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Scale-free topology optimization for
software-defined wireless sensor
networks: A cyber-physical system
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Abstract
Due to the limited resource and vulnerability in wireless sensor networks, maximizing the network lifetime and improv-
ing network survivability have become the top priority problem in network topology optimization. This article presents
a wireless sensor networks topology optimization model based on complex network theory and cyber-physical systems
using software-defined wireless sensor network architecture. The multiple-factor-driven virtual force field and network
division–oriented particle swarm algorithm are introduced into the deployment strategy of super-node for the imple-
mentation in wireless sensor networks topology initialization, which help to rationally allocate heterogeneous network
resources and balance the energy consumption in wireless sensor networks. Furthermore, the preferential attachment
scheme guided by corresponding priority of crucial sensors is added into scale-free structure for optimization in topol-
ogy evolution process and for protection of vulnerable nodes in wireless sensor networks. Software-defined wireless
sensor network–based functional architecture is adopted to optimize the network evolution rules and algorithm para-
meters using information cognition and flow-table configure mode. The theoretical analysis and experimental results
demonstrate that the proposed wireless sensor networks topology optimization model possesses both the small-world
effect and the scale-free property, which can contribute to extend the lifetime of wireless sensor networks with energy
efficiency and improve the robustness of wireless sensor networks with structure invulnerability.
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Introduction

Wireless sensor networks (WSN)1 is a major component
in cyber-physical systems (CPS),2 which showing power-
ful potentials in interfacing with the physical world and
making its control much easier, achieved by the integra-
tions of network, computation, and communication cap-
abilities to the components of physical world. Interacted
heterogeneous physical devices (e.g. sensor and actuator)
are key physical elements in CPS.3,4 The heterogeneities
reflect the diversity in capabilities, complexities, types,
and mobility among sensors in CPS. It is crucial for CPS
to support the ability of heterogeneity tolerance.

From the perspective of network functional architec-
ture, most current traditional network topology

1School of Information Science and Engineering, East China University of

Science and Technology, Shanghai, China
2Department of Electronic and Electrical Engineering, The University of

Sheffield, Sheffield, UK
3Department of Electrical & Computer Engineering, University of

Wisconsin-Madison, Madison, WI, USA

Corresponding author:

Ru Huang, School of Information Science and Engineering, East China

University of Science and Technology, Shanghai 200237, China.

Email: huangrabbit@ecust.edu.cn

Creative Commons CC-BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (http://www.uk.sagepub.com/aboutus/

openaccess.htm).

https://doi.dox.org/10.1177/1550147717713626
https://journals.sagepub.com/home/ijdsn


optimization researches limited to non-software-defined
network architecture are based on distributed algo-
rithms, which result in the generation of a large quan-
tity of network loads, reduction of life cycle, and lack
of adaptability in the network evolution due to dynamic
topology changes. Traditional network architecture
does not support the dynamistic, scalability and hetero-
geneity in WSN cyber system and is lack of the feed-
back control functional component, which can
efficiently exert impact on WSN physical system.
Software-defined wireless networks (SDWNs) architec-
ture5,6 presents an innovative framework for decoupling
the original closed system, which can achieve novel
feedback control in CPS with logical centralized control
and physical distributed control to decouple control
plane and data plane. The combination of SDWNs-
based architecture and WSNs’ function, that is,
software-defined wireless sensor network (SDWSN)
based on programmable control of common hardware
and software, enables flexible task configuration.
Motivated by the advantages in SDWSN technology,
we propose a SDWSN-based cyber-physical system
framework (SD-CPSF) via introducing the software-
defined network technology and actuator-based func-
tional component into existing WSN infrastructure.

Based on SD-CPSF, the functionality, reliability,
adaptability, compatibility, and autonomy can be effi-
ciently improved in WSN. Sensors in WSN with limited
energy supply always deploy in harsh environment to
achieve the classical application of CPS. Consequently,
sensors often suffer from fail due to natural hazards
and energy resource depletion. The breakdown of some
sensors can greatly damage the functionality of WSN.
It is crucial for WSN to improve the ability of fault
tolerance.

Network topology structure has intrinsic characteris-
tics, which can impact on WSN’s performance. Therefore,
build robust network topology to improve the survivabil-
ity and energy efficiency of WSN is crucial.

