Genetic variants related to longer telomere length are associated with increased risk of renal cell carcinoma.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/119343/

Version: Accepted Version

Article:
Machiela, MJ, Hofmann, JN, Carreras-Torres, R et al. (109 more authors) (2017) Genetic variants related to longer telomere length are associated with increased risk of renal cell carcinoma. European Urology, 72 (5). pp. 747-754. ISSN 0302-2838
https://doi.org/10.1016/j.eururo.2017.07.015

Published by Elsevier B.V. on behalf of European Association of Urology. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Genetic variants related to longer telomere length are associated with increased risk of renal cell carcinoma

Mitchell J. Machiela¹, Jonathan N. Hofmann¹, Robert Carreras-Torres², Kevin M. Brown¹, Mattias Johansson², Zhaoming Wang³, Matthieu Foll², Peng Li², Nathaniel Rothman¹, Sharon A. Savage¹, Valerie Gaborieau⁴, James D. McKay², Yuanqing Ye⁴, Marc Henrion⁵, Fiona Bruinsma⁶, Susan Jordan⁷, Gianluca Severi⁸,⁹,¹⁰,¹¹, Kristian Hveem¹², Lars J. Vatten¹³, Tony Fletcher¹⁴, Kvetoslava Koppova¹⁵, Susanna C. Larsson¹⁶, Alicja Wolk¹⁶, Rosamonde E. Banks¹⁷, Peter J. Selby¹⁷, Douglas F. Easton¹⁸, Paul Pharoh¹⁸, Gabriella Andreotti¹, Laura E. Beane Freeman¹, Stella Koutros¹, Demetrios Albanes¹, Satu Mannisto¹⁹, Stephanie Weinstein¹, Peter E. Clark¹⁰, Todd E. Edwards¹⁰, Loren Lipworth¹⁰, Susan M. Gapstur¹¹, Victoria L. Stevens²¹, Hallie Carol²², Matthew L. Freedman²², Mark M. Pomerantz²², Eunyoung Cho²³, Peter Kraft²⁴, Mark A. Preston²⁵, Kathryn M. Wilson²⁴, J Michael. Gaziano²⁵,²⁶, Howard S. Sesso²⁴, Amanda Black¹, Neil D. Freedman¹, Wen-Yi Huang¹, John G. Anema²⁷, Richard J. Kahnski²⁷, Brian R. Lane²⁷,²⁸, Sabrina L. Noyes²⁹, David Petillo²⁹, Leandro M. Colli¹, Joshua N. Sampson¹, Celine Besse³⁰, Helene Blanche³¹, Anne Boland³⁰, Laurie Burdette¹, Egor Prokhortchouk³²,³³, Konstantin G. Skryabin³²,³³, Meredith Yeager¹, Mirjana Mijuskovic³⁴, Miodrag Ognjanovic³⁵, Lenka Foretova³⁶, Ivana Holcatova³⁷, Vladimir Janou³⁸, Dana Mates³⁹, Anush Mukeriya⁴⁰, Stefan Rascu⁴¹, David Zardze⁴², Vladimir Bencko⁴², Cezary Cybulski⁴³, Eleonora Fabianova⁴⁵, Viorel Jinga⁴¹, Jolanta Lissowska⁴⁴, Jan Lubinski⁴³, Marie Navratilova³⁶, Peter Rudnai⁴⁵, Neonila Szeszenia-Dabrowska⁴⁶, Simone Benhamou⁴⁷,⁴⁸, Geraldine Cancel-Tassin⁴⁹,⁵⁰, Olivier Cussenot⁴⁹,⁵⁰,⁵¹, H.B(as). Bueno-de-Mesquita⁵²,⁵³,⁵⁴,⁵⁵, Federico Canzian⁵⁶, Eric J. Duell⁵⁷, Börje Ljungberg⁵⁸, Raviprakash T. Sitaram⁵⁸, Ulrike Peters⁵⁹, Emily White⁵⁹, Garnet L. Anderson⁵⁹, Lisa Johnson⁵⁹, Juhua Luo⁶⁰, Julie Buring⁶¹, I-Min Lee⁶²,²⁴, Wong-Ho Chow⁶, Lee E. Moore¹, Christopher Wood⁶¹, Timothy Eisen⁶², James Larkin⁶³, Toni K. Choueiri²², G Mark. Lathrop⁶⁴, Bin Tean Teh²⁹, Jean-Francois Deleuze³⁰,³¹, Xifeng Wu⁴, Richard S. Houlston⁶⁵, Paul Brennan², Stephen J. Chanock¹, Ghislaine Scelo² and Mark P. Purdie¹

