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A B S T R A C T

Reconstructing the spatial distribution of early eukaryotes in palaeoenvironments through Proterozoic sedi-
mentary basins provides important information about their palaeoecology and taphonomic conditions. Here, we
combine the geological context and a reconstruction of palaeoenvironmental redox conditions (using iron spe-
ciation) with quantitative analysis of microfossil assemblages (eukaryotes and incertae sedis), to provide the first
palaeoecological model for the Atar/El Mreïti Group of the Taoudeni Basin. Our model suggests that in the late
Mesoproterozoic – early Neoproterozoic, the availability of both molecular oxygen and nutrients controlled
eukaryotic diversity, higher in oxic shallow marginal marine environments, while coccoidal colonies and benthic
microbial mats dominated respectively in anoxic iron-rich and euxinic waters during marine highstands or away
from shore where eukaryotes are lower or absent.

1. Introduction

The mid-Proterozoic (∼1.8–0.8 billion years ago) is often called
‘the boring billion’ mostly due to the relative stability of the carbon
isotope record (Buick et al., 1995; Brasier and Lindsay, 1998) and little
changes in atmospheric and ocean oxygen levels (e.g. Kah et al., 1999,
2004; Kah and Bartley, 2011 for review). However, the carbon isotope
record changes from uniform early Mesoproterozoic (pre-1.3 Ga)
δ13Ccarb values of ∼0‰, to mid-Mesoproterozoic (∼1.3 to ∼1.2 Ga)
values between −0.5‰ and +2.0‰, to late Mesoproterozoic (∼1.2 to
∼1.0 Ga) values between −2.5‰ and +4.0‰. This implies changes in
ocean chemistry, bioproductivity and tectonics, and may partly reflect
progressive eukaryotic diversification (Kah et al., 1999; Bartley and
Kah, 2004). Evidence of a more dynamic situation is now accumulating,
in terms of tectonics (Roberts, 2013) with the formation and breakup of
the supercontinents Nuna ∼2.0–1.5 Ga ago (Evans, 2013) and Rodinia
∼1.3–0.9 Ga ago (Karlstrom et al., 2001; Li et al., 2008; Johansson,
2014), redox conditions showing spatial and temporal heterogeneity
(Poulton et al., 2010; Gilleaudeau and Kah, 2013b, 2015; Guilbaud
et al., 2015), and patterns of biotic diversification (Knoll et al., 2006;

Javaux, 2011).

1.1. Mid-Proterozoic ocean

The mid-Proterozoic ocean is envisaged to have been characterized
by ferruginous (anoxic and Fe-containing) deeper waters, euxinic (an-
oxic and sulphidic) mid-depth waters adjacent to productive con-
tinental margins, and oxygenated shallow waters (Poulton et al., 2010;
Poulton and Canfield, 2011; Planavsky et al., 2011). Mid-Proterozoic
eukaryotes would have found suitable ecological niches in nearshore
environments as suggested by some bathymetric-dependent palaeoe-
cological distributions of fossilized microbiota (Butterfield and
Chandler, 1992; Buick and Knoll, 1999; Javaux et al., 2001; Javaux and
Knoll, 2016). N2-fixing photoautotrophic bacteria would have been
favoured over eukaryotic algae where fixed-N was scarcer and/or sul-
phide impinged in the photic zone (Johnston et al., 2009; Gilleaudeau
and Kah, 2013b). On the continental shelf, the balance between euxinic
and ferruginous conditions may have been highly heterogenous in
space and time after ∼1.9 Ga (Poulton et al., 2010; Poulton and
Canfield, 2011; Gilleaudeau and Kah, 2015; Planavsky et al., 2011). It
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was proposed that the extent of euxinic conditions may have hampered
trace metal micronutrient availability, and Mo in particular would have
been potentially limiting for N fixation in the mid-Proterozoic ocean
(Anbar and Knoll, 2002; Gilleaudeau and Kah, 2013b). This in turn may
have placed constraints on the nitrogen required for eukaryotic meta-
bolisms, hence moderating eukaryote evolution (Anbar and Knoll,
2002). However, the mid-Proterozoic ocean was not globally euxinic
but predominantly ferruginous (anoxic and Fe2+-rich) in deep water
environments with possible euxinia along continental margins (Poulton
et al., 2010; Planavsky et al., 2011; Scott et al., 2013). Although the
debate on low Mo limitations on N-fixation is still ongoing (e.g. Zerkle
et al., 2006; Godfrey et al., 2013), and despite the relatively limited
spatial extent of euxinia, Mo availability may have been low enough to
limit N-fixation (Lyons et al., 2014). By contrast, the bioavailability of
Zn, which is essential for a wide range of cellular functions, has been
suggested to have been similar to modern levels and hence not limiting
(Scott et al., 2013).

1.2. Pattern of early eukaryote diversification

Common explanations for the relatively moderate diversity of early
eukaryotes in mid-Proterozoic oceans (Knoll et al., 2006; Javaux, 2011;
Riedman et al., 2014; Cohen and MacDonald, 2015), following their
Archean or Palaeoproterozoic origin and preceding their late Neopro-
terozoic increasing diversification, concern the widespread persistence
of redox stratification in the ocean and related limitation of nutrients
(Anbar and Knoll, 2002; Planavsky et al., 2011), and/or a low predation
pressure by protists or animals (Butterfield, 2007, 2015; Porter, 2016;
Javaux and Knoll, 2016). Although the interpretation of early eu-
karyotic microfossils as members of crown or stem groups may be

difficult, and despite possible sampling and preservation bias, a sharp
increase in taxonomic richness (number of species) at the Ediacaran
seems robust. The palaeoenvironmental conditions under which the
first eukaryotic cells and associated metabolisms emerged are still un-
clear, although the evolution and diversification of early eukaryotes are
generally linked to the availability of some molecular oxygen required
to synthesize sterol in the cell membrane (Fenchel, 2012). Molecular
and ultrastructural studies confirm that this is the case for crown group
eukaryotes (Stairs et al., 2015). However, a growing body of work
suggests that extensive oxygenation may not have been a requirement
for the diversification of eukaryotes. Marine oxygen concentrations may
have been high enough in local settings, perhaps close to cyanobacterial
mats (Fischer, 1965; Hallmann and Summons, 2010; Kendall et al.,
2010; Javaux, 2011; Knoll, 2014; Riding et al., 2014), and/or early
eukaryotes may have been able to tolerate low marine oxygen con-
centrations (Butterfield, 2009; Javaux and Knoll, 2016). Stem eu-
karyotes may have originated and evolved in dysaerobic or subaerobic
environments and could have been facultative anaerobic protists
(Müller et al., 2012).

