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ABSTRACT: Terahertz-frequency-range measurements can offer
potential insight into the picosecond dynamics, and therefore
function, of many chemical systems. There is a need to develop
technologies capable of performing such measurements in
aqueous and polar environments, particularly when it is necessary
to maintain the full functionality of biological samples. In this
study, we present a proof-of-concept technology comprising an
on-chip planar Goubau line, integrated with a microfluidic
channel, which is capable of low-loss, terahertz-frequency-range
spectroscopic measurements of liquids. We also introduce a
mathematical model that accounts for changes in the electric field
distribution around the waveguide, allowing accurate, frequency-
dependent liquid parameters to be extracted. We demonstrate the
sensitivity of this technique by measuring a homologous alcohol series across the 0.1−0.8 THz frequency range.

The picosecond time scale (terahertz-frequency range)
vibrational dynamics of many molecular systems are key

to their chemical functionality1,2 and can be uniquely associated
with structure.3,4 Contributions to short-range atomic and
molecular dynamics in the infrared-frequency range have been
thoroughly investigated;5,6 however, long-range and intermo-
lecular vibrational modes occurring on picosecond time scales
(corresponding to terahertz frequencies), that relate to
molecular conformation,7 reaction dynamics,8 hydration,9 and
biological function,1 are particularly difficult to probe using
current spectroscopic techniques and are therefore poorly
understood. In recent years, terahertz-frequency time-domain
spectroscopy (THz-TDS) has been developed to investigate
the picosecond characteristics of a wide range of materials,
including explosives10 and drugs of abuse,11 and more recently,
to interrogate the far-infrared vibrational modes of biological
systems.1 Although significant information has been obtained
from dry, pelletized samples, these often do not represent
physically relevant environments; for example, measurements
in aqueous environments are typically required in order to
maintain full functionality of biological samples.1 However, the
strong absorption of THz-frequency signals in aqueous
solutions necessitates that the interaction volume between the
sample and probing radiation is severely restricted to avoid
large attenuation of the THz signal. Where liquid samples are
contained within a flow cell,12 the narrow separation between
the cell windows required for transmission through these highly
attenuating samples limits the measured frequency resolution
(owing to the restricted time-domain duration) and compli-
cates the interpretation of data (owing to the introduction of
etalons).1 Windowless systems in which a free-flowing liquid
sample is supported between two wires have been demon-

strated, but the optical influence of the biconcave liquid cross
section requires precise calibration.13,14 Alternatively, attenu-
ated total reflection15 (ATR) and THz reflection spectrosco-
py16 can be used to extract sample parameters from THz waves
reflected off a window−liquid interface by modeling the
interaction between the terahertz-frequency evanescent field
and the analyte, thereby avoiding the need for propagation
through the sample. ATR systems have been used to measure
the absorption spectra of both solids and liquids,17,18 and
imaging techniques have been used to observe protein
crystallization.19 It is also possible to bond microfluidic
channels directly to an ATR-crystal surface in order to measure
liquid flows,20 and analyze overlaid samples.21 In summary,
although methods for accurate, reliable, and repeatable
terahertz-frequency measurements of compact liquid systems
exist, they are in their infancy, and further advances are required
to enable high-frequency-resolution measurements of strongly
attenuating samples.
The integration of microfluidic systems with on-chip

terahertz waveguides offers a compelling potential solution,
since picosecond pulses confined to a planar transmission line
can interact with nano- or microliter sample volumes over
relatively long (millimeter) distances, with significantly reduced
attenuation compared to free-space propagation.22 In fluidic
channels with dimensions of a few hundred micrometers or
less, interfacial forces, surface tension, and capillary effects
dominate over gravitational forces to produce laminar flows.23