¹ Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, Maryland, USA
² International Agency for Research on Cancer (IARC), Lyon, France
³ St. Jude Children's Research Hospital, Memphis, Tennessee, USA
⁴ Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
⁵ Icahn School of Medicine, New York, New York, USA
⁶ Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Australia
⁷ QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
⁸ School of Public Health, The University of Queensland, Brisbane, Australia
⁹ Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Australia
¹⁰ Human Genetics Foundation (HuGeF), Torino, Italy
¹¹ Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Université Paris-Saclay, UPS, USQ, Gustave Roussy, Villejuif, France
¹² HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Norway
¹³ Department of Public Health and General Practice, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
¹⁴ London School of Hygiene and Tropical Medicine, University of London, London WC1H 9SH, UK
¹⁵ Regional Authority of Public Health in Banska Bystrica, Banska Bystrica 97556, Slovakia
¹⁶ Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
¹⁷ Leeds Institute of Cancer and Pathology, University of Leeds, Cancer Research Building, St James's University Hospital, Leeds LS9 7TF, UK
¹⁸ Department of Oncology, and Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
¹⁹ National Institute for Health and Welfare, Helsinki, Finland
²⁰ Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
²¹ American Cancer Society, Atlanta, Georgia, USA
Abstract

Background: Relative telomere length in peripheral blood leukocytes has been evaluated as a potential biomarker for renal cell carcinoma (RCC) risk in several studies, with conflicting findings.

Objective: We performed an analysis of genetic variants associated with leukocyte telomere length to assess the relationship between telomere length and RCC risk using Mendelian randomization, an approach unaffected by biases from temporal variability and reverse causation that might have affected earlier investigations.

Design, Setting, and Participants: Genotypes from nine telomere length associated variants for 10,784 cases and 20,406 cancer-free controls from six genome-wide association studies (GWAS) of RCC were aggregated into a weighted genetic risk score (GRS) predictive of leukocyte telomere length.

Outcome Measurements and Statistical Analysis: Odds ratios (ORs) relating the GRS and RCC risk were computed in individual GWAS datasets and combined by meta-analysis.

Results and Limitations: Longer genetically inferred telomere length was associated with an increased risk of RCC (OR=2.07 per predicted kilobase increase, 95% CI=1.70-2.53; P<0.0001). As a sensitivity analysis, we excluded two telomere length variants in linkage disequilibrium (R^2>0.5) with GWAS-identified RCC risk variants (rs10936599 and rs9420907) from the telomere length GRS; despite this exclusion, a statistically significant association between the GRS and RCC risk persisted (OR=1.73, 95% CI=1.36-2.21, P<0.0001). Exploratory analyses for individual histologic subtypes suggested comparable associations with the telomere length GRS for clear cell (N=5,573; OR=1.93, 95% CI=1.50-2.49, P<0.0001), papillary (N=573; OR=1.96,
95% CI=1.01-3.81, P=0.046) and chromophobe RCC (N=203; OR=2.37, 95% CI=0.78-7.17, P=0.13).

Conclusions: Our investigation adds to the growing body of evidence indicating some aspect of longer telomere length is important for RCC risk.

Patient Summary: Telomeres are segments of DNA at chromosome ends that maintain chromosomal stability. Our study investigated the relationship between genetic variants associated with telomere length and RCC risk. We found evidence suggesting individuals with inherited predisposition to longer telomere length are at increased risk of developing RCC.
Introduction

Telomeres are TTAGGG nucleotide repeats and a protein complex at chromosome ends that play an essential role in maintaining chromosomal stability. Due to the inability of DNA polymerase to fully extend 3’ DNA ends, telomeres become gradually shorter with each cell division in the absence of telomerase activity[1]. Although in normal cells critically short telomeres will trigger cellular senescence and death, cancer cells can continue to divide despite telomere shortening and the resultant genomic instability[2]. Alternatively, upregulated telomerase activity leading to increased telomere length may also promote tumorigenesis by conferring properties of immortal growth[3]. Indeed, recent studies suggest longer telomere length may be a risk factor for select tumor types including melanoma, lung cancer, chronic lymphocytic leukemia, glioma and ovarian cancer[4-7].

