GP is in very much line with GA except for the fact the solutions in GP114

are entire model structure whereas in GA the solutions are coefficients of the model. The115

following steps are listed for implementation of GP [28].116

117

Steps:118

1. The parameters of GP are set before its implementation. Parameters such as functional119

set consisting of airthematic operations and non-linear functions, terminal set120

consisting of the four inputs, population size also referred as a number of models,121

number of generations defined as the completion time for the iterations/evolutionary122

process to stop, fitness function defined as the error/objective function of the models,123

probabilities of genetic operations (reproduction, crossover and mutation), depth of124

model (size) and threshold error.125

2. The initial generation/population of models is produced by combining the elements126

from the functional and terminal set randomly.127

3. The objective/fitness function used to evaluate the error of these models against the128

experimental data is structural risk minimization (SRM) principle. SRM objective129

function also takes into account the complexity of the models along with empirical130

error and punishes the objective value. In this way, the local convergence is avoided.131

The objective function SRM used is as follows:132
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where g is number of nodes of the model during evolutionary stages of GP, SSE is134

the sum of square of error of the generated model on the training data and N is the135

number of training samples.136

4. Checking of the model performance against the stopping criterion (threshold error and137

maximum number of runs). If it meets the criterion, the best-fit model will be chosen138

according to the minimum training error. Otherwise, step 4 is implemented.139

5. Ranking of models and tournament selection for the selection of models for genetic140

operations. Size of tournament considered in this work is 6.141

6. Genetic operations such as subtree crossover, subtree mutation and reproduction with142

probability of 85%, 10% and 5% are applied to produce new population.143

67Step 3 is again checked and if it satisfies the stopping threshold criterion, the best-fit144

model will be chosen according to the minimum training error. If it is not satisfied, then145

the subsequent steps from Step 4 are implemented.146

The effective implementation of GP algorithm depends highly on the settings of the key147

parameters such as population size, number of generations and runs, maximum depth of the148

model, probabilities for genetic operations. In this work, based on sufficient number of the149

data samples, the population size of 300, number of generations and runs at 120 and 10150

respectively, maximum depth varying from 6 to 8 and probabilities of 0.85, 0.10 and 0.05 for151

cross-over, mutation and reproduction respectively.152
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The algorithm is implemented in MATLAB R2010b and the best model for the each data set153

is selected based on the minimum training error. Fig. 4 shows the relation between the mean154

absolute percentage error (MAPE) of the best GP models for each of the 20 training data sets155

and its corresponding complexity (number of nodes and depth). From Fig. 4, it is clear that156

the lowest MAPE was achieved for the complexity measuring the number of nodes 42 and157

depth 8 of the GP model for data set 9. Fig. 5 shows the bar plot of MAPE of the best GP158

model for each on the 20 training data sets. From Fig. 5, the data set corresponding to number159

9 have lowest training MAPE of 3.79 and therefore the best GP model (GP_W, Equation 4)160

corresponding to this data set is chosen for the analysis.161

162

Fig. 3 Flowchart showing a stepwise process of GP163

164
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Wilting Point (%)GP (GP_W) = -0.18771+(-0.0034925)*((sin(sin(x3)))-173

(x3))+(0.053496)*(sin(cos(x4)))+(0.018368)*(cos(plog(((x4)-(x2))-174

(cos(x2)))))+(0.0049484)*((tan((x4)-(cos(x2))))-(sin(x2)))+(-0.028685)*((plog(sin(plog((x4)-175

(x3)))))+(x2))+(0.0022124)*((x4)*((x4)-(cos(x3))))+(-0.00020903)*(tan((x4)-176

(cos((11.133678)))))+(0.057332)*(x1); (4)177

where x1, x2, x3, and x4 are the Fractal dimension, S-index, clay and organic content respectively.178

179

4. Analysis of the GP based wilting point model180

In this section, the performance analysis of the GP based wilting point model (Equation 4) is181

evaluated against the experimental data as discussed in Section 2. The four performance182

measures used to evaluate the performance of GP model is given by Equations A1 to A4 in183

the appendix.184

Table 1 clearly shows that the GP based wilting point model corresponding to data set 9 have185

very good training accuracy with coefficient of determination of 0.97 and lower values of186

MAPE of 3.79, RMSE of 0.007 and MO of 5.32. This shows that 40 training data sets were187

sufficient to train the GP algorithm effectively. Similarly, on the testing data the GP based188

wilting point model have shown higher generalization performance with coefficient of189

determination varying of 0.98 and lower values of MAPE, RMSE and MO. Table 2 shows the190

actual wilting point values, predicted wilting point values and relative error (%) of the GP191

model on the testing data. The curves of the predicted and actual values is shown in Figs. 6a-192

c. This clearly shows that the actual values of wilting point obtained experimentally is very193

close to those obtained from the GP based wilting point model. Fig. 7 shows the distribution194

of the relative error (%) of the model with respect to the entire data set. From Fig. 7a and b, a195

less variation of the testing error and the difference of mean of training and testing error is196

noticed, which indicates the good generalization ability of the model.197
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Further, the goodness of the fitness tests for the model is performed by t-test for the mean and198

f-test for the variance. P-values (Table 3) obtained more than 0.05 indicates that the199

predictions obtained from the GP based wilting point model is not significantly different from200

those obtained from experimental set-up.201

Based on the statistical analysis conducted, it can be concluded that the GP based wilting202

point model is able to generalize the wilting point values satisfactorily under variation of the203

four inputs. The following section will discuss about the procedure for obtaining the204

relationships between the wilting point and the four inputs from the GP model.205