These controlled, predictable flows aid the design of micro-
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mixers24 and microreactors25 in which microliter or nanoliter
volumes of scarce or costly samples can be controllably
manipulated.
Planar waveguides have been widely investigated for the

transmission of on-chip THz-frequency-range signals,26,27 but
the inherent design restrictions of coplanar and microstrip
geometries (the most common planar transmission line
structures) limit their integration with microfluidic circuits.
For example, in microstrip and coplanar transmission lines
designed for operation at THz frequencies, the narrow
(approximately tens of micrometers or smaller) separation
required between the signal conductor and ground plane limits
the extent of evanescent electric field, and therefore the
interaction with overlaid samples. The planar Goubau line
(PGL) is a transmission line that comprises a single-wire
conductor, patterned on a low-permittivity substrate. THz-
frequency signals guided along PGLs exhibit evanescent electric
fields with a frequency-dependent extent of order 100 μm,
significantly greater than that of equivalent coplanar or
microstrip devices. For this reason, the PGL is well-suited to
spectroscopic measurements of overlaid materials, owing to the
increased interaction volume between the evanescent field and
overlaid samples. We have previously used such devices to
perform spectroscopy of powdered solids, in which we
measured phonon-like, sharp vibrational modes.28 However,
when using these systems for measurement of liquids, the
integration of fluid-guiding channels can introduce Fresnel
reflections from the interfaces between low- and high-
permittivity regions along the PGL length, as illustrated in
Figure 1.29 Here we demonstrate that the sources of these
reflections can be removed by orienting the microfludic channel
and waveguide such that the liquid under test covers the
entirety of the PGL sensing region.29,30 However, even when
such measures are applied, the extraction of quantitative
information from measurements using planar transmission lines
has previously been extremely problematic. This is primarily
owing to a nonlinear modification of the waveguide properties
(specifically, of the propagation modes) which occurs in the
presence of an overlaid liquid; any quantitative analysis must
therefore be able to correct for changes in the measured signal
arising from the disruption or modification of these modes,
allowing changes in signal caused by direct interaction with
vibrational modes in an overlaid material to be assessed
accurately. In this paper we demonstrate a numerical waveguide
model that allows us to calculate accurate material parameters
from proof-of-concept spectroscopic measurements of liquids,
confined to microfluidic channels and integrated with our PGL
devices. We determine the sensitivity of this technique by first
measuring a homologous alcohol series in which controllable
changes to molecular composition can be studied. We then use
this technique to demonstrate the sensitivity of our device to
water content by measuring a range of aqueous solutions
(water/alcohol mixtures).

■ EXPERIMENTAL SECTION
The device used in this work comprised a 1 mm long PGL
transmission line patterned over two photoconductive (PC)
low-temperature-grown (LT) GaAs switches used for the
generation and detection of picosecond (THz) pulses. The PC
switches were fabricated using techniques described else-
where,31 and both the PGL and switches were defined on a
100 μm thick double-side polished fused-quartz substrate,
allowing through-substrate illumination of the PC switches. A

6 μm thick layer of benzocyclobutene (BCB) was then
deposited onto the PGL by spin-coating to form an electrically
isolating layer.
A 100 μm deep fluidic channel was defined by casting

degassed poly(dimethylsiloxane) (PDMS, prepared in a 1:10
curing agent-to-base ratio) onto an SU-8 mold followed by
curing at 80 °C for 1 h. The cured PDMS was peeled off the
mold, and a 0.75 mm diameter biopsy punch was used to create
fluidic inlet and outlet holes at the ends of the PDMS channel.
The structure was then bonded to the BCB surface using an
irreversible amine−epoxy bonding technique,32 in which the
two faces to be bonded were exposed to a 50 W O2 plasma for
1 min, forming hydroxyl groups on the surface. A 2% (v/v)
solution of 3-aminopropyltriethoxysilane and deionized (DI)-
H2O was poured over the BCB-coated device, and a 2% (v/v)
solution of 3-glycidoxypropyltriethoxysilane and propan-2-ol
was poured over the PDMS channel. The devices were left in
their respective solutions for 20 min, during which the
aminosilane and epoxysilane were anchored to the O2-treated
surfaces. The two functionalized surfaces were brought into
contact and left for 1 h, until a bond was formed between the
BCB layer and the PDMS. Fluid flow through the channel was
actuated using a computer-controlled syringe pump (AL-1000,
World Precision Instruments).
Illustrations of the completed device are shown in Figure 2,