Network robustness has become one of the most
central topics in the complex network research.7 Fault
tolerance is well known as the typical scale-free network
properties,8 which can help to defend against random
failure caused by energy depletion and environmental
disturbances in CPS application. Complex network the-
ories9 provide new research ideas and methods to estab-
lish a reliable and energy-efficient network topology
model by exploring the statistical properties inherited
in networks.

Comprehensively considering the characteristic of
node heterogeneity, resource scarcity, and structure vul-
nerability in WSN, we propose a novel WSNs topology
optimization model according to scale-free complex
network theory–based network evolution algorithm
and SD-CPSF-based network functional architecture.
We take the improvement of robustness of WSN as the

design goal for WSN topology optimization, which help
to prolong network lifetime and enhance the network
invulnerability.

The contributions of our researches in the article
mainly focuses on the improvement on adaptive ability,
invulnerability, and energy efficiency on WSN, via
introducing SDWN architecture and complex network
theory (scale-free and small-world theory) based strate-
gies in topology optimization and evolution mechanism.

The rest of the article is organized as follows. Section
‘‘Related work’’ states a summary of related work on
network topology control. Section ‘‘System model and
functional framework’’ elaborates the system model
based on cognitive SDWSN prototype and its functional
architecture. Section ‘‘Topology initialization based on
super-nodes configuration’’ presents an implementation
of topology initialization. In section ‘‘Topology evolu-
tion based on improved scale-free network model,’’ an
optimal topology evolution model is proposed based on
improved scale-free theory model and specific mathe-
matical analysis on proposed evolution model is pre-
sented. Network structure characteristics are evaluated
through experiments in comparison with BA model10 in
section ‘‘Experimental results and analysis.’’ Finally,
conclusion is drawn in section ‘‘Conclusion.’’

Related work

In the last decades, sufficient efforts have been devoted
to design vulnerability-tolerant and energy-efficient
topology construction mechanism in WSN. Wang
et al.11 adjusted the structure of scale-free network via
optimizing the entropy distribution to enhance the anti-
attack capability of scale-free network. However, the
topology model did not take into account the problem
of imbalanced energy consumption and finally reduced
the network life cycle. In Sun et al.,12 the survivability
was improved when building a WSNs topology by con-
trolling network node’s saturation and residual energy.
However, sensors with high load in networks were pre-
maturely dead due to excessive energy consumption,
and the network life cycle would be shortened. The
research13 was proposed to make the network tend to
be more in sync by optimizing the network topology
symmetry, which focused more on network model syn-
chronization and lack of utilizing other statistical char-
acteristics in WSNs revealed by the complex network
theory. The literature10 proposed a new topology of
network evolutionary model based on BA scale-free
network, which was with high robustness on random
failures of node. However, clustering coefficient value
keeps small while the average path length remains rela-
tively large in proposed model, which lack of energy
efficiency. In the literature study,14 WSNs topology
was optimized using conceptual cluster feature and
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edge betweenness in small-world model via introducing
special threshold mechanism, so as to equip with a high
clustering coefficient and obvious cluster structure after
network optimization, but this work took little change
on average path length.

Based on the complex networks theory, a new
weighted local WSNs evolution model15 was designed
to deduce intensity distribution and weight distribution
meeting the power-law; however, the dynamic changes
in network topology were not considered. In research
works,11 the impact of the residual energy on network
growth was considered in process of complex network
models evolution, but the invulnerability in network
model was not analyzed. Jian et al.13 proposed two
scale-free network models based on local world model,
where the new sensors with high energy level had the
priority to be connected, but the dynamic changes in
network topology due to the expense of limited resource
were not taken into account.

The above researches based on complex network
theory focus on the topology control methods to homo-
geneous and tight coupling network architecture; how-
ever, none of those methods have been designed from
the viewpoint of network heterogeneity and network
functional architecture in CPS.

System model and functional framework

WSN is abstracted into a weighted directed graph,
GðV;L; IÞ, which forms a reverse multicast tree rooted
at Sink, which has non-replenished enough energy,
higher storage capacity and stronger computing ability.
In G, V is the set of vertexes and maintains a hierarchi-
cal cluster. Sensors in V own heterogeneous functional
characteristics (energy, perception radius, mobility,

computing, and storage capacity) are grouped into
super and normal node types. Normal sensors without
moving-ability in data plane are randomly distributed
in environment monitoring area and have low average
energy level, while super-nodes with moving-ability
have several times the energy equivalent and communi-
cation radius as normal sensors. L consists of a set of
wireless links and I is the set of vertex weights, which
denote the diversity for crucial level of sensors in V.
SDWSN applies decoupled network architecture and
has the ability of heterogeneity tolerance. By introdu-
cing SD-CPSF into WSN, cyber feedback functions
performed by actuators are added into WSN control
system and the constituted elements in WSN physical
system can be endowed with software defined networks
based (SDN-based) functional characteristic. SD-
CPSF-based system functional framework for WSN
topology optimization is shown in Figure 1.

