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Operational Flexibility of Future Generation
Portfolios Using High Spatial- and
Temporal-Resolution Wind Data
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Abstract—Increasing amounts of variable renewable energy
sources will cause fundamental and structural changes to ther-
mal power plant operating regimes. Maintaining key reserve
requirements will lead to an increase in power plant start-ups
and cycling operations for some units. An enhanced unit com-
mitment model with energy storage and flexible CO2 capture is
formulated. High-resolution on-/offshore wind data for the U.K.,
and probabilistic wind power forecast, model wind imbalances
at operational timescales. The strategic use of flexible CO2 cap-
ture and energy storage helps maintain reserve levels, decreasing
power plant cycling operations and wind curtailment. A tempo-
rally explicit variability assessment of net demand illustrates the
generation flexibility requirements and the nonlinear impacts of
increasing wind capacity on power plant operating regimes.

Index Terms—CO2 capture and storage (CCS), energy stor-
age, operational flexibility, power systems, unit commitment, wind
forecasting, wind power, thermal power plant, operating regimes.

NOMENCLATURE

Indices and sets:
g Generating unit index
s Energy storage unit index
t Time interval index

Decision variables:
sbaseg,t Base power plant unit status

sbase,startg,t , sbase,shutg,t Base power plant start-up/shut-down
event

scaptg,t CO2 capture plant status

Variables:
Ccurt

t Wind curtailment cost (£)
Cstart

g,t , Cshut
g,t Start-up/shut-down costs (£)

Cvar
g,t Variable operating costs (£)

Dt Electricity demand (MW)
Es,t Energy storage level (MWh)
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P base
g,t Power output of base power plant (MW)

P capt
g,t Power demand of CO2 capture plant

(MW)
P d
s,t, P

c
s,t Storage discharge/charge power (MW)

Rup
t , Rdn

t Up/down reserve requirement (MW)

Rup
g,t, R

dn
g,t Up/down reserve contribution (MW)

RSR,up
t , RSR,dn

t Up/down spinning reserve required
(MW)

RStR,up
t , RStR,dn

t Up/down standing reserve required
(MW)

Wt Wind generation (MW)
W curt

t Wind curtailment (MW)
Xg,t Online(+)/offline(–) operating hours
Y capt
g,t CO2 capture rate of CO2 capture

plant (-)
ηbaseg,t Real-time efficiency of power plant (-)
ηrts,t Storage round-trip efficiency (-)
πt System electricity price (£/MWh)
σD
t , σW

t Demand/wind forecast error (MW)

Parameters:
cCO2 Price of CO2 (£/tCO2)
cfuelg Fuel price (£/MWhth)
cstart,coldg Cold start-up cost (£)
cstart,fixedg Fixed start-up costs (£)
eCO2
g CO2 emission intensity (tCO2/

MWhth)
Es,max Max energy storage level (MWh)
Estart,cold

g CO2 emissions during cold start-up
(tCO2)

F start,cold
g Fuel use during cold start-up (MWhth)

P base
g,max, P base

g,min Max/min power output of power plant
(MW)

P capt
g,max, P capt

g,min Max/min power demand CO2 capture
(MW)

P capt,fixed
g Fixed power demand of CO2 capture

(MW)
P d
s,max, P c

s,max Storage max discharge/charge power
(MW)

qcapt,opg Energy to capture 1 tCO2 (MWh/ tCO2)
qstart,captg Fraction of CO2 captured during

start-up (-)
SUg, SDg Start-up/shut-down time (h)
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UTg,min, DTg,min Minimum up/down time (h)
Y capt
g,max, Y capt

g,min Max/min CO2 capture rate (-)
ηds , ηc

s Discharge/charge efficiency (-)
ρupg , ρdng Up/down ramp rates of power plant

(MW/h)
τs Rate of leakage of storage unit (%/h)
τ c
g Thermal cooling time constant (h)

I. INTRODUCTION

T HE proportion of electricity demand met by variable
renewable energy sources (VRE) is increasing. However,

their integration will fundamentally change thermal power plant
operating regimes, particularly in systems with limited energy
storage and interconnection, such as Great Britain (GB) [1].
Wind power, in particular, is typically price-insensitive with
priority of dispatch and is characterized by near-zero vari-
able costs, locational dependency and limited predictability [2].
While improved wind forecasting techniques are reducing wind
output uncertainty, the residual uncertainty and variability will
increase as the VRE capacity increases relative to dispatch-
able plant. High net demand variability (demand less VRE) will
impact the cycling operations and start-up/shut-down schedules
of thermal power plants.