parts a and b, in which the location of the photoconductive
switches and the alignment of the microfluidic channel with
respect to the transmission line are indicated. To determine the
permittivity of an overlaid sample, the analysis technique
introduced requires accurate measurements of each component
of the device structure. The thickness of each layer in the device
cross section was therefore measured during fabrication using a
noncontact gauge, or a calibrated surface profiler as appropriate.
A scale drawing of the resulting layered structure is shown in
Figure 2c.
The completed device was mounted on a printed circuit

board, fitted with SMA connectors to interface with further
instrumentation, and then positioned in a TDS system, as
shown in Figure 2d. To produce THz signals in the PGL,
optical pulses from a Ti:sapphire laser (Tsunami, Spectra-
Physics; 100 fs duration, 800 nm center wavelength, 80 MHz
repetition rate, 10 mW average power) were focused through
the substrate onto the generation switch (PC 1, Figure 2b), to
which a 20 V bias was applied. An optically delayed,
mechanically chopped (1.8 kHz) beam was focused onto the
detection switch, which allowed the resultant picosecond pulse
to be measured coherently using lock-in detection. The time-
domain response was recorded by measuring the transient
photocurrent of the detection switch as the arrival time of the
optical probe pulse was varied.33

Figure 1. An electromagnetic pulse propagating along a conductor is
partially reflected at the interfaces between regions of different
permittivity, such as those created by an overlaid analyte or
microfluidic channel.
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Time-domain measurements were first recorded for a
reference (defined as the “empty” air-filled channel), followed
by the sample, for which the device was first flushed with 3 mL
of propan-2-ol, prior to filling with the liquid under test (LUT)
at a flow rate of 5 μL s−1. Figure 3 shows the mean of five time-
domain traces recorded for each of air, propan-1-ol, and
methanol, for which the standard deviation was <1%, and
therefore negligible. The peak center of the air reference was
defined as 0 ps, from which the relative attenuation and
propagation delay introduced by the sample loads is clear.

■ RESULTS AND DISCUSSION
The sensitivity and accuracy of our measurement system were
verified by using it to first extract the complex permittivity of a
well-studied homologous alcohol series (methanol, ethanol,
propan-1-ol), in order to allow quantitative comparison with
published data. We then extended the alcohol series to include
butan-1-ol, hexan-1-ol, and octan-1-ol, and finally demonstrated
the limits of this particular device geometry through measure-
ment of some highly attenuating propan-2-ol/DI-H2O
mixtures. Here, the complex permittivity ε̃lut = εlut′ − iεlut″ of
the given samples is presented (where ε′ and ε″ represent the
real and imaginary components, respectively), from which the

complex refractive index can be calculated using ñ = √ε̃, and
the absorption coefficient from

α ω= ″n
c

2
(1)

where ω is the angular frequency and c is the speed of light in a
vacuum.
To calculate accurately the frequency-dependent complex

permittivity of a sample from time-domain measurements such
as those shown in Figure 3, an understanding of the interaction
between the THz electric field and the LUT is required. While
the distribution of the electric and magnetic fields around
traditional planar transmission line geometries, such as coplanar
or microstrip, can be represented accurately using analytical
models,34 similar models do not exist for the PGL. Previously,
the real part of permittivity of a sample overlaying a PGL has
been estimated by assuming a circular electric field distribution
about the signal conductor.28 However, finite element
simulations show that the electric field is in fact (as expected
for any wave-guiding system) strongly dependent on the
complex permittivity of the surrounding materials. For example,
the evanescent electric field demonstrates greater substrate
confinement for a PGL formed on a higher-permittivity
material, with a correspondingly reduced evanescent field
extent in the typically lower-permittivity superstrate.35 Indeed,
there is a constant interplay between the relative values for
permittivity of the substrate and any overlaid material; thus, a
change in the overlaid material effectively alters the measure-
ment system itself, which has previously prohibited detailed
quantitative spectroscopic analysis using such systems. To
improve the accuracy of the sample parameters extracted, it is
therefore necessary to consider both the THz-frequency and
complex permittivity dependence of the electric field
distribution.
A finite element simulation of the device structure was

performed in Ansys HFSS,36 using terahertz-frequency material
properties of PDMS,37 quartz,38 and BCB39 taken from
literature and the geometric dimensions of the fabricated