1.3. Purpose of this study

Here, we test the previously proposed hypotheses about the ecolo-
gical distribution of eukaryotes in different depositional redox en-
vironments (e.g. Butterfield and Chandler, 1992; Buick and Knoll, 1999;
Johnston et al., 2009; Javaux and Knoll, 2016), at the close of the late
Meso – early Neoproterozoic, after the emergence of the firsts crown
group eukaryotes and during the time period of their diversification
(see Knoll, 2014; Butterfield, 2015; Cohen and MacDonald, 2015 for
review). The late Mesoproterozoic – early Neoproterozoic Atar/El

Fig. 1. Simplified geology of the Taoudeni Basin. Modified after Beghin et al. (2017) and modified from BEICIP (1981). Data from TOTAL (pers. comm., 2005). Locator map indicates
Mauritania (in grey) in Africa and the studied area (rectangle) described on the main map.

J. Beghin et al. Precambrian Research 299 (2017) 1–14

2



Mreïti Group from the Taoudeni Basin, is known to bear exquisitely
preserved microbial mats and organic-walled microfossils including
unambiguous eukaryotes (Beghin et al., 2017).

2. Geological setting of the Taoudeni Basin

The Proterozoic and Phanerozoic strata of the Taoudeni Basin
(Fig. 1) unconformably overlie an Archean-Palaeoproterozoic base-
ment, the West African Craton (WAC), consisting of Mesoarchean
(3.1–2.8 Ga) amphibolites and quartzo-feldspathic gneisses intruded by
Palaeoproterozoic granitoids (2.0–2.2 Ga Eburnean Orogeny), and
volcano-sedimentary deposits (Trompette and Carozzi, 1994;
Villeneuve and Cornée, 1994; Lahondère et al., 2003; Schofield et al.,
2006; Schofield and Gillespie, 2007). Since ca. 1.7 Ga, the basin has not
experienced magmatic or major tectonic deformation, with the excep-
tion of the late Triassic opening of the North Atlantic Ocean (Clauer
et al., 1982; Villeneuve and Cornée, 1994; Verati et al., 2005; Rooney
et al., 2010). Proterozoic sedimentation started with tectonic reactiva-
tion of (NNE-SSW) basement normal faults during a phase of active
extension (Benan and Deynoux, 1998; Rahmani et al., 2009). Horsts
and grabens determined the lateral extent of the first Proterozoic de-
posits: the Char/Douik Group (Fig. 2) (Bronner et al., 1980; Benan and
Deynoux, 1998). The overlying Atar/El Mreïti Group, studied here, was
deposited unconformably on a tectonically stable craton and deposition
ended with peneplanation across the WAC (Bertrand-Sarfati and
Moussine-Pouchkine, 1988; Benan and Deynoux, 1998; Kah et al.,
2012; Gilleaudeau and Kah, 2013a,b).

The type section for the Taoudeni Basin was previously described in

the Adrar region of the Mauritanian section (the Char and the Atar
groups), in the western part of the basin (Trompette, 1973). Corre-
sponding units at the northern central edge (Hank and Khatt areas) are
respectively the Douik and the El Mreïti groups (Figs. 1 and 2). Most
formations in the Atar/El Mreïti Group were constrained by a single age
between 890 ± 35 Ma, Unit I-5 and 775 ± 52 Ma, Unit I-10 (Fig. 2).
However, these Rb-Sr ages likely represent diagenetic mineralization
possibly due to the Pan African collision (Rooney et al., 2010). The
Atar/El Mreïti Group was dated at ∼1.1 Ga by Rooney et al. (2010)
using Re/Os geochronology and at ∼1.2 Ga based on carbon isotope
(δ13Ccarb) chemostratigraphy (Kah et al., 2009, 2012). The microfossil
assemblage also confirmed a late Meso – early Neoproterozoic (Tonian)
age (Beghin et al., 2017).

3. Material and methods

3.1. Sampling

Four cores were drilled on the northern margin of the Taoudeni
Basin by Total S.A. in 2004 (Rooney et al., 2010). The cores were
named from the east to the west, S1, S2, S3 and S4 (Fig. 1). S1 was not
studied here because of contact metamorphism resulting from dolerite
intrusions (Fig. 1). S2 was sampled (n = 143) by E. J. Javaux in 2006 in
Total laboratory and is described here in detail based on data from
Total and personal observation of the core (Fig. 3 and Section 4.1). All
S3 samples (n = 5) come from the Aguelt el Mabha Formation (lami-
nated black and grey shale). Samples from S4 (n = 18) come from the
following three units: Unit I-3/Khatt Formation, Unit I-4/En Nesoar
Formation and Unit I-5/Tourist and Aguelt el Mabha formations; all S4
samples are dark grey or black shale. In core S2, we recognize five
formations through the El Mreïti Group (Fig. 3), with two formations
(En Nesoar and Touirist) chronostratigraphically constrained by
Rooney et al. (2010) (Fig. 2, see also Beghin et al., 2017). According to
previous studies (Kah et al., 2012; Gilleaudeau and Kah, 2013a,b,
2015), sediment of the El Mreïti Group (S2 core) was deposited under
shallow water in an epicratonic (intracratonic) marine environment,
while sediment of the Atar Group (S4 core) was deposited under
shallow water in a pericratonic marine environment.