Cyber feedback and control process are illustrated
as follows. Sensors in data plane gather the information
on WSN physical system to the Sink entities, which can
develop control algorithms based on WSN cyber sys-
tem to produce strategy commands and instruct actua-
tors to achieve the control on WSN physical system.
The main idea of feedback control is to exploit cogni-
tive information middleware (CIM) to reinforce learn
the physical dynamics in WSN. Then, utilizing the out-
put functional model determines the actions that yield
the optimal topology control behaviors.

Based on SDN technology, Sink takes the role of
controller to manage network services according to
SDN protocol and develop topology optimization stra-
tegies based on WSN cyber system in control plane.

The core functionality module in the control plane of
SD-CPSF is a CIM,16 which performs knowledge-
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guided reinforcement learning17 for mining heteroge-
neous information in WSN cyber system. The following
procedures should be executed after the cyber-learning
phase has been finished in CIM. Controller outputs the
strategy rules and optimal algorithm parameters consti-
tuted by vector form to the data plane using pipelined
flow-table mode. Then, topology evolution process
should be executed based on the optimized algorithm
parameters (e.g. parameters of particle swarm and vir-
tual force algorithm (VFA) calculated by CIM).
Specifically, each switch, which is designed as software-
defined virtual sensor and acts as actuator in data plane,
performs the appropriate topology evolution matching
rules (i.e. flow-table entries) and configures the sensors
in data plane to realize the position optimization of
super-node for network initial configurations and scale-
free model optimization for network evolutionary.

Other sensors in data plane can be provided with
programmable ability and become cluster members to
execute the specific actions guided by controller strate-
gies and transmitted by switches using Over-the-Air
Programming (OTAP) technique.18

Total optimal topology generation process in logi-
cal field reflects the functionalities decoupling
between control plane and data plane, where sup-
ported SDN protocol, Sensor OpenFlow,19 enables
the communication between the data plane and a
remote controller (Sink). Correspondingly, the topol-
ogy optimization process in temporal field is divided
into two stages. First, in the cyber-learning phase,
Sink takes the role of controller to collect the network
status information based on the packet-in messages
from the data plane and perform the configuring and
scheduling in network resource (e.g. position adjust-
ment for super-node, preferential attachment for
edge) using particle swarm and VFA.

Topology building process reveals a tradeoff
between resource efficiency and computational com-
plexity, SDN-based design can yield very low complex-
ity, which efficiently reduce the information exchange
for topology optimization process over the cyber-
world, which can effectively reduce energy consump-
tion in the process of topology optimization and
improve the re-configurability and scalability of net-
work topology. The fundamental functionalities of pro-
posed SD-CPSF reflect the interaction between
physical world and cyber systems in WSN using SDN
technology.

Topology initialization based on
super-nodes configuration

Network division using particle swarm method

According to Delaunay triangulation,20 which uses
computational geometry to mathematically abstract

two-dimensional network region, we propose an opti-
mal planar triangulation with geometric criteria to
divide entire network with N sensors into a zones via
particle swarm algorithm.21 In each zone, super and
normal sensors join the network in accordance with a
certain proportion, and then, normal sensors are dis-
tributed around certain super-nodes, which form like a
spider web-like structure according to initial topology
generation algorithm.

At the first step, determining a first region division
line network, the whole network is divided into two dif-
ferent sub-regions via zone dividing line determined by
equation (1)

Lu ¼ x; y; uð Þ ð1Þ

wherein the point ðx; yÞ belongs to Lu and u denotes the
angle between Lu and x-axis. Values of particle para-
meters x, y, u are randomly assigned.