Managing this variability and uncertainty in generation and
demand over operational time-scales requires more flexible
operation from dispatchable thermal power plants [3], energy
storage [4], demand-side management and interconnection. The
term operational flexibility is defined as the technical ability of
an individual unit (or power system) to manage variability and
uncertainty in generation and demand over operational time-
scales. The technical ability of thermal power plants and energy
storage units to provide flexibility is important when consider-
ing whole-system flexibility. Valuing and quantifying flexibility
is an area of ongoing research [5], [6]. The typically higher
ramping capabilities of energy storage units has particular value
at operational time-scales. A number of studies have proposed
unit commitment formulations with energy storage scheduling
methods [7], [8].

Recent work has investigated the operational flexibility of
commercial-scale CO2 capture and storage (CCS) [9], [10]
and the load-following capabilities of modern nuclear reac-
tors [11]. However, low-carbon generation technologies, such
as nuclear and CCS, may be designed or financed to be tech-
nically and/or commercially inflexible. Several studies have
proposed unit commitment formulations with CCS equipped
power plants [12], [13]. However, CCS power plants have
their own operational characteristics and have the capability
to respond dynamically to market prices by adjusting the CO2

capture rate.
This paper presents a new framework for the unit commit-

ment (UC) problem for a portfolio of energy storage units,
flexible CCS-equipped power plants, and conventional ther-
mal units to better understand the operational flexibility and
non-linear characteristics of future power systems.

The paper is laid out as follows. Section II describes the
use of a high spatial- and temporal-resolution wind hindcast to
capture the variability and uncertainty of expected future wind

output; a prerequisite for understanding generation flexibility
needs. Additionally, it outlines modelling of the stochastic and
temporal correlation elements of wind forecast errors. Section
III outlines the UC formulation necessary for a comprehensive
analysis of power plant cycling operations, dynamic CO2 cap-
ture plant operation and energy storage. To enable focus on
the impacts on generation requirements, the operational secu-
rity of the transmission network is not considered, although it
is accepted that transmission constraints play an important role
in power system operation. Section IV uses an illustrative set
of generation portfolios to assess the power plant characteris-
tics and operational requirements for system costs and power
plant cycling. The results highlight important questions about
the flexibility requirements of low-carbon electricity systems
with CCS.

II. WIND MODELING

Characterization of the variability and uncertainty of the
wind resource is a pre-requisite to understanding the needs for
operational flexibility in future power systems. Many power
system studies extrapolate wind speed measurements from
meteorological masts to evaluate the impacts of wind variability
[1]. More recent studies, however, utilize publically available
reanalysis data to produce moderate spatial resolution wind
speed datasets [14], [15]. In this work a high spatial- and
temporal-resolution wind hindcast is applied [16].

A. Wind Power Time Series

The capabilities of the state-of-the-art Weather Research and
Forecasting (WRF) mesoscale numerical weather prediction
system [17] enabled Hawkins [16] to develop an hourly hind-
cast of on- and offshore wind speeds for the British Isles.
Covering the years 2000 to 2010, the 3km spatial resolution
allows the model to accurately simulate wind power outputs at
existing and potential sites. The dataset has been extensively
validated so no additional detail is presented here; a complete
description of the dataset can be found in [16]. It has been
applied in a range of other work including [18].

Locations of 386 existing and proposed wind sites are
selected from the UK Wind Energy Database [19]. These are
understood to provide a good representation of future wind
deployment and will therefore credibly capture the effects of
spatial distribution on the operation of future generation portfo-
lios. Hourly wind speed and wind directionality measurements
are extracted from the hindcast dataset at 337 onshore and 49
offshore locations.

The output of a wind farm is smoother than that of an indi-
vidual turbine. Credible estimates of wind farm production are
created using aggregate power curves that represent the smooth-
ing effect influenced by the site dimensions and the turbulence
intensity. This work follows the methodology in [1], [15], [20]
by convolving the power curve for a single wind turbine with
a normal distribution function (Fig. 2). The variance of the dis-
tribution is estimated from turbulence intensities derived from
roughness factors, wind propagation times and typical use of
land [15]. Hourly wind speed time-series for each on- and off-
shore wind site is converted into hourly capacity factors by
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Fig. 1. The locations of onshore and offshore wind farms in the wind hindcast
and the simulated long-term capacity factor 2000 to 2010.