3.2. Redox reconstruction

Palaeoenvironmental and water column redox conditions were re-
constructed using the iron speciation technique (Poulton and Canfield,
2005), whereby highly reactive iron (FeHR), which includes carbonate-
associated iron (Fecarb), ferric (oxyhydr)oxides (Feox), magnetite (Femag)
and iron sulphides (Fepy), is quantified against total iron (FeT). A total
of 158 samples (S2 = 135, S3 = 5, S4 = 18) were leached with Na-
acetate, Na-dithionite, and ammonium oxalate to extract sequentially
Fecarb, Feox, and Femag, respectively (Poulton and Canfield, 2005). Fepy
was determined by chromous chloride distillation (Canfield et al.,
1986). FeT extractions were performed on ashed samples (8 h at 450 °C)
using a HNO3-HF-HClO4 digestion. Iron concentrations were measured
by AAS, and replicate extractions gave a RSD of 8.97% (Fecarb), 3.28%
(Feox), 6.68% (Femag), 4.58% (Fepy), and 3.44% (FeT). Prior the calcu-
lation of highly reactive to total (FeHR/FeT) and pyrite to highly reactive
(Fepy/FeHR) iron ratios, the samples were screened to ensure sufficient
total Fe, since low FeT carbonate-rich samples with FeT < 0.5 wt% are
not suitable for reconstructing redox conditions and can give erroneous
results (Clarkson et al., 2014). Although carbonate-containing shale is
dominant in the lower Aguelt el Mabha Formation in S2, FeT was above
this threshold for all the samples analyzed in this study.

The identification of water column anoxia via FeHR/FeT ratios is
based on extensive calibration in modern (Canfield et al., 1986;
Raiswell and Canfield, 1998; Poulton and Raiswell, 2002) and ancient
(Raiswell et al., 2001; Poulton and Raiswell, 2002) marine settings.
Sediments deposited under anoxic water columns are typically enriched

Fig. 2. Stratigraphy of Supergroups 1 (Hodh) and 2 (Adrar) of the Taoudeni Basin.
Modified after Beghin et al. (2017) and modified after Rooney et al. (2010). Rb-Sr geo-
chronology data from Clauer (1976, 1981), Clauer et al. (1982), Clauer and Deynoux
(1987). Re-Os geochronology datings from Rooney et al. (2010). Stratigraphic nomen-
clature after Trompette (1973) and Lahondère et al. (2003). Sinusoidal dashed lines re-
present unconformities noted D1, D2, D3, and D4 (Lahondère et al., 2003). Linear dashed
lines represent lateral changes.
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in FeHR, resulting in FeHR/FeT ≥ 0.38 (Poulton and Canfield, 2011). By
contrast, sediments deposited under oxic water column conditions are
depleted in those minerals, resulting in FeHR/FeT ≤ 0.22 (Poulton and
Canfield, 2011). Values between these values are considered equivocal

(Poulton and Canfield, 2011), and may represent anoxic deposition
where the water column enrichment of FeHR has been masked by rapid
sedimentation, or where some unsulfidized FeHR has been converted to
Fe-rich sheet silicates during early diagenesis (Poulton and Raiswell,

Fig. 3. Generalized lithostratigraphic column
of the S2 core – El Mreïti Group (Supergroup
1 – Hodh), Taoudeni Basin, Mauritania
modified after Beghin et al. (2017). Right
column shows notable features (≥20%, up to
95%, of relative abundance excepted for
Arctacellularia tetragonala and Siphonophycus
spp. which are ≥5%; relative abundance of
microfossil specimens is calculated without
the total number of microbial mats; ubiqui-
tous genera such as Leiosphaeridia and Syn-
sphaeridium are not represented). Quantita-
tive data detailed in Supplementary Table 2.
See also Fig. 10. ‘ICIs’ represents horizons
bearing numerous specimens showing inner
opaque organic inclusions or intracellular
inclusions.
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2002; Poulton et al., 2010; Cumming et al., 2013). For samples that
were clearly deposited from anoxic bottom waters, the extent of pyr-
itization of the highly reactive Fe pool can be used to distinguish eu-
xinic (Fepy/FeHR ≥ 0.8) from ferruginous (Fepy/FeHR ≤ 0.7) water
column conditions (Poulton et al., 2004; Poulton and Canfield, 2011).
These ratios are used to reconstruct the average chemical composition
of bottom waters, over the time interval represented by a sample, from
the sediment-water interface up to the bottom of the chemocline, which
may vary in depth.

3.3. Microfossil analyses

Of the 166 samples previously studied for microfossil diversity
(Beghin et al., 2017), a total of 61 samples (S2 = 47, S3 = 5, S4 = 9)
were analyzed quantitatively. A sample set was defined for each core,
based on distinct lithofacies and palynofacies for each formation, with
the aim of covering all the rock record diversity (Beghin et al., 2017)
and to avoid any statistical bias. A statistical threshold of minimum 300
organic-walled microfossils (e.g. Moore et al., 1991; Jansonius and
McGregor, 1996) to be counted per samples was defined (including
acritarchs, multicellular forms, and filamentous forms). The counting
was ended when a plateau of taxonomic richness was reached (i.e. the

number of species did not increase anymore with the number of spe-
cimens counted). The statistical threshold was not reached for 4 sam-
ples in S2, because of a very low occurrence of microfossils, and 11
samples in S2 were barren (Fig. 3). In other cases, more than 300
specimens were counted to reach the plateau. The biological affinities
considered in this study were previously discussed in Beghin et al.
(2017) and summarized in Supplementary Table 1. The diversity is
reflected both by the species richness and the relative abundance. The
species richness (S) is the total number of species observed in a sample.
The relative abundance (%) is the total number of specimens counted
for a selected species (noted n) or a group of species (e.g. eukaryotes or
incertae sedis) in a sample, divided by the total number of all the spe-
cimens, whatever the species, counted in this sample (noted N) and
multiplied by 100. The Simpson’s Index of Diversity (1 − D) is calcu-
lated based on the Simpson’s Index (D). The Simpson’s Index is calcu-
lating following the formula: = ∑ ( )D n

N

2
, with n and N as defined

above. The value of the Simpson’s Index of Diversity (1 − D) ranges
between 0 and 1, and the higher the values indicating a greater sample
diversity (see Supplementary Table 2).