Particle swarm optimization (PSO) is introduced in
network division problem by iteratively improving can-
didate solutions with regard to given measure of qual-
ity. Fitness function in PSO can efficiently adjust
plurality of different fitness values to determine the lat-
est search results and corresponding particles used as
global minimum plurality. The proposed fitness func-
tion in PSO is defined as mean squared error (MSE)
form using norm Rk kp�normðp¼2Þ

fitness ¼ ðn1 � f1NÞ2 + ðn2 � f2NÞ2
�� ��

2�norm

s:t: fi ¼
ai

a
ði ¼ 1; 2Þ

ð2Þ

where ai is the expected number of super-nodes, which
denotes the number of reserved super-nodes in corre-
sponding divided zone and niði ¼ 1; 2Þ is the number of
sensors belongs to corresponding zone i. N denotes the
number of sensor nodes in entire WSN and a indicates
the number of divided zones. Determining a plurality
of different fitness values, a minimum fitness value is
compared with the latest search results and the corre-
sponding particles may be used as global minimum Pgd ;
similarly, individual particle obtains the smallest
extreme value pt

lid and then updates the algorithm
parameters as equation (3) to get the optimal non-
inferiority solution set.

vt+ 1
lid ¼ wt*vt

lid + c1*r1*ðpt
lid � X t

lidÞ+ c2*r2*ðpt
gd � X t

lidÞ
s:t: X t + 1

lid ¼X t
lid + vt+ 1

lid

l¼x; y; u

wt ¼
k1*ðwmin�wmaxÞ

M
*t+wmax; ð0\t\ M

k1 + k2
; k1.0; k2.0Þ

k2*ðwmin�wmaxÞ
M

*t+ k1*wmax + k2*wmin

k1 + k2
; ð0\ M

k1 + k2
� t\MÞ

8<
:

wt 2 ½wmin;wmax�
ð3Þ
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where Xid and Xyid denote the position of the particles;
Xuid is the dividing line inclination; vxid , vyid , vuid repre-
sent the corresponding search speed in three dimen-
sions x, y, u; ci; i ¼ 1; 2 and wt denote learning factor
and inertia weight factor, respectively; r1 and r2 are
random numbers in the range [0, 1]; and t is the number
of iterations. Since the standard PSO algorithm has dis-
advantages like premature convergence and slow evolu-
tion,22 it is necessary to make appropriate adjustment
on parameters in particle update formula to update
local optimum and track global optimum in solution.

In equation (3), wt is defined as the PSO inertia
weight factor, which can be used to regulate global and
local search capabilities in network division optimiza-
tion by solving the premature convergence and slow
evolution problem. Therefore, a self-adaptive learning
method is proposed to take wt linearly varies as the
number of iterations t at different intervals, which
enables wt to maintain a larger value at preliminary
search to improve the global search ability and to keep
a smaller value at late search to improve the local
search accuracy. The search process is terminated until
the particles get the right value of x, y, and u to find fit-
ness function, which approximates zero. In this case,
the entire area can be divided into two parts. After the
first region segmented, two sub-regions continue to be
segmented according to similar partition algorithm
until a zones with equal size are produced.

Compared with classical topology segmentation in
WSN,23 the above program can make use of SDWSN
architecture to achieve ‘‘coarse-grained’’ network seg-
mentation step, which depends on the smaller number
of network border switches and does not need to calcu-
late the path information of the entire network, which
helps to significantly reduce computational complexity
and substantial reduction in information exchange
between the control plane and switches in data plane.

Virtual force–oriented deployment of super-nodes

VFA24 abstracts the mobile sensors into virtual charged
particles to simulate distance-threshold–based virtual
compositional force. Motivated by the principle of
VFA, the multiple factors driven virtual force are uti-
lized to optimize the deployment of super-nodes in
WSN physical system, which can promote the rational
allocation of resources within WSN to reduce the topo-
logical fragility using percolation theory.

In the first step of VFA, super-nodes adjusts its loca-
tion in adjacent sub-target zone based on composition
force, which is constructed by Fni, Fbj, and Fji.
Specifically, Fni denotes the force generated between
super-nodes and normal sensors within the same zone
F; Fbj indicates the impact of adjacent sub-region
boundary set u on super-nodes. Fji represents the force

created by other members in super-nodes set O. When
the properties of force exhibit gravity or repulsion, cor-
responding virtual force will take a positive value or
negative value, respectively.

Based on the above analyses, super senor i is driven
by virtual composition force shown as equation (4) to
find out subinterval and continually adjust its deploy-
ment position in the sub-region until force Fi is less than
a given threshold.