Fig. 2. Power curve for a single turbine aggregated to wind farm level.

selecting the value on the aggregate power curves correspond-
ing to the wind speed. These are further aggregated into regions
according to distribution network operator boundaries.

An important feature of this work is the use of historical
demand data to preserve the relationship with wind. Hourly
GB demand data is taken from [21] and weather-corrected to
account for Average Cold Spell Winter Peak conditions.

For flexibility assessments, wind ramping is key to defining
the flexibility requirements and it is therefore important that
simulated wind power data correctly models observations at
operational time-scales. Wind ramps are the rate of change in
wind power output over a given time period. Fig. 3 shows a
plot of the simulated 1-h wind ramps derived from the wind
hindcast and observed wind output data for 2010 from [22]. It
indicates that small inter-hourly changes in wind production are
relatively common, with larger changes much less frequent.

B. Wind Power Forecast Error

The wind forecast error is a key consideration in operat-
ing a wind dominated power system. For a single turbine or

Fig. 3. Distributions for simulated and observed 1-h wind production ramp
events for GB (2010 wind year).

farm, wind speed forecast errors are amplified by the non-
linear power curve, translating into a more dispersed power
forecast distribution (Fig. 2). For a large geographically diverse
portfolio of wind farms, power forecast errors can be mod-
elled as normally distributed random variables with zero-mean
[23], [24]. A stochastic differential equation models the error
distribution and correlation between forecasting periods to sim-
ulate the wind power forecast error, as described in [23]. The
realized wind power output W r

t at time t gives the forecast
wind power output W f

t and simulated wind forecast error ΔWt

according to:

W f
t = W r

t +ΔWt (1)

An autocorrelation function models the temporal correlation
in errors between forecasting periods and is approximated as
an exponentially decreasing function with increasing time lag
[23], i.e. a short intervals have stronger correlation.

III. MODEL FORMULATION

The analysis relies on a unit commitment (UC) framework
enhanced with an integrated energy storage optimization model
and a dynamic model of a flexible CCS plant with post-
combustion capture. The model has both UC and economic
dispatch stages to account for the change in forecast and real-
ized wind output between the time when UC decisions are made
and delivery time. At the UC stage, the operating schedules of
price-sensitive energy storage units are optimized, with ther-
mal and CCS-equipped power plants then scheduled ahead of
time to supply forecast net demand and meet system reserve
constraints. Economic dispatch is then used at delivery time
to adjust the charging/discharging profiles of energy storage
units and the outputs of committed thermal and CCS plants to
balance realized net demand.

A dynamic programming solution in MATLAB is used that
considers multiple predecessors, overcoming the traditional
drawbacks of dynamic programming [25]. A year-long hourly
analysis executes in ∼18 h on an Intel Core i5 2.60 GHz proces-
sor. The solution is modified to include flexible CCS-equipped
power plants increasing run times by ∼10%.

A. Unit Commitment Model

The UC minimizes total system operational costs subject to
system and unit-specific operating constraints. The objective
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function minimizes variable operating, start-up, shut-down, and
curtailment costs of the thermal generation portfolio:

C total = min
T∑

t=1

G∑
g=1

Cvar
g,t + Cstart

g,t + Cshut
g,t + Ccurt

t (2)

where Ctotal are the total system operating costs, Cstart
g,t are the

start-up costs, Cshut
g,t are the shut-down costs, Ccurt

t are the costs
of onshore/offshore wind curtailment and Cvar

g,t are the variable
operating costs that represent the no-load and variable costs
of fuel, CO2 and variable operation and maintenance (O&M,
additional O&M costs apply to the CO2 capture plant). The
operating cost of onshore and offshore wind is assumed to be
zero. A cost for wind curtailment is included for two reasons:
firstly to avoid numerical infeasibilities during extreme low net
demand periods; and secondly to account for the opportunity
cost either theoretically or to compensate for lost energy and/or
subsidy payments. The operating costs of energy storage units
are assumed to be zero [26] therefore the UC objective function
does not consider them. A piece-wise linear approximation is
used to represent convex cost functions.

The operation of energy storage units is included indirectly
in the UC process as the units are modelled as merchant opera-
tors seeking to maximize arbitrage revenue (alternatives include
reserve provision). Storage unit schedules are optimized using
forecast market prices using the same method as for eco-
nomic dispatch (Section III.B) but with forecast generation. The
charge/discharge profiles of the storage units are then incor-
porated into the forecast net demand that the UC seeks to
meet. This process requires the two stage optimization shown
in Fig. 4.