Fig. 4. Generalized lithostratigraphic column of the S2 core – El Mreïti Group (Supergroup 1 – Hodh), Taoudeni Basin, Mauritania modified after Beghin et al. (2017). Iron speciation data
of S2: FeHR/FeT and Fepy/FeHR.
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4. Results

4.1. Description of the S2 core (El Mreïti Group)

The Khatt Formation (216.2–208.2 m) mainly consists of grey,
green and brown silty to sandy shale interbedded with medium-grained
sandstone (Fig. 3); with some occurrences of glauconite and pyrite.
Abundant cross-bedding (hummocks, ripples, and waves) and gutter
casts were observed. The En Nesoar Formation (208.2 to 184.72–80 m)
mainly consists of grey, green and brown (rarely red, sometimes car-
bonate-containing) shale and laminated clayey siltstone interbedded
with organic-rich layers or black shale, which are commonly pyritized
(TOC values, at the bottom, from 2.1 to 13.6 wt%, Rooney et al., 2010).
Occasional ripples, gutter casts and wavy bedding were also noted. The
Touirist Formation (184.72–80 to 126.80 m) mainly consists of fine
wavy light-grey to dark-grey laminated clayey dolomite or limestone,
interbedded with fine layers of green clay and decimeter to meter thick
finely laminated black shale (TOC values from 4.88 to 22.6 wt%,
Rooney et al., 2010). The uppermost black shale of the Touirist For-
mation recorded some local slumps. The top of the Touirist Formation
contains light-grey planar and wavy laminated carbonate and greyish
green shaly carbonate (Fig. 3). The Aguelt el Mabha Formation
(126.80–33.40 m) is mainly characterized by red or wine-coloured,
brown and green carbonate-containing shale or clayey limestone,
mudstone and very fine-grained siltstone (Fig. 3). Gutter casts and
ripples were abundant in the middle part of this formation
(∼100–80 m) where red or wine-coloured carbonate-containing shale
with thin lenticular calcareous bodies or planar stromatolites were
observed. The Gouamîr Formation (33.40 m to the top) consists mainly
of interbedded laminated carbonate-containing green silty shale and
fine siltstone or grainstone and preserves lenticular bedding, ripples,
hummocky cross-stratification, gutter casts, discrete micro slumps and
wavy-bedding. The upper part (∼10 m) of the Gouamîr Formation
shows bright-white massively bedded carbonates.

4.2. Iron speciation

Shale from the Khatt Formation (S2) has FeHR/FeT above 0.22, with
all but two samples being above 0.38 (mean = 0.41, n = 8). The ratio
of Fepy/FeHR is more variable but all samples are below 0.60 (Fig. 4).
The ratios of both FeHR/FeT and Fepy/FeHR are highly variable in the En
Nesoar Formation (0.17–1.0 and 0.0–0.85, respectively). FeHR/FeT is
commonly>0.38 in the Touirist Formation, with some samples falling
between 0.22 and 0.38 (range = 0.26–0.99; Fig. 4), while Fepy/FeHR is
highly variable (0.01–0.82). In more detail, green shale at the base of
the Touirist Formation (∼185–155 m depth) has low Fepy/FeHR ratios
(< 0.08), while black shale from the upper part (∼140–155 m depth)
tends to have higher, but variable, Fepy/FeHR ratios, with two samples
above 0.8 (Fig. 4). Shale from the Aguelt el Mabha Formation (S2) has
FeHR/FeT ratios< 0.38 (with some<0.22) in the lower section, while
upper section shows a spread from<0.22 to> 0.38 (Fig. 4). The ratio
of Fepy/FeHR tends to be low, with a few samples having higher ratios
(up to a maximum of 0.55).

For core S3, only limited samples were available. Five samples from
the Aguelt el Mabha Formation were analyzed, giving intermediate
FeHR/FeT ratios of 0.25–0.34 (mean = 0.29), while ratios of Fepy/FeHR
were very low (0.0) for each sample (not illustrated, see Supplementary
Table 3).

In core S4, FeHR/FeT ratios for units I-3 and I-4 are consistently well
above 0.38 with Fepy/FeHR ratios that vary between 0.47 and 0.9
(Fig. 5). For Unit I-5 (S4) FeHR/FeT ratios are significantly lower (be-
tween 0.12 and 0.55, but mostly at the lower end) while Fepy/FeHR
ratios are also lower (< 0.47).