Table 1 Statistical metrics of the GP based wilting point model206

R2 RMSE (%) MAPE (%) Multi-objective error

(MO)
Models Training

phase

Testing

phase

Training

phase

Testing

phase

Training

phase

Testing

phase

Training

phase

Testing

phase

Tool life (min)

GP 0.97 0.98 0.007 0.004 3.79 1.94 5.32 1.98

207

Table 2. Actual, predicted and relative error of the GP based wilting point model208

No. Actual GP_W RE (%)

1
0.25

0.24734
1.064075

2 0.26 0.273216 5.083243

3 0.26 0.26589 2.265551

4 0.28 0.266464 4.834374

5 0.28 0.270066 3.547805

6 0.28 0.260172 7.08151

7 0.29 0.29645 2.224198

8 0.31 0.301593 2.711853

9 0.31 0.30859 0.454847

10 0.08 0.082164 2.704742

11 0.08 0.082187 2.734312

12 0.08 0.08885 11.06266
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13 0.09 0.090368 0.408337

14 0.11 0.104107 5.357142

15 0.11 0.109023 0.888515

16 0.22 0.226481 2.945915

17 0.24 0.240761 0.31696

18 0.25 0.251483 0.593363

19 0.26 0.253844 2.367526

20 0.11 0.104995 4.550035

209
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Fig. 6 Curves showing the correlation of actual and predicted values of GP based wilting point model214
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215

(a) (b)216

Fig. 7 Distribution of relative error (%) of the GP based wilting point model across the data217

218

Table 3. Goodness of fitness tests of the GP based wilting point model219

95%CI

p-value

GP

Mean paired t-test 0.56

Variance F-test 0.90

220

5. 2-D and 3-D plots for main and interaction effect from the Wilting Point model221

This section discusses the parametric and sensitivity analysis procedure for evaluating the222

main and interaction effects of the four inputs (fractal dimension, S-index, clay content and223

organic content) on the GP based wilting point model. The detailed mathematical procedure224

for the parametric and sensitivity analysis is discussed in an empirical study conducted in225

[20].226

For measuring the main effects, each of the four inputs is vary from its minimum to227

maximum value. During this procedure, on varying one input, the other three inputs are kept228

constant at their mean level. The wilting point values are then computed from the model. The229

2-D plots in Fig. 8a shows the main effects obtained for the wilting point with respect to each230
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input, provided the other inputs are at their mean values. It clearly shows that the wilting231

point increases with an increase in fractal dimension and behaves highly non-linearly with232

respect to clay and organic content. There was hardly any change in wilting point noticed233

with respect to S-index. For measuring the interaction effect between the two inputs, the same234

procedure as for measuring the main effect is followed except that in this, the two inputs are235

varied at once from its minimum to maximum values. The remaining two inputs are kept236

fixed at their mean level. 3-D plots shown in Fig. 8b indicates that the combined effect of237

clay and organic content produces higher variations in wilting point followed by combined238

effect of pairs ((clay content and fractal dimension) and (organic content and fractal239

dimension)). Hardly, any variations in the wilting point were noticed for the combined effect240

of S-index and other inputs.241
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245

246

247
(b)248

249

Fig. 8 2-D and 3-D plots showing the relationships of the wilting point with respect to each of the250

input251

252

Further, the sensitivity analysis (Fig. 9) measuring the amount of impact of inputs on the253

wilting point is conducted on the wilting point model. This is done by finding the maximum254

and minimum from 2-D plots (Fig. 8a) and the number of peaks from 3-D plots (Fig. 8b). It is255

found from Fig. 9 that the clay content influence the wilting point the most followed by256
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organic content, fractal dimension and S-index. This interpretation from the sensitivity257

analysis is also in line with the findings from the parametric analysis. Thus, based on this258

analysis an appropriate values of clay and organic content can be selected that can optimize259

the wilting point efficiently.260

261
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262

Fig. 9 Percentage contribution of input variable to wilting point263

264

6. Conclusions265

The present paper laid significant emphasis on the need of formulation of a model for266

evaluating the wilting point based on soil parameters. In particular in this study the following267

parameters have been considered: fractal dimension, S-index, clay and organic content. While268

many studies in literature assumed wilting point as the moisture content at a soil matric269

potential of -1500 kPa, the current study aims at understanding the variations in wilting point270

with respect to soil parameters. This objective is achieved by the design of an optimization271

framework of GP which resulted in formulation of generalized wilting point model with272

higher values of coefficient of determination and lower values of MAPE, RMSE and MO.273

The model obtained represents the explicit (functional) relationship between wilting point274
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and the four soil parameter inputs and therefore can also be used for wilting point275

optimization. Further, the robustness of the model is evaluated by extracting the relationships276

between wilting point and the four inputs. The 2-D plots shows that wilting point increases277

with fractal dimension while behaves highly non-linear with respect to clay and organic278

content. 3-D plots shows that the combined effect of the clay and organic content influence279

the wilting point the most. The findings from this analysis is useful for experts to generalize280

and monitor the wilting point of soil under extreme variation of clay and organic content281

while giving minimum attention to fractal dimension and S-index. Future work can include282

sophisticated reliability analysis methods [29, 30] including dynamic neural networks [31 -283

34] to monitor the wilting point in event of uncertainties in the measurements.284
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