The system and unit specific constraints are as follows:
1) System Demand Balance:

G∑
g=1

(
P base
g,t − P capt

g,t

)
+

S∑
s=1

P d
s,t +Wt = Dt +

S∑
s=1

P c
s,t +W curt

t

(3)

where P base
g,t and P capt

g,t are the instantaneous power outputs
of the base and CO2 capture units, P c

s,t and P d
s,t are the

charge/discharging power outputs of energy storage units, Wt

is onshore and offshore wind generation, and W curt
t is curtailed

wind generation.
2) System Reserve Requirements:

G∑
g=1

(
P base
g,max − P capt

g,min

)
+

S∑
s=1

P d
s,t +Wt ≥ Dt +

S∑
s=1

P c
s,t

+W curt
t +Rup

t (4)
G∑

g=1

(
P base
g,min − P capt

g,max

)
+

S∑
s=1

P d
s,t +Wt ≤ Dt +

S∑
s=1

P c
s,t

+W curt
t −Rdn

t (5)

where P base
g,max, P base

g,min, P capt
g,max and P capt

g,min are the maximum and
minimum power outputs of the base and capture units, respec-
tively. Rup

t and Rdn
t are the upwards and downwards system

reserve requirements.

Fig. 4. Structure of the unit commitment optimization problem.

3) Unit Operational Status, Start-Up and Shut-Down:

sbase
g,t = sbase

g,t−1 + sbase,start
g,t − sbase,shut

g,t (6)

where the binary decision variables sbaseg,t , sbase,startg,t and

sbase,shutg,t ∈ {[0, 1] respectively represent the operational state
and start-up and shut-down events of the base power plant.

4) Unit Power Output Constraints:

P base
g,mins

base
g,t ≤ P base

g,t ≤ P base
g,maxs

base
g,t (7)

P capt
g,mins

capt
g,t ≤ P capt

g,t ≤ P capt
g,maxs

capt
g,t (8)

where P base
g,max and P base

g,min are the maximum and minimum
power output limits.

5) Unit Ramping Constraints:

P base
g,t − P base

g,t−1 + sbase
g,t−1(P

base
g,min − ρup

g )

+ sbase
g,t (P

base
g,max − P base

g,min) ≤ P base
g,max (9)

P base
g,t−1 − P base

g,t + sbase
g,t (P

base
g,min − ρdn

g )

+ sbase
g,t−1(P

base
g,max − P base

g,min) ≤ P base
g,max (10)

where ρupg , ρdng are the respective up and down ramp rates. An
illustration of the ramping trajectories and unit constraints for a
thermal power plant is shown in Fig. 5.

6) Unit Minimum Up/Down Time Constraints:

(Xg,t−1 − UTg,min) ·
(
sbase
g,t−1 − sbase

g,t

) ≥ 0 (11)

(−Xg,t−1 −DTg,min) ·
(
sbase
g,t − sbase

g,t−1

) ≥ 0 (12)

where Xg,t is the number of hours unit g has been online(+)/
offline(–), and UTg,min, DTg,min the minimum up and down
time, which include start-up SUg and shut-down SDg times.
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Fig. 5. Ramping trajectories and fuel consumption during start-up/shut-down.

B. Economic Dispatch Model

Economic dispatch is used at delivery time to adjust the
outputs of committed thermal and CCS plants and the charg-
ing/discharging profiles of energy storage units to balance
realized net demand. This effectively simulates the balancing
market and is understood to be a reasonable approximation
to the GB market (although it omits the impact of transmis-
sion constraints). The system marginal price πt is simulated for
each time step by finding the intersection between net demand
and the marginal cost of the price-setting plant plus an uplift
function that considers the time-weighted average start-up/
shut-down costs. All generation facilities participate at each
time step and non-generation costs are not considered. A similar
process provides forecast market prices for the energy storage
optimization at the UC stage.

C. Energy Storage Model

The purpose of the energy storage model is to determine the
potential of time-shifting energy across a range of wind and
flexibility scenarios. A Monte Carlo based optimization algo-
rithm finds the optimal operating strategy for a portfolio of
energy storage units over the optimization time horizon, in this
case 168 hours. It operates both at the UC and economic dis-
patch stages, maximizes the operating profits of each unit, and
minimizes time-dependent energy losses subject to unit-specific
constraints. The operation of energy storage units (specifically
the charge/discharge profiles) depend on the availability of
stored energy so are formulated differently from thermal power
plants. It is assumed that energy storage units only have costs
associated with storing energy (i.e. purchase price of electric-
ity) since operating and start-up/shut-down costs are typically
near-zero. The objective function is:

Πs = max

T∑
t=1

(
P d
s,t − P c

s,t

) · πt (13)

where Πs are the operating profits of unit s, P d
s,t is the dis-

charging power output, P c
s,t is the charging power input, and πt

is the system electricity price. The time-dependent round-trip
efficiency between time periods t1 and t2 is:

ηrt
s (Δt) = ηc

sη
d
s exp ((t1 − t2)/τs) (14)

Fig. 6. Energy storage conversion characteristics.