4.3. Quantitative microfossils analysis

The El Mreïti Group (S2) reveals a decreasing trend in total species
richness, from the Khatt Formation to the top of the Touirist Formation
(Fig. 6; Supplementary Table 2). The Khatt Formation records the
highest total species richness (S = 32) at 212.66 m depth (green shale).
The Khatt assemblage, in addition to ubiquitous species such as Leio-
sphaeridia spp., Obruchevella spp., and Siphonophycus spp. (see Beghin
et al., 2017), is mainly comprised of filamentous (Arctacellularia tetra-
gonala) and coccoidal colonies (Eomicrocystis malgica, Ostiana micro-
cystis and Synsphaeridium spp.), pseudoseptate unbranched filamentous
sheath (Tortunema wernadskii), and botuliform vesicles (Navifusa ma-
jensis and several morphotypes of Jacutianema solubila). At the transi-
tion between the Khatt and En Nesoar formations (black shale), the
total species richness decreases to 5–9, and then increases to 20 species
at the top of En Nesoar (green shale) at 188.6 m depth. The En Nesoar
assemblage, in addition to ubiquitous species such as Leiosphaeridia
spp., Obruchevella spp., Siphonophycus spp., and Synsphaeridium spp., is
mainly composed, at the base, of pyritized microbial mats with iron
sulphide grains infilling filamentous sheaths and, at the top, by rela-
tively large (> 70 µm in diameter) spheroidal vesicles (Leiosphaeridia
tenuissima and L. jacutica) and abundant large process-bearing acri-
tarchs (Trachyhystrichosphaera aimika, up to 2–25% of the assemblage,
and T. botula). The Touirist Formation (black and carbonate-containing
green shale) records a lower total species richness to 5–9. The Touirist
assemblage, in addition to ubiquitous species such as Leiosphaeridia
spp., Siphonophycus spp. and Synsphaeridium spp., is dominated, in the
middle part, by Eomicrocystis malgica (25–95%) and, in the upper part,
by microbial mats with pyritized filamentous sheaths (25–35%). No
microfossils were observed at the top of the Touirist Formation (car-
bonate-containing green shale and light-grey carbonate) and in the
lower part of the Aguelt el Mabha Formation (carbonate-containing red
shale with lenticular bodies), with the exception of three samples (2–3
species, mainly poorly preserved very thin-walled spheroidal vesicles)
at the base of the Aguelt el Mabha Formation (at 122.78 m, 79.59 m
and 80.03 m depth). The green shaly section of the Aguelt el Mabha
Formation (70–80 m depth) records a new increase in the total species
richness (9–11 species) dominated by ubiquitous species such as Leio-
sphaeridia spp., Siphonophycus spp. and Synsphaeridium spp. The Aguelt
el Mabha Formation (5 samples of grey shale) from the S3 core also
records a maximum of 11 species (at 123.37 m and 61.27 m depth) and,
in addition to ubiquitous species such as Leiosphaeridia spp., Siphono-
phycus spp., and Synsphaeridium spp., is mainly composed of Leio-
sphaeridia kulgunica (spheroidal vesicles with a circular opening: a py-
lome interpreted as an excystment structure), L. crassa (showing a
medial split also interpreted as an excystment structure), spheroidal
vesicles including another vesicle (Pterospermopsimorpha insolita), and
to a lesser extent of botuliform vesicles (Navifusa majensis) (see
Supplementary Table 2).

The Atar Group (S4) shows a total species richness which is mod-
erately high and steady throughout the core (units I-3, I-4, and I-5;
dark-grey or black shale), from 10 to 21 species (Fig. 7). The Atar Group
assemblage, in addition to ubiquitous species such as Leiosphaeridia
spp., Siphonophycus spp. and Synsphaeridium spp. which are present
through the core, is mainly composed at the base (units I-3 and I-4) of
Arctacellularia tetragonala, Chlorogloeaopsis spp., several morphotypes of
Jacutianema solubila, and Navifusa majensis and at the upper part (units
I-4 and I-5), of Arctacellularia tetragonala, Obruchevella spp. and Tortu-
nema spp. (Supplementary Table 2). Regarding the occurrence of the
following eukaryotes and incertae sedis, three morphotypes of Jacutia-
nema solubila, Chlorogloeaopsis contexta and Tortunema spp. and also
some dominant species, Unit I-3 and to a lesser extent I-4 show simi-
larities in the assemblage composition with the coeval epicratonic Khatt
Formation (Supplementary Table 2).

Inner opaque organic inclusions (spheroidal or elongate) were nu-
merously observed in several specimens, especially in three distinct
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horizons of the S2 core at 212.66–77 m and 211.24 m (1–2% of speci-
mens, mainly A. tetragonala) and 188.6 m (∼5% of specimens, mainly
T. aimika) depth (see Fig. 3: intracellular inclusions or ICIs), where
preservation is exquisite.

5. Discussion

5.1. Marine sedimentary depositional environments (El Mreïti Group)

The El Mreïti Group is defined by several sedimentary depositional
environments (Lahondère et al. 2003; Kah et al., 2012; Gilleaudeau and
Kah, 2013a,b, 2015). The Khatt Formation was deposited in facies
ranging from fluvial-deltaic to marine tidal-flat to shallow marine (Kah
et al., 2012), with occasional tempestites (Lahondère et al., 2003). The

En Nesoar Formation comprises shallow subtidal marine sediments
deposited during a marine transgression (Kah et al., 2012) or during
subsidence when compared to the underlying Khatt Formation
(Lahondère et al., 2003). Sediment from the S2 core likely indicate
deposition of the En Nesoar Formation under lower energy than the
Khatt Formation and under higher energy than the Touirist Formation,
as also suggested by the presence of columnar (Tungussia sp. or Inzeria
sp.) stromatolites reported by Lahondère et al. (2003) and Kah et al.
(2012). The Touirist Formation is interpreted as a predominantly
shallow-marine environment deposited under the fair-weather wave
base (Kah et al., 2012; Gilleaudeau and Kah, 2013a) during the most
extensive flooding of the WAC (Gilleaudeau and Kah, 2013a). More-
over, coniform (Conophyton-Jacutophyton sp.) stromatolites of the
Touirist Formation (Lahondère et al., 2003; Kah et al., 2012) or Unit-I5

Fig. 5. Iron speciation data of S4: FeHR/FeT and Fepy/FeHR.
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(Kah et al., 2009, 2012) suggest a deeper (lower energy but still in the
photic zone) depositional environment during marine highstands with
little or no sediment influx compared to the En Nesoar Formation. The
overlying Aguelt el Mabha Formation, according to Kah et al. (2012),
represents a more proximal facies (planar stromatolites, this study),
where shallow-marine carbonate records increasing siliciclastic sedi-
mentation (Fig. 3), which contrasts with earlier models interpreting this
formation as being an inter-stromatolitic deposit (Bertrand-Sarfati and
Moussine-Pouchkine, 1992). These shallow-water facies would have
been deposited after a major regression which may have occurred at the
transition (see Fig. 3, carbonates at 135 m depth) from the Touirist to
Aguelt el Mabha Formation (Kah et al., 2012; Gilleaudeau and Kah,
2013a). The Aguelt el Mabha Formation shows characteristics of re-
stricted environments (inner shelf basins) in an epicratonic setting
suggesting a complex palaeogeography (Lahondère et al., 2003;
Gilleaudeau and Kah, 2013a).