Fi ¼
X
n2F

Fni +
X
b2u

Fbi +
X
j2O

Fji

�����
�����

p�norm

s:t: Fni ¼ kni*ð
kn*cn

En

Þ; n 2 F � G

Fbi ¼ kbi*jiaddr � Dbj; b 2 u � G

Fji ¼ kji*ðjiaddr � jaddrj � dsÞ; j 2 O � G

i 2 O � G

ð4Þ

wherein Fni indicates the impact level on virtual force
caused by the interaction between super-nodes and nor-
mal sensors in zone F. En, kn, cn represents the remain-
ing energy level, node degree and node betweenness of
sensor n 2 F, respectively. And cn is defined as the
number of shortcut paths across the sensor. The value
of control parameter kni takes 1 when super senor
i 2 F; otherwise, it takes 0. Fbi denotes the correspond-
ing component virtual force produced by sub-region
boundaries, which are generated by network partition
algorithm (mentioned in section ‘‘Network division
using particle swarm method’’), and reflects the relation
between the initial super-nodes position and the corre-
sponding sub-target zone boundary. jiaddr � Dbj repre-
sents the Euclidean distance between the location of
super-node i and the centroid Db of sub-region u. kbi is
a gain coefficient parameter that indicates the relation-
ship between the actual density and the expected den-
sity of sensors in adjacent sub-regions.

Fji represents the interaction force between two dif-
ferent super-nodes in O,where jiaddr � jaddrj is the
Euclidean distance between super-node i and j, and ds

is a fixed times of super-nodes’ communication radius.
The above deployment process performed by the

position adjustment of super-nodes is intrinsically
determined by reconfiguring redundant network
resources (capacity, energy, load, etc.) to fragile physi-
cal elements (sensor or link) in WSN, which can
improve the network survivability and energy efficiency
according to complex network theory–based percola-
tion process,25 which can provide the ability of network
to properly perform even when a fractional components
and small-world effect, which shows a small average
shortest path length and a large clustering coefficient in
properties of network topology.
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Topology evolution based on improved
scale-free network model

Based on SD-CPSF, a WSN topology optimal model
(WTOM) according to complex theory is proposed via
introducing super-nodes driven initial topology deploy-
ment and crucial-node associated topology evolution,
which possesses both the small-world effect and the
scale-free property.26

WTOM generation algorithm

Suppose the network has originally deployed isolated m0

normal sensors and a0 super-nodes in each time step,
mðm\m0Þ sensors are newly added to networks according
to a certain rule, wherein the new added sensor n with
node degree m is probably a super-node with probability
p or a normal node with probability ð1� pÞ. Super-nodes
have the priority to connect newly added sensors with
inherent advantages. Then, local world Y is constructed
by the MðM � mÞ sensors, which are within the commu-
nication range and with the latest joining time. The newly
added node n is connected with existing super-nodes in
local worldY or normal node i in neighborhood Ov.

Comprehensively considering the influencing factors
in network evolution, we define Ii as the integrated
influence factor (see equation (5)) of sensor i in the pro-
cess of network evolution. The greater the value of Ii,
the large the probability of

Q
ðkiÞ is obtained.

Therefore, the preferential attachment probability will
be greatly affected by the crucial level of selected sensor
in network topology generation

Ii¼f ðEiÞ*ki*ci*ð1+biÞ; Ii 2 I

s:t: f ðEiÞ ¼ n*Ei; ð1� n� 8Þ
ð5Þ

wherein, f ðEiÞ denotes the remaining energy level of
sensor i. when n ¼ 1, i is a normal node, otherwise, it
becomes a super-node with n.1. c denotes the node
betweenness, which is defined as the number of shortest
paths through sensor i. From the perspective of overall
network structure, ci is a measure of centrality in net-
work and indicates node’s critical level in the global
network routing. ki is the node degree of sensor i.
Parameters bi obeys (0–1) distribution and reflects the
super-nodes-related influence on network evolution, if
the newly added sensors connect existing super-nodes
with high probability, then bi ! 1, otherwise bi ! 0.

The connection probability based on integrated
influence factor is shown as follows

Y
ðkiÞ ¼

IiP
j2Ov

Ij

s:t: i; j 2 ðOv [ OÞ \Y

Ii; Ij 2 I

ð6Þ

Network topology optimization mechanism is
achieved by repeating the algorithm steps from 2 to 4
until the required network size is met and the corre-
sponding evolutionary process can produce small-world
effect, directly affecting the energy saving performance
of CPS for monitoring application.

Mathematical analysis on topology
optimal model

Dynamic characteristics in scale-free network model
can be analyzed based on continuous field theory.27

Given the nature of continuous performance in pro-
posed model WTOM, more detailed characteristics can
be captured and predicted according to the degree dis-
tribution, which is denoted as time-varies and obtained
via continuous approximation field method.