As such, relative telomere length in peripheral blood leukocytes has been evaluated in numerous population-based studies as a suspected marker of cancer risk[8]. Most of these studies have characterized telomere length using multiplex quantitative polymerase chain reaction (qPCR) assays[9]. Results of studies of leukocyte telomere length and risk of renal cell carcinoma (RCC) have been inconsistent. Two small hospital-based case-control studies reported inverse associations between telomere length and risk of RCC[10, 11], whereas no significant evidence of an association was observed in a larger population-based case-control study[12] and two cohort-based investigations using pre-diagnostic samples[13, 14]. In contrast, longer leukocyte telomere length has been associated with reduced RCC survival[15]. Telomerase activity is elevated in renal tumors compared to adjacent normal renal tissue and has been associated with clinicopathologic features of advanced disease[16, 17].
These previous studies have several limitations. Leukocyte telomere length measurements in case-control studies, using post-diagnosis blood samples, may have been influenced by effects of the disease. All studies measured telomere length from a single time point, which may not adequately reflect telomere length status in the etiologically relevant time window, and were susceptible to confounding from RCC risk factors that may be associated with telomere length such as smoking\cite{13, 18} and obesity\cite{19}. Furthermore, qPCR-based measurements of telomere length are sensitive to pre-analytic factors such as DNA source material and extraction method\cite{12, 20, 21}.

Nine common genetic variants have been identified in genome-wide association studies (GWAS) that are associated with leukocyte telomere length at a level of genome-wide significance (P<5×10^{-8})\cite{22-24}. Recent studies have evaluated the relationship between these genetic proxies of telomere length and risk of cancer and found evidence suggesting longer genetically inferred telomere length is associated with increased cancer risk\cite{4-7}. The approach employed by these studies, Mendelian randomization, uses genetic variants associated with leukocyte telomere length as genetic instruments to investigate the relationship between leukocyte telomere length and RCC risk. For resulting effect estimates to have a valid causal interpretation, several conditions must hold: (1) the telomere length associated variants must be associated with telomere length in circulating leukocytes, (2) the telomere length associated variants should not be associated with other factors that are associated with telomere length and RCC risk and (3) the telomere length associated variants can only influence RCC risk by their effect on telomere length, that is they cannot have pleiotropic effects. An advantage of this approach is that it is not susceptible to the biases associated with measured telomere length as described above. A recent investigation surveying several chronic conditions suggested a
marginal positive association (P=0.01) between genetically predicted telomere length and RCC risk, although the sample size was smaller (N=2,461 RCC cases)[7].

In the present study, we evaluated RCC risk in relation to individual telomere length-related genetic variants and an aggregate genetic risk score (GRS) of telomere length associated genetic variants in a large sample of six RCC GWAS datasets combined by meta-analysis to investigate a potential etiologic relationship between telomere length and RCC risk. We evaluated whether a genetic profile that is associated with longer telomere length is associated with risk of overall RCC and RCC subtypes, and investigated potential modifiers of this relationship.
Material and Methods