Figure 2. (a) Three-dimensional and (b) plan-view schematic illustration of the integrated PGL device with an overlaid microfluidic channel. The
locations of the generation and detection switches (PC 1 and PC 2, respectively) are indicated, and the long parasitic arms outside this region are
designed to delay the arrival time of unwanted system reflections. The positions of the inlet and outlet ports are indicated by the blue circles. (c) A
cross section of the device comprising the quartz substrate, BCB insulation layer, LUT, and the PDMS channel boundary, drawn to scale. Note: the
PDMS layer was approximately 4 mm thick, and so the top surface is not shown here. (d) Schematic arrangement of optical components used for the
on-chip THz-TDS measurement system.

Figure 3. Pulses measured after propagation through a device when
loaded with an air reference (black) and with propan-1-ol (red) and
methanol (blue). A 200 ps time window was recorded, but only the
first 20 ps are shown here for clarity.
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device. The propagation constant, γ = ζ + iβ, describes the
change in amplitude and phase of a traveling wave, where ζ and
β are the per-unit-length attenuation and phase coefficients,
respectively. When the channel is filled with an LUT during
measurements, γ rises, owing to an associated net increase in
the complex permittivity of the materials with which the THz-
frequency evanescent field interacts. Using HFSS, the
propagation constant of the unloaded Goubau mode was
calculated between 0.1 and 1 THz. To allow calculation of the
complex permittivity of an unknown LUT, γ was simulated for
a matrix of proxy LUTs with a constant (frequency-
independent) permittivity between ε̃lut = 1 − i0 and ε̃lut = 5 − i6,
i.e.:

− − ⋯ −
− − ⋯ −
⋮ ⋮ ⋱ ⋮
− − ⋯ −

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

1 i0 1 i0.2 1 i6
1.5 i0 1.5 i0.2 1.5 i6

5 i0 5 i0.2 5 i6 (2)

The frequency-dependent propagation constant calculated for
each proxy sample is related to the complex effective
permittivity of the modes by40

ε γ
ω

̃ = ⎜ ⎟
⎛
⎝

⎞
⎠

c
ieff

2

(3)

To demonstrate how these simulation results can be used to
interpret data measured during an on-chip THz-TDS measure-
ment, we first consider the Fourier transform of the time-
domain data shown in Figure 3. In a typical free-space THz-
TDS measurement, the frequency-dependent phase shift, φ, is
used to determine the real permittivity of a sample by adding
the difference represented by φ, to the real permittivity of an air
reference (i.e., 1). Here, rather than dry air, the reference
measurement is of a device in which the microfluidic channel is
filled with air, and therefore the simulated propagation constant
of the Goubau mode in an air-filled reference device, γr, is used.
The phase shift per unit length, Δβ, introduced by the sample,
was calculated by subtracting the complex phase angle of the
LUT measurement from that of the reference, to determine φ,
which was then divided by the 1 mm length of the transmission
line to obtain Δβ. The phase coefficient of the Goubau mode
when the device was loaded with a sample, βs, was found by
adding the measured Δβ to the simulated phase coefficient
when the device was filled with air, βr, such that βs = βr + Δβ.
The attenuation coefficient, ζ, is related to the signal

amplitude by the Beer−Lambert law41

= ζA
A

e
l

l0

(4)

where A0 is the amplitude of the field generated at PC 1 and Al
is the amplitude of the field after propagation over the distance
l, measured at PC 2. Although the experimental configuration
does not enable simultaneous measurement of A0 and Al, the
generated field can be assumed to be constant between the
reference and sample measurements. Therefore, eq 4 can be
rearranged to remove A0:

ζ ζ= +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟l

A

A
1

ln l

l
s

,r

,s
r

(5)

where ζs and ζr are the sample-loaded and reference attenuation
coefficients of the Goubau mode and Al,x is the amplitude of the

reference (x = r) and sample-loaded (x = s) field measured at
PC 2, as indicated by the subscript. The total propagation
constant of the sample-loaded Goubau mode is therefore γs = βs
+ iζs, from which the effective permittivity of the mode can be
determined using eq 3. In this work, our method is applied to
the measurement of liquid analytes; however, the same
approach could be used in the analysis of overlaid solid
samples. Given that the permittivity is determined independ-
ently at each frequency point, we anticipate that the technique
could be used to accurately resolve resonant spectral features in
the same manner.
In Figure 4, the measured effective permittivity of the mode

when the device was loaded with propan-1-ol is plotted against
the simulated effective permittivity when loaded with proxy
samples. The real permittivity of propan-1-ol is not constant
across the frequency range considered here; hence, the
measured εeff′ does not align with any one trace. From
investigation of the simulation results, the real component of
the mode permittivity was found to be independent of the
imaginary component. Therefore, the dimensionality of the
problem was reduced by first fitting εlut′ , at each frequency point
in turn, with a two-dimensional cubic interpolation algorithm
by assuming εlut″ = 0 at all frequencies (i.e., interpolation along
the first column of the proxy LUT matrix).42 Similar
interpolation methods have been used in the analysis of THz-
TDS systems with complex propagation models.43,44 In
contrast, the imaginary component was found to be strongly
dependent on the real permittivity, owing to the substantial
changes in electric field distribution that occur as a function of
εlut′ . Therefore, the imaginary component was calculated by
interpolation based on the real component that had been found
(e.g., if a real component εlut′ = 1.5 had been identified, then the
imaginary part would be found by interpolation along the
second row of the proxy LUT matrix).
In Figure 5, our measured values of complex permittivity for

methanol, ethanol, and propan-1-ol are compared to data
presented by Barthel et al.,45 in which samples were measured
at frequencies accessible by rectangular waveguide bands, Kindt
and Schmuttenmaer,12 in which alcohols were measured using a
free-space THz transmission system, incorporating a flowcell
fabricated from high-density polyethylene and high-resistivity
silicon, Yomogida et al.,46 who used a free-space THz-TDS
system to measure liquids contained between polypropylene
windows, Hirori et al.,47 who measured methanol using an ATR
system, and Møller et al.,16 who employed a reflection
spectrometer to measure ethanol. Considering the range of
experimental configurations, and analysis methods imple-
mented in the literature, it is encouraging to observe a
relatively strong agreement between the sample permittivity

Figure 4. Simulated effective real permittivity of the Goubau mode
when the complex permittivity of the proxy sample was varied from
εlut = 1 − i0 to εlut = 5 − i0 (solid) in increments of 0.5 − i0, and the
measured εeff′ of the Goubau mode when the device was loaded with
propan-1-ol (dashed).
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values found using the differing techniques. Additionally, it is
clear that the data recorded with the on-chip spectrometer
developed in this work lie within the variance of the published
data sets.
It is well-recognized that PDMS samples placed in contact

with solvents (such as propan-1-ol) undergo swelling by up to
10%.48 Furthermore, since PDMS is an elastomer, excess
pressure within the fluidic channel may lead to changes in the
channel geometry and volume. The latter issue can be
controlled by limiting the flow ratea low flow rate of
5 μL s−1 was therefore chosen to minimize the induced
pressure within the channel. Since our analysis technique relies
on accurate measurement of the fluidic channel dimensions, we
anticipate that the greatest source of error will therefore arise
from solvent-induced swelling of the PDMS. To account for
this possible change in device geometry, we repeated device
simulations to estimate the maximum error introduced at the
extremes of channel height, corresponding to ±10% of our
stated value of 100 μm. The corresponding difference in
calculated permittivity is indicated by the shaded regions in
Figure 5.
In some of the previous works, the agreement between data