5.2. Palaeoredox reconstruction

The dominantly anoxic ferruginous signal of the Khatt Formation
(Fig. 4), with two samples being equivocal, is not expected for this

environment with high wave energy (interpreted as fluvial-deltaic to
marine tidal-flat). This formation should rather display an oxic signal.
The Taoudeni Basin has not suffered significant post-depositional me-
tamorphism away from the contact areas with mafic intrusions (Rooney
et al., 2010; Gilleaudeau and Kah, 2013b, 2015), but Gilleaudeau and
Kah (2013a) reported intense secondary mineralization in the Khatt
Formation resulting from diagenetic fluids. This may have altered the
geochemical signals making them difficult to interpret. However, there
is no evidence of hydrothermal circulation or alteration in our rock
material. Diagenetic remobilization of Fe between the non-sulfidic FeHR
pools is expected but would not change much the primary signal. Late
sulfidation is probably negligeable as little or no acid volatile sulphide
(AVS) was extracted during lab procedure. The excellent preservation
state of organic-walled microfossils in these samples suggests that the
primary signal is not influenced by secondary oxidation. The ferrugi-
nous signal of the Khatt Formation is here probably a primary sig-
nature. In such proximal environments (Khatt Formation), local en-
richments in highly reactive iron (due to the proximity to the source),
without invoking or requiring anoxia, have to be taken into con-
sideration. However, this is speculative as the level of description of the
Khatt Formation is limited by the absence of marker beds. The majority

Fig. 6. Generalized lithostratigraphic column of the S2 core – El Mreïti Group (Supergroup 1 – Hodh), Taoudeni Basin, Mauritania modified after Beghin et al. (2017). Quantitative
microfossils analyzis of S2: species richness (n =) and relative abundance (%) of unambiguous eukaryotes and microfossils of an unknown biological affinity (incertae sedis). Relative
abundance of microfossil specimens is calculated without the total number of microbial mats. Microbial mats are not counted in the total species richness. Relative abundance of microbial
mats is calculated separately (see Supplementary Table 2).
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of samples of the En Nesoar Formation indicate anoxic deposition, with
fewer samples that give an equivocal or oxic signal. Many of the anoxic
samples have relatively low Fepy/FeHR, indicating ferruginous condi-
tions, but with some suggestion for the development of bottom water
euxinia, particularly in the lower portion of the formation (Fig. 4).
During the most extensive flooding of the WAC, the Touirist Formation
also records dominantly anoxic ferruginous conditions, with possible
occasional euxinia (Fig. 4); while Gilleaudeau and Kah (2015) reported
both oxic and anoxic but mainly euxinic conditions. After the major
regression at the transition between the Touirist and Aguelt el Mabha
Formations (∼135 m depth), the Aguelt el Mabha Formation records
both oxic and anoxic and iron-rich conditions, but with many samples
being equivocal (Fig. 4). Oxic conditions in the Aguelt el Mabha For-
mation (S2 core) are more clearly prevalent at the base (carbonate-
containing shale), with the lowest FeHR/FeT ratio of 0.08 recorded in a
sample where thin lenticular calcareous beds and/or planar stromato-
lites were observed (red carbonate-containing shale, 80–100 m depth).
Similar to many of the samples in core S2 (Aguelt el Mabha Formation),
Fe speciation data were equivocal for core S3 (Supplementary Table 3).

Data for the pericratonic Atar units I-3 and I-4 suggest anoxic con-
ditions, both ferruginous and euxinic, while Unit I-5 records both oxic
and anoxic iron-rich deposition. Euxinia is relatively more prevalent in
units I-3 and I-4 than in their coeval epicratonic strata (Khatt and En
Nesoar formations; Figs. 4, 5 and 8; Supplementary Table 3).

Gilleaudeau and Kah (2015) recently provided a detailed study of
palaeoredox conditions in the Taoudeni Basin using Fe-speciation. This
study confirms that the Khatt and Aguelt el Mabha formations, S2 and

S3 cores, called ‘Environment I’ by Gilleaudeau and Kah (2015), were
suggested to reflect dominantly oxic or anoxic iron-rich conditions,
which is supported by our data (Fig. 4). The En Nesoar and Touirist
formations, referred to as ‘Environment II’ by Gilleaudeau and Kah
(2015), were reported to indicate fluctuating oxic to euxinic bottom
waters; our findings also support this interpretation (Fig. 4). However,
we find no evidence for oxic depositional conditions in the Touirist
Formation. This may be linked to lithological differences in the samples
studied by Gilleaudeau and Kah (2015), which were mainly restricted
to black shale, albeit with a slightly lower TOC (0.4–15.3 wt%) than the
En Nesoar and Touirist Formations studied here (2.06–22.56 wt%;
Rooney et al., 2010). These differences reflect highly heterogeneous
depositional redox conditions, as previously suggested by Gilleaudeau
and Kah (2013a), and could be related to heterogeneous input sources
in space and time across the Taoudeni Basin (complex palaeogeography
on the craton interior) and/or fluctuating redox conditions during early
anoxic diagenesis (Gilleaudeau and Kah, 2015). The Atar Group (units
I-3, I-4, and I-5) was termed ‘Environment III’ by Gilleaudeau and Kah
(2015), and was suggested to reflect oxic through to dominantly euxinic
conditions, which is again supported by our data (Fig. 5). When com-
bined with additional data reported in Scott et al. (2013), the three
studies (Fig. 8) generally show more homogeneity in the data for
pericratonic environments (Atar Group) relative to epicratonic settings
(El Mreïti Group). However, in contrast to this general observation,
Unit I-5 of the Atar Group is reported to reflect persistently euxinic
conditions in Gilleaudeau and Kah (2015), whereas in our study we
only see evidence for oxic through to anoxic ferruginous depositional