At each time step, the increment of node degree is in
accordance with the following ratio

∂ki

∂t
¼ m

Y
ðkiÞ ¼

M

m0 + t

m*IiP
j2Ov

Ij

; ðM � mÞ ð7Þ

Initial boundary conditions of equation (6) are sub-
stituted as kið0Þ ¼ m, and then, the solution of differen-
tial equation (7) can be obtained as follows

kiðtÞ ¼ m*
m0 + t

m0 + ti

� �
P
j2Ov

Ii

M*m*Ii

ð8Þ

The average node degree in local world is shown asP
j2Ov

kj ¼ M\k., and when time meets the situation
t!+‘, the average node degree is described as

\k. ¼ 2m*t

t+m0

’ 2m ð9Þ

Algorithm 1. WTOM generation.

1: Set the initial configuration of SD-WSN with size N;//Initial
setting

2: Divide the network based on equation (1) to equation (3);//
Network partition

3: Deploy the super-nodes based on equation (4)//Super-nodes
configuration

4: while network size \ N do
5: Add new sensors into network according to equation (5) in

each time step;
6: Build the local world;//Network growth
7: Choose preferential attachment based on equation (6);//

Network evolution
8: Repeat the evolution steps until the required network size

is met;
9: Output the WSN topology optimal model;//Topology

optimization
10: end while
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Time t obeys uniform distribution PðtiÞ ¼
1=ðm0 + tÞ; therefore, the distribution of node degree
tends to equation (10), which follows power-law and dis-
plays scale-free phenomena in physical infrastructures

pðkÞ’ Y*mY�1*k�Y

s:t: Y ¼
2*
P

j2Ov

f ðEjÞ*cj*ð1+bjÞ

M*f ðEiÞ*cj*ð1+biÞ
+ 1

ð10Þ

The probability of super-node chosen to construct
network is limited in the range 0� p\0:1, when the
conditions (p ¼ 0 and n ¼ 1) are met and the deduced
result is described as Y ¼ 3. Therefore, the generated
network with WTOM is actually reduced to an
improved BA28 networks, which can improve both the
robustness and energy efficiency in network topology
with percolation theory–based super-nodes optimal
deployment29 and scale-free theory–based node degree
optimal distribution. Taking the upper bound of cod-
ing running time and the amount of nested loops into
account, the analysis on WTOM algorithm complexity
is mathematically transformed into a solution on topol-
ogy evolution problem with solving asymptotic order
in corresponding recursive equation. Based on the max-
imum incremental coding running time calculated
according to cyclic iteration steps in WTOM topology
generation, where the upper limit of created edges in
evolution process is subjected to proposed preferential
attachment and the average path length is increased
approximately logarithmically with the network size N,
WTOM algorithm complexity is finally deduced as
OðN*log2 NÞ.

Flow-table driven control in WSN physical
system

In proposed SD-CPSF, the specific mobile behavior of
super-nodes is driven by composite virtual force and
the optimal deployment principle is achieved according
to ‘‘force field’’ (virtual force matching rule and thresh-
old) set in flow-table entry. Furthermore, network evo-
lution process is instructed by the preferential
attachment probability stored in ‘‘default field.’’ Based
on the functional module for cyber cognition and min-
ing, WTOM is designed by controller in control plane
and downloaded into switches in data plane via flow-
table mode using OTAP. Based on the topology poli-
cies determined by WTOM, switches are acted as
actuators in CPS to output the cyber feedback control
on the physical system and the corresponding control
processes by flow-table mode. As a result, super-nodes
move to the suitable location and normal sensors
choose preferential attachment to perform specific
topology optimization actions.

Experimental results and analysis

We do experiments to evaluate the performance of
proposed WTOM in SD-CPSF by analyzing the net-
work characteristics including average path length,
clustering coefficient, energy consumption, and life
cycle.

The network simulator NS330 and network building
tool Gephi31 are used to construct the experiment envi-
ronment and analyze the performance of the proposed
topology optimization mechanism using SDWSN pro-
totype. Table 1 lists experimental parameters.

Performance comparison on network topology

This simulation situation is divided into two groups of
comparison counterparts, the first group is in accor-
dance with WTOM based on preferential attachment
probability model and the second topology generation
model is formed according to the BA scale-free
model.28 The red edges in Figure 2(a) denote the edges
built by crucial nodes–dependent preferential attach-
ment mechanism, which includes the set of shortcut
paths created by super-nodes in networks. The red
edges in Figure 2(b) represent the edges constructed by
node degree–based attachment method.