sets was quantified by fitting a relaxation model to the complex
permittivity of the analytes studied.12,45 The frequency-
dependent dielectric response of polar liquids can be described
by a number of Debye-relaxation and harmonic-oscillator
processes, which span several orders of magnitude in the
frequency domain.46,49 For example, Kindt and Schmutten-
maer12 fit their data to a triple-Debye relaxation model, which

has been used to represent the intramolecular rotation,
reorientation, and hydrogen bonding of protic solvents such
as methanol, ethanol, and propan-1-ol.45,50 The frequency
dependence of the Debye permittivity, ε̃D, is determined by the
summation12

∑ε ε
ε ε

ωτ
̃ = +

−
+∞

=

+

1 ij

n
j j

j
D

1

1

(6)

where ε∞ is the sample’s high-frequency permittivity limit and
εj are the n intermediate permittivity intervals, with the
corresponding relaxation time constants τj.
Here, a nonlinear least-squares algorithm, initialized using

the parameters identified by Kindt and Schmuttenmaer,12 was
used to fit εj and τj to the data measured here between 100 and
800 GHz. In addition, the model was constrained at frequencies
between 1 and 200 GHz using the data presented by Barthel et
al.45 In each fitting operation, εDC was fixed at the initialized
value.12 The parameters reported by Barthel et al.,45 Kindt and
Schmuttenmaer,12 and those found in this work, are presented
in Table 1, and a good agreement is observed. The critical
frequency,12 fc = 1/(2πτj), of the fastest relaxation processes
(τ3) was outside the spectral range of the rectangular waveguide
system, and also at the limit of the on-chip system in some
cases (e.g., 0.2 ps ≡ 795 GHz). Such processes are therefore
difficult to accurately resolve with all systems, resulting in some
disagreement in the parameters fitted to those terms. However,
the parameters found to fit the on-chip spectrometer data,
shown in Table 1, were typically between the values reported

Figure 5. Complex permittivity of methanol, ethanol, and propan-1-ol. For each sample, the real and imaginary permittivity measured in this work
(deg) is plotted along with the permittivity measured by Barthel et al. (ref 45) (•), Kindt and Schmuttenmaer (ref 12) (×), and Yomogida et al. (ref
46) (▲). Data recorded with ATR and reflection systems by Hirori et al. (ref 47) (∗), and Møller et al. (ref 16) (□) are also included. The shaded
regions represent the ±10% channel-height model error of our measurements.

Table 1. Triple-Debye Model Dielectric Relaxation Parameters Calculated for Methanol, Ethanol, and Propan-1-ol, for Which
the Values Given in Square Brackets and Parentheses Are Those Reported by Barthel et al.45 and Kindt and Schmuttenmaer,12

Respectively

LUT εDC τ1 (ps) ε2 τ2 (ps) ε3 τ3 (ps) ε∞

methanol [32.63] [51.5] [5.91] [7.09] [4.9] [1.12] [2.79]
(32.63) (48) (5.35) (1.25) (3.37) (0.16) (2.10)
32.63 51.01 5.52 1.84 2.85 0.16 2.37

ethanol [24.35] [163] [4.49] [8.97] [3.82] [1.81] [2.69]
(24.35) (161) (4.15) (3.3) (2.72) (0.22) (1.93)
24.35 161 4.45 4.16 3.34 0.69 2.24

propan-1-ol [20.44] [329] [3.74] [15.1] [3.2] [2.4] [2.44]
(20.44) (316) (3.43) (2.9) (2.37) (0.2) (1.97)
20.44 328 3.79 14.2 3.05 1.01 2.16
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for the lower-frequency rectangular waveguide system,45 and
the higher-frequency free-space spectrometer.12