The RCC GWAS meta-analysis included a total of 10,784 RCC cases and 20,406 controls of European ancestry from six independent scans conducted at the International Agency for Cancer Research (IARC) (two scans totaling 5,219 RCC cases and 8,011 cancer-free controls; analyzed as a combined dataset), the MD Anderson Cancer Center (MDA) (893 RCC cases, 556 cancer-free controls), the U.S. National Cancer Institute (NCI-1: 1,311 RCC cases, 3,424 cancer-free controls; NCI-2: 2,417 RCC cases, 4,391 cancer-free controls; analyzed separately) and the Institute of Cancer Research (UK) (944 RCC cases, 4,024 cancer-free controls)[25]. Cases were restricted to adults diagnosed with RCC, defined on the basis of the International Classification of Disease for Oncology 2nd and 3rd Edition topography code C64. Samples were genotyped on commercially available Illumina SNP microarrays (HumanHap 300, HumanHap 500, HumanHap 610, HumanHap 660w, HumanHap 1.2M, OmniExpress, Omni5M) after standard quality control metrics. High-quality genotypes were phased and imputation was performed using either MaCH (IARC) or IMPUTE2 (UK, NCI1, NCI2 and UK) with 1000 Genomes Project (Phase 1, Version 3) samples used as a reference panel for imputing missing genotypes. Protocols for studies participating in each GWAS were reviewed by the Institutional Review Boards of their respective institutions. All participants provided written informed consent. Further details on study design and methods have been previously reported[25].

For each study participant, genotypes were extracted for nine previously identified common single nucleotide polymorphisms (SNPs) associated with telomere length in circulating leukocytes (rs10936599, rs11125529, rs2736100, rs3027234, rs6772228, rs755017, rs7675998, rs8105767 and rs9420907). Telomere length associated SNPs not directly genotyped were extracted from imputed data for each scan (Supplementary Table 1)[25].
Risk of RCC was evaluated in relation to each of the nine telomere length associated variants. Association testing was conducted separately for each contributing dataset assuming a log-additive (trend) for the effect of the telomere length associated variants on RCC risk. Covariate adjustment differed by dataset and are as follows: 19 significant eigenvectors for IARC, age and two significant eigenvectors for MDA, study indicator variables for NCI1, sex and 3 significant eigenvectors for NCI2, and no covariate adjustment for the UK study. RCC association results for telomere length associated variants from each dataset were combined by meta-analysis using a fixed effects model. Cochran’s Q tests for heterogeneity were conducted to identify a lack of consistency across studies.

A GRS was calculated for the nine telomere length associated variants as follows:

$$GRS_i = \sum_{j=1}^{9} w_j x_{ij}$$

where GRS\(_i\) is the risk score for individual \(i\), \(x_{ij}\) is the number of telomere length increasing alleles for the \(j\)th telomere length associated variant and \(w_j\) is the weight or effect coefficient for each telomere length associated variant. A higher GRS value for an individual indicates longer genetically inferred telomere length. Previously published telomere length associated effect estimates (\(\beta\) values) scaled to estimated kilobases of telomere length per length increasing allele were used for \(w_j\)[22-24]. GRS association tests were conducted separately for each contributing study using the same covariates as the single SNP association tests previously described. Results from each study were merged by fixed effects meta-analysis and heterogeneity tests were conducted to detect potential departures from homogeneity. Additionally, sub-analyses by RCC subtype as well as analyses stratified by sex, body mass index (BMI), history of hypertension...
and smoking status were conducted to comprehensively assess the relationship between telomere length associated variants and RCC risk.

In addition to the GRS analysis, summary statistics from the nine telomere length associated variants were also combined in analyses using an inverse variance weighting method and a likelihood-based method[26]. Both methods use average summary association estimates for the telomere length associated variants with RCC risk to estimate the overall effect of telomere length on RCC risk. These methods produce similar estimates and precision as individual-level data, but have the advantage of using effect statistics from different studies. An online web tool by Burgess et al.[26] accessed at https://sb452.shinyapps.io/summarized/ on February 10, 2017 was used to calculate the inverse variance and likelihood-based estimates.

Tests of heterogeneity were performed to assess if a telomere length associated variant’s effect on RCC is proportional to its effect on telomere length. Additionally, MR-Egger regression models were fit to evaluate the potential for pleiotropic effects of variants[27].

Unless otherwise stated, statistical analyses and plotting were performed on a 64-bit build of R version 3.3.0 “Supposedly Educational”. Meta-analyses were performed using the R package metafor and Egger regression[27] was performed using the R package MendelianRandomization. All statistical tests were two-sided with P values less than 0.05 considered significant.
Results

Associations between the telomere length associated variants and RCC risk are reported in Table 1 and Supplementary Figure 1. Of the nine telomere length associated variants, five variants (rs10936599, rs2736100, rs9420907, rs8105767 and rs6772228) displayed evidence for an individual association with RCC risk (P<0.05) and three (rs10936599, rs2736100, rs9420907) were associated at Bonferroni corrected levels (P<0.006). This is substantially more than the number of telomere length variants associated with RCC risk that would be expected by chance (exact binomial P<0.0001). For all the telomere length-related variants associated with RCC, the allele related to longer telomere length was associated with an increased risk of RCC. There was no evidence for heterogeneity in effect estimates across studies.