Fig. 7. Schematic of post-combustion CO2 capture and compression systems.

where Δt = t1 − t2, τs is a parameter that represents the rate
of leakage, and ηc

s and ηds are the charging and discharging
efficiencies, respectively.

Energy storage units operate when it is profitable to do so.
They charge in period t1 and discharge in period t2, if the ratio
of the respective electricity prices exceeds the inverse round-
trip efficiency:

πt1/πt2 ≥ 1
/
ηrt
s (Δt) (15)

Energy storage units are subject to operational constraints on
charging, discharging and storage, see Fig. 6. In addition, syn-
chronized energy storage units can rapidly adjust their charging
and discharging rates and so can contribute towards the upwards
and downwards spinning reserve requirements.

D. Flexible CO2 Capture Model

Incorporating CCS into the UC requires an additional binary
decision variable scaptg,t ∈{[0, 1] to represent the operational
status of the CO2 capture systems (absorption, stripping and
compression, Fig. 7). The base thermal power plant retains a
binary variable describing its operational state.

Post-combustion CO2 capture (PCC) with amine scrubbing
is used as a representative capture technology because of its
relative maturity and suitability for retrofit [27]. A flexible
PCC CO2 capture plant can rapidly redirect steam from the
reboiler to the low pressure (LP) turbine to generate additional
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electricity [28]. It is assumed there is sufficient LP turbine flex-
ibility to accommodate the steam flow. These CCS-equipped
units can therefore temporarily reduce the steam entering the
reboiler, and provide primary frequency response for up to 30
seconds and upwards spinning reserve [29]. This reduces the
spinning reserve and response services that are needed from
other sources. Solvent storage tanks could be installed to mini-
mize exhaust gas venting during bypass, start-up and shut-down
procedures.

CCS power plants are expected to have faster ramp rates than
conventional plants since the power consumption of the capture
plant can be adjusted in addition to ramping the base power
plant. The operating range of CCS power plants is also larger
because of lower minimum power output limits. The net power
output of the CCS power plant is:

PCCS
g,t = P base

g,t − P capt
g,t (16)

where P capt
g,t is the power consumption of the capture plant,

specifically the loss of generation from steam extraction and
to power compression and ancillary equipment [27]. To reduce
modelling complexity, power consumption is modelled as a
fixed component P capt,fixed

g and a variable component propor-
tional to the amount of CO2 being treated:

P capt
g,t = P capt,fixed

g + qcapt,op
g

(
P base
g,t ηbase

g,t e
CO2
g Y capt

g,t

)
(17)

where qcapt,opg is the power consumption required to capture 1
CO2, ηbaseg,t is the real-time efficiency of the base power plant,
eCO2
g is the unit-specific CO2 emission intensity of the base

power plant and Y capt
g,t the CO2 capture rate, which can vary

between Y capt
g,min ≤ Y capt

g,t ≤ Y capt
g,max. The power consumption

range of a CO2 capture plant is therefore:

P capt
g,max = P capt,fixed

g + qcapt,op
g

(
P base
g,t ηbase

g,t e
CO2
g Y capt

g,max

)
(18)

P capt
g,min = P capt,fixed

g + qcapt,op
g

(
P base
g,t ηbase

g,t e
CO2
g Y capt

g,min

)
(19)

E. Reserve Requirements

Upward reserve μup
t is required to cover the largest credible

loss in generation (largest synchronized thermal or discharg-
ing energy storage unit), an increase in demand or decrease in
wind generation to 3 standard deviations (3σ) or 99.73% of
events [23], [24]. Downward reserve μdn

t is required to cover
the largest credible loss in demand (largest charging energy
storage unit), a decrease in demand or an increase in wind gen-
eration to 3σ. The upwards/downwards reserve requirements
can be supplied from a mixture of spinning (SR) and standing
reserve (StR).