Fig. 7. Quantitative microfossils analyzis of S4: species richness (n =) and relative abundance (%) of eukaryotes and microfossils of an unknown biological affinity. Atar Group units on
the left side.
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conditions (Fig. 5). In previous sedimentological studies, Lahondère
et al. (2003) noted that Unit I-5 (Tod) could be coeval with the Touirist
and Aguelt el Mabha formations (Fig. 2), and Kah et al. (2012) con-
sidered Unit I-5 (Atar) as being coeval only with the Touirist Formation.
Although stratigraphic correlations based on redox conditions are cer-
tainly not robust, we here consider that the studied sediment from Unit
I-5 may be coeval to the Aguelt el Mabha Formation (both of which
show evidence for oxic through to anoxic ferruginous depositional
conditions). This is supported by the presence of the species Trachy-
hystrichosphaera aimika, which is observed only within Unit I-5 in the S4
core and in the most proximal environments (Khatt and En Nesoar
formations) in the S2 core (Supplementary Table 2). Oxic deeper water
would not be expected in an otherwise anoxic stratified restricted basin
such as the Taoudeni Basin, where deep water O2 should be consumed
by the organic matter settling through the water column. On the other
hand, oxic conditions could originate from local sources such as pho-
totrophic microbial mats (e.g. Riding et al., 2014), but no microbial
mats were observed in Unit I-5 and no biomarkers were detected in the
S4 core. Nevertheless, while we favour correlation between part of Unit
I-5 and the Aguelt el Mabha Formation (Lahondère et al., 2003), this
remains speculative.

5.3. Palaeoecological model for the Atar/El Mreïti Group

Our palaeoecological reconstruction presented in Figs. 9 and 10
considers the distribution of microfossils based on a refined pa-
laeoenvironmental model. In contrast to the model proposed by
Gilleaudeau and Kah (2015), we consider marine transgression and
regression separately, and consider the studied sediment from Unit I-5
(S4) as coeval to the Aguelt el Mabha Formation.

The model also incorporates the biological affinity of the species
comprising the Taoudeni microfossil assemblage (Beghin et al., 2017),
with the distribution of unambiguous eukaryotes and dominant species
of unknown biological affinity (probably prokaryotic Siphonophycus
spp. and other possibly prokaryotic or eukaryotic) reported

schematically in relation to depositional environment delimited by the
white dashed line (species are listed in Supplementary Table 1 with
cross-references - identification number (ID n°) – in Supplementary
Fig. 1). In Figs. 9 and 10, the horizontal ferruginous zone (background)
occurring between oxic and euxinic waters represent the heterogeneity
in terms of anoxic episodes, between euxinic and ferruginous condi-
tions. Note that these figures depict a selected view in focusing only on
a part of the continental shelf representing the studied material, and not
on the whole oceanic basin. For the Fe sources, see Poulton and
Canfield (2011).

Epicratonic environments reveal a decrease in the total species
richness (S) from shallow-marine tidal-flat (fluvio-deltaic) to marine
highstand environments during marine transgression (Fig. 10a). The
shallow-marine tidal-flat to subtidal, oxic to intermittently anoxic fer-
ruginous or euxinic, environments preserve a mixed microbial com-
munity of both eukaryotes and unknown biological affinities (possibly
prokaryotic or eukaryotic). The incertae sedis dominate the diversity,
both in terms of species richness and abundance (Figs. 6 and 10a). The
highest total species richness is observed in the most proximal en-
vironment and a peak of eukaryotic relative abundance (mainly pro-
cess-bearing acritarchs) is observed just before the most extensive
flooding of the WAC interior (Figs. 6 and 10a). No unambiguous eu-
karyotes were observed during the marine highstand in epicratonic
environments, characterized by mostly anoxic ferruginous waters and
intermittently euxinic (Figs. 9a and 10a). This ecosystem could have
been inhabited exclusively by prokaryotes, as suggested by the rela-
tively high abundance of coccoidal colonies (Eomicrocystis malgica) and
microbial mats with pyritized filamentous sheaths, or alternatively
eukaryotes were not preserved (see discussion Section 5.4). However,
the biological affinity of Eomicrocystis malgica and purported prokar-
yotic communities inhabiting and producing microbial mats is un-
known at this point. In pericratonic environments (persistently anoxic
with euxinia more prevalent), a mixed assemblage with a relatively low
abundance of eukaryotes is observed (Fig. 10a).

After the marine regression, low species richness and abundance of

Fig. 8. Iron speciation cross plot (FeHR/FeT and Fepy/FeHR) for all samples from Atar and El Mreïti groups in this study, Scott et al. (2013), and Gilleaudeau and Kah (2015). FeHR/
FeT ≤ 0.22 = oxic conditions and FeHR/FeT ≥ 0.38 = anoxic conditions (vertical dashed lines). Fepy/FeHR ≤ 0.8 or ≤0.7 = ferruginous conditions and Fepy/FeHR ≥ 0.8 or
≥0.7 = euxinic conditions (horizontal dashed lines).
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eukaryotes are apparent in both epicratonic and pericratonic environ-
ments (oxic to anoxic with low sulphide) (Figs. 9b and 10 b).

5.4. Taphonomy and palaeoecology

The preservation of the organic-walled microfossils and microbial
mats is exquisite except in the I-3 and I-4 units (core S4). Note that the
taphocoenosis (microfossil dead assemblage) is only part of the bio-
coenosis (the whole living taxonomic diversity). Moreover, fossilization
may have occurred at different ontogenitical stages (e.g. vegetative
cells, reproductive cysts, dormant bodies in encystment stage).