We observed a highly statistically significant association between the telomere length GRS and RCC risk (OR=2.07 per predicted kilobase increase, 95% CI=1.70-2.53, P<0.0001, Figure 1), indicating longer genetically inferred telomere length is associated with increased RCC risk. In an analysis of GRS deciles, a generally monotonic trend across deciles was observed (Figure 2). After removing two telomere length variants from the GRS that were in linkage disequilibrium (LD) with RCC susceptibility loci reported in the RCC GWAS (rs10936599 in LD with rs10936602, and rs9420907 in LD with rs11813268; R² 0.59 and 0.76 in the CEU 1000 Genomes population, respectively[28, 29]), the reduced GRS effect estimate was attenuated but remained statistically significant (OR=1.73 per predicted kilobase increase, 95% CI=1.36-2.21, P<0.0001, Supplementary Figure 2).

A similar direct relationship between telomere length associated genetic variants and RCC risk was observed when applying summary statistic based approaches to our RCC cases and controls. The likelihood-based pooled estimate for a predicted kilobase increase in telomere
length is a 2.00 increase in the odds of developing RCC (95% CI=1.64-2.43, \(P<0.0001 \), Figure 3). Likewise, the inverse variance weighted method gave a similar effect estimate (OR=1.96, 95% CI=1.63-2.35, \(P<0.0001 \)). There was no significant heterogeneity when comparing the ratio of effect sizes of the genetic variants on telomere length to the effect sizes of the genetic variants on RCC risk \((P=0.08) \). Furthermore, results from MR-Egger regression estimated an intercept of -0.043 (95% CI=-0.133 0.047, \(P=0.4 \)), suggesting no significant evidence for directional pleiotropy (Supplementary Figure 3).

In analyses restricted to individual histologic subtypes, comparable associations were observed for each of the telomere length associated variants across RCC subtype (Supplementary Table 2). Likewise, similar telomere length associated GRS associations were observed for clear cell RCC (OR=1.93 per predicted kilobase increase, 95% CI=1.50-2.49, \(P<0.0001 \), Supplementary Figure 4), papillary RCC (OR=1.96, 95% CI=1.01-3.81, \(P=0.046 \), Supplementary Figure 5) and chromophobe RCC (OR=2.37, 95% CI=0.78-7.17, \(P=0.13 \), Supplementary Figure 6), although the latter finding did not reach statistical significance. Analyses conducted across strata of sex, BMI, history of hypertension and smoking status did not identify statistically significant evidence of effect modification by these factors (Supplementary Figures 7–10).
Discussion

Our findings suggest that an excess of telomere length-related variants is associated with RCC risk and, in aggregate, a genetic risk score predicting longer telomere length in peripheral blood leukocytes is strongly associated with increased RCC risk. The association between longer genetically-predicted telomere length and RCC risk remained statistically significant even after removing two telomere length associated variants highly correlated with GWAS-identified RCC risk variants from the telomere length GRS, indicating additional telomere length associated SNPs are associated with RCC risk beyond these two potentially influential SNPs. We observed no significant differences in the overall telomere length GRS and RCC association across common RCC subtypes, although our power to detect heterogeneity in associations across subtypes was limited. Future studies with larger collections of chromophobe and papillary RCC cases are needed to confirm these associations with telomere length variants by subtype.

With 10,784 RCC cases and 20,406 cancer-free controls, this study is the largest to date to assess the relationship between telomere length and RCC risk. Rather than directly measuring leukocyte telomere length, our study used genetic variants highly associated with leukocyte telomere length as a surrogate of telomere length to assess the relationship with RCC risk. Our genetic approach has several advantages; it is not susceptible to potential biases due to the timing of specimen collection in relation to diagnosis, potential confounding, or differences in pre-analytical specimen processing.