Rup
t ≤ RSR,up

t +RStR,up
t = μup

t + 3

√
(σD

t )
2
+
(
σW
t

)2
(20)

Rdn
t ≤ RSR,dn

t +RStR,dn
t = μdn

t + 3

√
(σD

t )
2
+
(
σW
t

)2
(21)

Wind is curtailed to ensure there are a minimum number of
synchronized thermal units to maintain spinning reserve, inertia
and ramping requirements. This ensures minimum generation

requirements for baseload power plants and ensures that con-
straints such as minimum stable generation limits and minimum
up times are not violated. Onshore wind is curtailed before off-
shore wind since the constraint prices are assumed to be lower,
reflecting subsidy levels [30]. Wind that is scheduled to be cur-
tailed can contribute towards the upwards reserve requirement
as curtailment suggests available energy is spilled [31]; it is
calculated as the difference between forecast wind and cur-
tailed wind. If the scheduled wind is less than 3σW

t then the
reserve requirements are likely too high; the upwards reserve
requirement in (20) then becomes:

Rup
t ≤ μup

t +

√
(3σD

t )
2
+min

(
3σW

t ,W f
t −W c

t

)2
(22)

Demand forecast uncertainty is represented as a normally
distributed function with a standard deviation σD

t of 1% of
demand with zero-mean. Wind forecast errors are represented
as a zero-mean normally distributed function with a standard
deviation σW

t of 10% of forecast wind output 4-h ahead of
real-time.

This work assumes that the upwards and downwards reserve
requirement is provided by spinning reserve. This is in order to
examine the impacts of flexible CO2 capture and energy storage
on reserve requirements and operational flexibility. The spin-
ning reserve contributions from CCS-equipped power plants are
limited by power output and ramp rate constraints of the base
power plant:

Rup
g,t = min

(
P base
g,max − P base

g,t , ρup
g Δt

)
sbase
g,t

+
(
P capt
g,t − P capt

g,min

)
scapt
g,t (23)

Rdn
g,t = min

(
P base
g,t − P base

g,min, ρ
dn
g Δt

)
sbase
g,t

+
(
P capt
g,max − P capt

g,t

)
scapt
g,t (24)

F. Start-up and Shut-down

It is important to use start-up cost functions that accurately
represent the dynamic non-linear costs associated with start-
ing up a thermal power plant after a period of cooling, which
depends exponentially on the number of hours spent shut-
down Xg,t. The time-dependent start-up costs for thermal units
equipped with/without CO2 capture are formulated as:

Cstart
g,t = cstart,cold

g · (1− exp
(
Xg,t

/
τ c
g

))
(25)

cstart,cold
g = cstart,fixed

g + F start,cold
g cfuel

g

+Estart,cold
g cCO2

(
1− Y capt

g,maxq
start,capt
g

)
(26)

where cstart,fixedg represents the fixed start-up costs, τ cg is the
thermal cooling time constant, F start,cold

g is the fuel consump-
tion during start-up, cfuelg is the cost of fuel, Estart,cold

g are
the CO2 emissions during a cold start-up, and cCO2 is the
cost of CO2. For CCS units, qstart,captg is the fraction of CO2

that can be captured during start-up, which depends primar-
ily on the availability and quality of steam during start-up.
To enable high CO2 capture an auxiliary boiler could pro-
vide steam prior to start-up or solvent storage tanks could be
installed, if economically desirable.
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TABLE I
WIND DEPLOYMENT SCENARIOS

Fig. 8. Regional deployment scenarios: relative on-/offshore wind capacity.

Fig. 9. Temporal distribution for 4-h net demand ramp events with 30 GW of
wind capacity for GB.

IV. CASE STUDY

A. Wind Deployment Scenarios

Several future UK wind capacity scenarios are considered to
represent the expected spatial distribution and growth of the GB
wind fleet into the future. The proportions of on- and offshore
wind capacity are shown in Table I with offshore wind catego-
rized into rounds for commercial development: Rounds 1 to 3
and projects in Scottish Territorial Waters (STW). Fig. 8 shows
the spatial distribution of wind capacity in each of the future
deployment scenarios for GB. The case study uses the 2010
wind year as the basis for analysis.

Fig. 9 shows the temporal distribution of net demand ramp
events as a share of peak demand with 30 GW of wind capac-
ity. The rate of change in net demand over 4-h timescales is a
good indication of generation flexibility requirements. Upwards
ramping requirements are dominated by the morning pickup,
which is likely to be provided by dedicated and slower ramping
thermal power plants.