The higher-order alcohols butan-1-ol, hexan-1-ol, and octan-
1-ol were then measured with the on-chip spectrometer.
Between measurements, the channel was flushed with propan-
2-ol and dry air, as before. Particular attention was paid when
flushing the system of the higher-order alcohols as they were
observed to leave a residue within the channel that required
additional flushing of propan-2-ol to remove. The frequency-
dependent permittivities of each of the alcohols in Figure 6
were calculated, and a systematic decrease in both real and
imaginary permittivity was observed as the alcohol series order
was increased, demonstrating a sensitivity to molecular
composition.
The ability to measure highly attenuating aqueous systems is

critical for the study of samples in biologically relevant
environments. Therefore, the limits of this particular geometry
were next investigated by preparing propan-2-ol/DI-H2O
mixtures in which the volume fraction of DI-H2O was increased
from 0% to 100% in increments of 10%, which equate to the
mole fractions, χ, given in Table 2. Using the results of our
HFSS simulations, the frequency-dependent real and imaginary
permittivities in Figure 7 were calculated. The results
demonstrate clearly the sensitivity of this technique to changes
in sample dilution for liquids with values of permittivity that
vary between εlut = 2 − i0.5 and εlut = 5 − i6. However, the
bandwidth that could be resolved for some of the more
absorbing solutions (>70% DI-H2O) was severely restricted,
and the significant attenuation of the 100% DI-H2O sample
meant that the imaginary component of the permittivity was
not successfully extracted. The bandwidth measurable with a
particular device is restricted both by the attenuation of the
electric field and by a preferential multimode propagation when
the permittivity of materials in the proximity of the planar
Goubau line is highly asymmetric.35 As with any THz-TDS
system, there is an interplay between sensitivity and bandwidth.
The measurable bandwidth of an on-chip microfluidic
spectrometer can be increased by reducing the interaction
volume between the propagating field and the analyte. For

example, Figure S-1 shows the time and frequency-domain
response of the device discussed in this work (comprising a
100 μm deep microfluidic channel), and the response of a
device with a 20 μm deep channel, when both devices were
loaded with a DI-H2O sample. It can be seen that the reduction
in channel height, corresponding to a decrease in the sample
load, increased the dynamic range in the frequency domain
between 0 and 800 GHz. Thus, the inherent flexibility in the
design of an on-chip microfluidic spectrometer allows for
optimization of the device to be most sensitive over a desired
permittivity range.

■ CONCLUSIONS
A technology comprising a planar Goubau line THz-TDS
system integrated with a microfluidic measurement system on a
single chip has been introduced, and a method has been
described in which a numerical model based on finite element
simulations of the device structure when filled with proxy fixed-
permittivity samples is used to extract the permittivity of an
unknown liquid sample. A well-studied series of homologous
alcohols was measured, and the permittivity measured for each
sample was found to be in good agreement with available
literature. The high-permittivity limits of the device geometry
were investigated, and methods for changing the sensitive
permittivity range were discussed. We anticipate that this
technique can be used in future development and analysis of
integrated terahertz measurement systems, particularly for the
measurement of the high-frequency dynamics of aqueous- or
solvent-based materials.

■ ASSOCIATED CONTENT
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Frequency spectrum of two devices loaded with DI-H2O,
the first with a 100 μm deep microfluidic channel, and
the second with a 20 μm deep channel, in which the

Figure 6. (a) Measured permittivity and (b) absorption coefficient of
methanol (blue), ethanol (green), propan-1-ol (red), butan-1-ol
(purple), hexan-1-ol (orange), and octan-1-ol (yellow).

Table 2. DI-H2O Volume and Mole Fractions of the 11 Propan-2-ol/DI-H2O Solutions Measured

vol fraction (%) 0 10 20 30 40 50 60 70 80 90 100
mole fraction (χ) 0.00 0.32 0.51 0.64 0.74 0.81 0.86 0.91 0.94 0.97 1.00

Figure 7. Measured (a) real and (b) imaginary permittivity of propan-
2-ol/DI-H2O mixtures with volume fractions from 0% (red) to 100%
(purple) DI-H2O in 10% increments. The significant attenuation of
100% DI-H2O sample meant that the loss could not be resolved.
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increase in measurable bandwidth resulting from the
thinner channel is clearly observed (PDF)
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