While many lines of evidence in our analysis suggest a clear and robust association between longer telomere length and RCC risk, perhaps the main limitation of our approach is in estimating the magnitude of this association. The telomere length associated variants used in this analysis originated from GWAS studies of leukocyte telomere length, where telomere length was
measured by qPCR[22-24]. These studies then use correlations between qPCR measured
telomere length and Southern blot from other laboratories to extrapolate the base pair change in
telomere length associated with each variant allele. While these conversions might not be
together accurate, we chose to use kilobase change in telomere length as weights in our telomere
length GRS to facilitate combining variants discovered in different studies into a homogenous
telomere length GRS. As such, measurement error may be present in the reported effect
estimates; however, the association P values remain valid.

Renal epithelial cell telomere length would perhaps be the best means to assess the
relationship between telomere length and RCC risk. Ideally, genetic surrogates of renal epithelial
cell telomere length would be available as instruments in our current analysis, but as of
publication no genetic variants have been reported to be associated with renal cell telomere
length. A prior study has demonstrated that telomere length measurements in leukocytes and
non-malignant renal tissue are correlated, with a Pearson correlation coefficient of 0.44[30]. This
relationship between leukocyte telomere length and renal cell telomere length suggests the most
likely biological mechanism linking increased leukocyte telomere length to RCC risk may be
longer correlated renal epithelial cell telomere length. Longer renal telomere length may promote
renal tumor growth by increasing replicative potential of renal epithelial cells, although further
studies are needed to confirm this hypothesis and alternative explanations are possible. If
validated, our findings indicating longer telomere length as a risk factor for RCC may inform
clinicians of potential RCC risks associated with administering prolonged treatments with
telomerase activating properties (e.g. androgen therapy[31]), particularly in high-risk RCC
populations. Additionally, telomere length GRSs, in combination with other genetic, clinical and
risk factor data, may hold future clinical value for the development and application of RCC risk
prediction models in support of a “precision prevention” paradigm of targeted disease prevention.
Conclusions

Our investigation adds to the growing body of evidence indicating some aspect of telomere length is important for the development of a variety of common cancer types suggesting clinicians weigh the potential increases in cancer risk when considering treatments with telomerase activating properties. Future studies are needed to decipher which components of telomere biology, whether it be telomere length, telomerase activity or an altogether unknown mechanism, are biologically important in oncogenesis. Such mechanistic insight will lead to improved risk modeling and identify potentially promising targets for drug development.
Acknowledgements

Special thanks to the participants, families and staff who made this research possible. This study was funded by support from the following institutions:

Intramural research program of the National Cancer Institute

American Cancer Society

Masaryk Memorial Cancer Institute (MMCI) in Brno was supported by MH CZ - DRO (MMCI, 00209805).

MD Anderson study GWAS was supported in part by the NIH (grant R01 CA170298) and the Center for Translational and Public Health Genomics, Duncan Family Institute for Cancer Prevention and Risk Assessment, The University of Texas MD Anderson Cancer Center.

The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through contracts HHSN268201600018C, HHSN268201600001C, HHSN26820160002C, HHSN26820160003C, and HHSN26820160004C.

The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the National Institutes of Health.

The authors declare no relevant conflicts of interest.
References

Table and Figure Legends

Table 1. Associations of telomere length associated variants with RCC risk.

Figure 1. Forest plot for associations of the telomere length associated GRS with RCC risk. Odds ratios are scaled to predicted kilobase increase in telomere length. Combined association \(P<0.0001 \). Heterogeneity \(P=0.96 \).

Figure 2. Associations of telomere length GRS decile with RCC. Dashed line represents the baseline for the reference decile (lowest decile). Error bars represent 95% confidence intervals around the odds ratio association for each GRS decile and RCC.

Figure 3. The effect of each variant on telomere length and RCC risk. Estimates for the SNP--telomere and SNP--RCC associations are presented in Table 1. Error bars around each estimate are 95% confidence intervals around the \(\beta \) estimate. A best fit regression line (dashed line) and 95% confidence interval (shaded region) are plotted using the likelihood based estimate (OR=2.00, 95% CI=1.64-2.43, \(P<0.0001 \)).