TABLE II
CASE STUDY GENERATION PORTFOLIO

B. Flexibility Scenarios

To investigate the operational flexibility of future genera-
tion portfolios with flexible CO2 capture and energy storage,
two flexibility scenarios are considered, as shown in Table II.
The portfolio consists of 8 nuclear power plants, 40 com-
bined cycle gas turbines (CCGT), 20 open cycle gas turbines
(OCGT), and 4 CCGTs equipped with post-combustion cap-
ture. The technical parameters and cost characteristics of the
assumed generation portfolio are based on data available in
[32]. Thermal units of the same technology are modelled with
varying incremental heat rates and costs to represent units of
different ages and part-load efficiencies (i.e. CCGT unit 1 is
more efficient than unit 40).

Fossil fuel prices are taken from the central scenarios in [33].
The CO2 price is set at £25/tCO2. This price is designed to
reflect the anticipated low-carbon support framework in GB.
The curtailment cost of on- and offshore wind are −£50/MWh
and −£100/MWh, respectively.

In the low flexibility (LF) scenario, power plants have lower
ramp rates and higher start-up costs. CCS-equipped power
plants are not flexible and run at a constant capture rate of
90%. The PCC absorption and compression systems require
0.27 MWhe/tCO2 when operating at 90% capture, reducing
the net electrical output at full-load to 780 MW. CCS is unable
to contribute to upwards reserve and energy storage units are
not included.

In the high flexibility (HF) scenario, power plants have
higher ramp rates and lower start-up costs. Flexible CCS units
can vary the CO2 capture rate between zero and 90% and con-
tribute towards upwards spinning reserve requirements. It is
assumed that the CCS infrastructure does not impose additional
downstream CO2 flowrate constraints that limit operation. Four
energy storage units with a total capacity of 2860 MW are
included to represent the existing pumped storage capacity in
the UK, see Table III. It is assumed that the operating costs of
energy storage units are zero.

C. Operating Costs and CO2 Emission Reductions

The LF scenario with 15 GW of wind capacity is treated as
the base case scenario for the following comparisons. In the
HF scenarios, energy storage acts as a net load and slightly
increases the overall energy requirements. Nuclear power plants
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TABLE III
ENERGY STORAGE UNIT PARAMETERS

Fig. 10. Surplus wind generation with wind capacity for the low and high
flexibility scenarios.

Fig. 11. Reduction in operating costs and CO2 emissions with wind capacity
for the low and high flexibility scenarios.

have lower minimum power output limits and energy storage
units utilize surplus wind energy. This reduces the amount
of wind curtailment leading to a significant reduction in CO2

emissions, see Fig. 10 and Fig. 11.
During times of high electricity demand when the system

marginal price is high, energy storage units discharge power
and flexible CCS units increase power output by reducing the
CO2 capture rate to zero, venting CO2 to the atmosphere.
Energy storage and flexible CO2 capture units both displace
OCGT units and reduce the net spinning reserve requirements
for conventional units, increasing the flexibility of the sys-
tem and reducing the amount of part-loaded thermal plants.
Improved thermal plant efficiencies, reduced cycling opera-
tions and curtailment reductions contribute towards system
CO2 emissions and operating cost reductions (Table IV).

For the LF 45 GW wind scenario, wind curtailment repre-
sents 15.2% of the available wind generation. Despite this, the
results show that use of wind power reduces CO2 emissions by
21.0% and 39.5% for a doubling and tripling of wind capacity,
respectively. Curtailment falls to just 7.7% in the HF 45 GW
scenario where the increased flexibility from nuclear units with

TABLE IV
OPERATING COSTS AND EMISSIONS

Fig. 12. Reduction in CCGT unit ramping with wind capacity for the low and
high flexibility scenarios.

a lower minimum stable generation limit and energy storage
units are able to utilize curtailed wind. The value of energy stor-
age and greater operational flexibility is apparent, increasing the
CO2 savings by 1.3% at 15 GW and 6.4% at 45 GW as energy
storage units displace OCGT units with higher CO2 emission
intensities and wind curtailment reduces. Similar impacts are
seen with system operating costs.

D. Thermal Plant Start-ups and Cycling Operations

CCGT units provide the majority of power system gen-
eration flexibility and ramping requirements. Fig. 12 shows
how increased wind generation and varying flexibility param-
eters changes the CCGT ramping requirements compared to
the LF 15 GW wind capacity base case scenario. In the
HF scenarios energy storage units contribute towards ramp-
ing requirements, which leads to an overall reduction in CCGT
ramping. Increasing wind capacity increases the magnitude and
frequency of wind imbalances and displaces more efficient and
traditional baseload CCGT units (1-10), forcing them to adjust
output more frequently. Increasing wind generation also dis-
places less efficient CCGT units (11-40), which causes them to
reduce output and shut-down for longer and more indeterminate
periods of time.