The set of blue lines in Figure 2 belongs to subset of
the communication sides created by the network evolu-
tion process. The union set of blue and red edges con-
stitute together the basic network communication
topology.

Table 2 shows that the selected energy-rich sensor
has the higher node degree and energy-barren sensor
has the lower node degree in WTOM than the

Table 1. Parameters of simulation experiment.

Parameters Value

Total number of sensors, N 140
Node distribution area, A (m2) 120 3 120
Local world nodes, M 100
Ordinary isolated nodes, m0 3
Added edges, m 3
Maximum transmission radius, Rmaxn (m) 40
Super-node maximum transmission
radius, Rmaxs (m)

80

Normal node initial energy, Eo ( J) 0.2
Data fusion energy, Eelec ( J) 50 3 1029

Amplifier power consumption, Emp 1.3 3 10215

Circuit power consumption, Efs 10 3 10212

Gain coefficient, kg 1.5
Mutual position relationship parameter, km 1.2
Density-dependent gain coefficient
parameters, kd

0.4

Gain coefficient between super-nodes, ks 1.4
Learning factor, c1 2.5
Learning factor, c2 3
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corresponding sensor with the same node ID in BA
model. The main reason is that super-nodes with higher
energy level in WTOM can contribute to build more
shortcut paths to balance network energy consumption
and result in the decrease in the average node degree of
energy-barren sensors in networks.

The topological properties with power-law degree
distribution, large clustering coefficient and

disassortative degree correlation should contribute to
improve the robustness in WSN network structure.

Comparison of degree distribution

The scenery of sensors death caused by exhausted
energy and environment interferes is similar as the net-
works suffer from random attack. The degree distribu-
tion of formed topology follows a power-law with
exponential cutoff, which can help to enhance the fault
tolerance and reliability of WSN.

Figure 3 shows that both WTOM and BA have the
similar scale-free structure characteristic on the distri-
bution of node degree, that is to say, sensors with high
degree are with small distribution probability, while
other sensors with small degree are with large distribu-
tion probability. According to the analysis on degree
distribution of WTOM, there exists of flat status within
a certain degree range, but the network reflects the
scale-free feature in overall degree distribution. The
main reason is that super-nodes play an important role
in network evolution mechanism, which contribute to
smooth the exponential degree distribution and the
amount of sensors with higher degree is reduced. This
helps to reduce sensors’ premature death rate due to
large energy consumption caused by high sensor degree.
When p = 0, there is no super-node in network and
WTOM has the similar functions as BA model.
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Figure 2. Network topology: (a) WTOM (N = 100, p = 0.05) and (b) BA model (N = 100, p = 0).

Table 2. Corresponding variety in degree with energy-diversity sensors in WTOM and BA model.

Node ID Energy-rich sensors Energy-barren sensors

13 40 67 94 110 25 53 77 86 112

Node degree in WTOM 23 16 25 29 12 19 13 9 17 11
Node degree in BA 6 11 7 5 2 21 18 14 19 16

WTOM: wireless sensor networks topology optimization model.
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Figure 3. Degree distribution of WTOM (p = 0.045) and BA
model (p = 0).
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From Figure 4(a), we can see that the total failure
rate of sensors can also be greatly reduced by adding
appropriate initial energy to super-nodes adjusted by
taking different values of parameter n. The super-node
with higher energy level can do more contribution than
the one with lower level to smooth the distribution of
node degree and achieve balanced network energy con-
sumption. Figure 4(b) shows the influence of super-
nodes’ position for the degree distribution in WTOM,
which can be seen that the node degree distribution
tends to be more uniform as the position of super-nodes
optimized by VFA.

Analysis on small-world effects

WTOM can find the weak disorder in the distribution of
link length and reduce the average path length via

optimally deploying the supper-nodes in WSN. Figure 5
focuses on the analysis on small-world effects in WTOM,
which are inherent in the law of proposed WSN topology
evolution. Figure 5(a) shows that the increase in initial
energy of super-nodes can effectively reduce the average
path length (shown as equation (11)) and the average
hops of information transfer process in WSN.