The oxidation of organic matter, during oxic episodes in shallow-
marine restricted environment or during early diagenesis, may have
also led to preservation bias and the absence or low abundance of or-
ganic-walled microfossils (only very thin-walled and poorly preserved
spheroidal vesicles) in the lower Aguelt el Mabha from S2 (Figs. 3 and
6), where carbonate-containing shale, lenticular calcareous bodies or
planar stromatolites were observed.

Some microfossils observed in the Taoudeni Basin assemblage can
most probably be linked to benthic microbial activities (Fig. 10): (1)
pyritized filamentous sheaths within amorphous organic matter (mi-
crobial mats) found at the base of the En Nesoar and in the Touirist
formations (black shale), (2) microbial mats of numerous (≥5% up to
12%) filamentous sheaths (e.g. Siphonophycus spp.), and also maybe (3)
Ostiana microcystis (sheets of colonial small spheroidal vesicles) mainly
found (1–5% of relative abundance) in the Khatt Formation and also to
a lesser extent (< 0.5%) in the lower Touirist (S2), the Aguelt el Mabha
(S3) formations, and in Unit I-5 (S4). These microfossils are mainly of
an unknown biological affinity, although Ostiana microcystis and Si-
phonophycus spp. are often compared with cyanobacteria (e.g.
Butterfield et al., 1994; Javaux and Knoll, 2016). Pyritized filamentous

sheaths within microbial mats could also be linked to primary or sec-
ondary sulfur-based metabolism. The other possible eukaryotes and
unidentified microfossils (prokaryotes or eukaryotes) could be benthic
or planktonic. It is not possible to assess the depth at which the
plankton inhabited the water column and thereby their metabolism
remains uncertain.

While iron speciation gives an average signal across the sampled
sediment interval, biomarkers or fossils might only represent a very
short interval within each sample, and thus no conclusion can be drawn
regarding possible metabolism based upon our redox proxy data.
However, unless benthic microbial mats were very short-lived com-
munities they should have experienced the same average composition
of bottom waters during deposition, relative to the sediment. The ab-
sence of unambiguous eukaryotes in the Touirist Formation does not
appear to be linked to preservation bias or microbial degradation, since
smooth-walled sphaeromorphs are preserved within the mats.
Gilleaudeau and Kah (2013b, 2015) had noted previously that the
presence of a chemocline or a redox interface (below the oxycline and
close to euxinia) intersecting the seafloor (Gilleaudeau and Kah, 2015),
may have led to a zone of metal sequestration in nearshore settings with
extensive drawdown of redox-sensitive trace metals (e.g. Mo, V, and Zn)
required for eukaryotic metabolism (Dupont et al., 2006; Havig et al.,
2015). The Touirist Formation is characterized by primary productivity
driven by microbial mats, leading to high TOC in the sediments
(Blumenberg et al., 2012). A possible local depletion in micronutrients
close to euxinia may have stimulated the nature of primary production
and the apparent dominance of prokaryotes over eukaryotes in the
Touirist Formation. Alternatively, eutrophic zones (close to the che-
mocline) in stratified waters may also lead to a similar ecosystem
dominance of prokaryotes over eukaryotes (Butterfield, 2009; Havig
et al., 2015).

Fig. 9. Palaeoecological model for the Atar/El Mreïti Group. Eukaryotic species richness assemblages and notable features in their depositional environments. (a) Marine transgression
and (b) marine regression. Notable features are ≥20% (up to 95%) of relative abundance excepted for Arctacellularia tetragonala and Siphonophycus spp. which are ≥5%. Relative
abundance of microfossil specimens is calculated without the total number of microbial mats. Ubiquitous genera such as Leiosphaeridia and Synsphaeridium are not represented. For the
signification of the schematic drawing of the microfossils see Supplementary Table 1 and Supplementary Fig. 1 (ID n°).
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The process-bearing acritarch Trachyhystrichosphaera aimika (eu-
karyotes) is abundant in laminated green-dark-grey shale at the top of
the En Nesoar Formation, just before the marine highstand (Touirist
Formation). These rocks record anoxic and ferruginous deposition with
the exception of one sample recording oxic conditions. In this last
sample the relative abundance of T. aimika is equal to ∼2% while the
maximum relative abundance in other En Nesoar samples is equal to
∼25%, perhaps reflecting better preservation conditions or ecology.
Although T. aimika is preserved mainly in rocks deposited under anoxic
and iron-rich conditions and mostly in the photic zone of marginal
marine environments, it is not possible at this time to evidence its
ecological requirements both in terms of light, oxygen, and/or nutrients
availability, since its benthic or planktonic habitat and metabolism are
unknown.

6. Conclusions

The Atar/El Mreïti Group sediments, in the Taoudeni Basin, were
deposited in a relatively shallow water environment in pericratonic
(western basin) and epicratonic or intracratonic (eastern basin) marine
environments during a depositional sequence linked to a marine
transgression and regression. Palaeoredox conditions fluctuated from
oxic to anoxic states across the basin, but in terms of anoxic episodes,
ferruginous conditions dominated in epicratonic environments, while
euxinia was more prevalent in pericratonic environments. Oxic condi-
tions were limited and restricted to some horizons in the En Nesoar and

Aguelt el Mabha formations, and in Unit I-5. During marine trans-
gression, higher fossil eukaryotic diversity, both in terms of richness
and abundance, was observed in more proximal epicratonic environ-
ments (oxic to euxinic marginal environments), while no eukaryotes
were found in more distal (anoxic ferruginous to euxinic) epicratonic
environments represented by marine highstand deposits, and a rela-
tively lower eukaryotic diversity was observed in pericratonic en-
vironments (anoxic with euxinia more prevalent). During marine re-
gression, a lower eukaryotic diversity was observed both in epicratonic
and pericratonic environments (oxic to anoxic and iron-rich). In
agreement to other studies, our palaeoecological model suggests that in
the late Mesoproterozoic – early Neoproterozoic, the availability of
both molecular oxygen and nutrients controlled and increased eu-
karyotic diversity in shallow marine marginal environments.
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