Fig. 13 shows the proportion of time that CCGT units spend
either shut-down, at part-load or at full load for each of the sce-
narios. In the HF scenarios, CCGT units typically spend less
time at part-load and more time at full load because increased
ramp rates reduce the time required for CCGT units to adjust
output between the minimum and maximum power output lim-
its. In addition, flexible CCS and energy storage units provide
upwards reserve in the HF scenarios, reducing the need for con-
ventional CCGTs to remain at part-load and provide upwards
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Fig. 13. Proportion of time CCGT units spend at full load, part-load, or shut-
down with wind capacity for the low and high flexibility scenarios.

Fig. 14. Load factors of CCGT units equipped with post-combustion CO2

capture with wind capacity for the low and high flexibility scenarios.

reserve. Most CCGT units have reduced production levels with
the introduction of energy storage. However, energy storage
increases the baseload energy requirements for efficient CCGT
units 1-10 and reduces the requirements for peaking plant and
less efficient CCGT units.

Fig. 14 also shows how energy storage in the HF 15 GW and
30 GW wind scenarios increases the baseload energy require-
ments and therefore increases the load factors of CCS-equipped
power plants. This is highly desirable for CCS units which may
have to maintain stable or consistent flows of CO2 to meet the
requirements of the rest of the CCS transport, storage and injec-
tion infrastructure. Increasing the utilization of capital intensive
and low carbon generation technologies is also expected to
reduce the levelized cost of electricity. CCS-equipped power
plants benefit from energy storage during periods of low net
demand when CCS units may have to part-load or shut-down.
However, energy storage and increased generation flexibility
also reduces the amount of wind curtailment. Increased levels of
wind generation in the HF 45 GW wind scenario significantly
reduce the load factors of CCGT units equipped with PCC as
this additional wind generation further displaces CCS output.

Fig. 15. Number of CCGT start-ups per year categorized by the time spent
shut-down with wind capacity for the low and high flexibility scenarios.

Fig. 15 illustrates the changing start-up requirements for
CCGT units with increasing wind capacity and shows the
CCGT start-ups per year categorized by the time spent shut-
down for the LF and HF scenarios. The number of hours each
CCGT unit spends shut-down and the number of start-ups is
counted. This allows power plant start-ups to be categorized by
the time spent shut-down. This gives an accurate indication of
the changing hot/warm/cold start-up requirements with increas-
ing wind capacity and the impacts of flexibility characteristics
such as start-up and shut-down costs. In the HF scenarios,
the number of start-ups for mid-merit CCGTs increases. This
is because power plants seek to minimize the time spent at
unprofitable loads making it more likely for units with lower
start-up/shut-down costs to change states.

With increasing wind capacity, the start-up requirements for
CCGTs changes dramatically, with a significant increase in the
number of hot start-ups (where the time spent shut-down t ≤ 8)
for more efficient CCGTs with lower operating costs (units 0
to 10). For less efficient CCGTs with higher operating costs
(units 20 to 40), the number of start-ups per year falls with
increasing wind capacity. There is a significant increase in the
number of cold start-ups for these units as they are forced to
shut-down for longer periods of time. This increases the average
cost and CO2 emissions per start-up and highlights the non-
linear impacts of increasing wind generation on power plant
operating regimes. This result also demonstrates the importance
of using time-dependent start-up cost functions that model the
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dynamic fuel requirements during start-ups. Furthermore, use
of time-dependent start-up cost functions to capture the change
in start-up requirements is necessary as any inaccuracies will
impact short-term operation decisions.

V. CONCLUSIONS

The proposed unit commitment model considers a portfo-
lio of energy storage units, flexible CO2 capture equipped
power plants, and conventional thermal units to better under-
stand the operational flexibility and non-linear characteristics
of future power systems. An extensive wind hindcast dataset
of the British Isles is used to generate high-resolution on-
/offshore wind data to model wind imbalances at operational
timescales. Two flexibility scenarios illustrate the impact of
start-up costs and ramping capabilities on system operating
costs and CO2 emissions. Energy storage and flexible CO2 cap-
ture units contribute towards reserve requirements and decrease
the proportion of part-loaded thermal units. CCGT start-up
requirements change dramatically with increasing wind deploy-
ment, highlighting the fundamental and structural changes in
power plant operating regimes.
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