L ¼ 1

N

XN

i¼1

Di ð11Þ

where Di represents the average number of hops when
sensor i sends data to Sink along the shortcut path.
Figure 5(b) indicates that an appropriate increase in the
number of super-nodes can help to reduce L by the
introduction of small-world effect with the short aver-
age network path length, but the amplitude range of L
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Figure 4. Degree distribution of WTOM: (a) influence of super-nodes’ energy level for degree distribution of WTOM (n = 3,
n = 4) and (b) influence of super-nodes’ position for degree distribution of WTOM.
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Figure 5. Average path length: (a) average path of WTOM and BA model (n = 2, p = 0.05; n = 3, p = 0.05; n = 1, p = 0) and (b)
influence of the quantity for the average path of WTOM (n = 3; n = 1).
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should hardly change when the number of super-nodes
reaches a certain threshold. In comparison, the average
path length of BA network is not sensitive to the num-
ber of super-node, because there are no special consid-
erations on the effect of super-nodes in the construction
of network topology.

Comparison in the effect of clustering coefficient

Figure 6(a) shows the fact that WTOM has a larger
clustering characteristic than BA model, which contri-
butes to improve the robustness in local network con-
nection denoted as an invulnerability indicator in WSN
and the value of clustering coefficient C (see equation
(12)) increases with the initial energy of super-nodes

C ¼ 1

N

X
i

2*li

ki � ðki � 1Þ ð12Þ

Clustering coefficient of the entire network repre-
sents the average interconnected probability between
any pair of connected sensors and is defined as the
ratio of total number of connections li to the number
of connections between ki neighbors of sensor i divided
by the actual presence among neighbor sensors fully
connected.

Figure 6(b) indicates the change processes in average
path length and clustering coefficient of the network
with sensors = 120 and average vertex degree = 10.
We can see that when the adjusting probability of edge
remains a very small value, the average path length has
been substantially shortened, while the opposite branch
coefficient nearly not changes in value. This means that
the network state has already reflected notable char-
acteristic in small-world model, that is, network struc-
ture features ranged between random and ordered
architecture show a high degree of group property in
local range and a short average path length in global
range.

The comparison in robust of invulnerability

The comparison with the robustness in invulnerability
of WSN between WTOM (p = 0.1) and BA model is
shown in Table 3, which provides the statistics result on
the model-related value c (denoted by maximum num-
ber of sensors belong to the maximal connection branch
fraction) changing with the number of cycles.

As can be seen from Table 3, WTOM has the better
robustness in network survivability compared with BA
model in the course of data gathering. The main rea-
sons are that the failure of WSNs is mainly caused by
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Figure 6. Small-world characteristics: (a) clustering coefficient of WTOM and BA model (n = 2, p = 0.04; n = 4, p = 0.04) and (b)
small-world characteristics in WTOM.

Table 3. Maximum connected component of branch c versus lifetime cycles.

Parameters Variety in value of parameters

Cycles r 300 340 380 420 460 500 540 580 620 660 700
WTOM 100 100 99 97 96 94 76 49 41 32 20
BA model 100 100 91 82 73 61 49 42 33 21 10

WTOM: wireless sensor networks topology optimization model.
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the energy depletion node, while WTOM takes the resi-
dual energy and degree distribution into consideration
in topology construction procedure and also takes the
protection of critical sensors into account, which con-
ducts to maintain network connectivity, thereby
improving the robustness of network survivability.

Comparison in network lifetime

The lifetime of WSN is defined that at least 70% sen-
sors are alive to support environment monitoring func-
tionality in CPS service application. The lifetime is also
an important index to reflect the energy efficiency of
network. Figure 7 plots the average survival ratio of
sensors to the number of data-gathering rounds for
WTOM and BA model. The survival rate of sensors in
a network can be used to evaluate the total energy con-
sumption in data-gathering mechanism for CPS service.
The lifetime of SDWSN is denoted as the duration of
network operations (e.g. data gathering) while the sen-
sors survival rate is above an application-based thresh-
old (Cth 2 ½0:6; 0:8�). In Figure 7, we set Cth = 0.72 and
denote the network lifetime achieved by BA, WTOM
(n = 4), and WTOM (n = 2) as TBA, TWn¼4

, and TWn¼2
,

respectively. We can see that TBA\TWn¼2
\TWn¼4

, with
WTOM achieving the highest average node survival

rate among the three schemes. This is mainly because
the small-world features have been introduced into the
topology evolution in WTOM, which can efficiently
reduce the average path length for data routing and
consequently improve the efficiency of energy utiliza-
tion in WSN, which helps to prolong network lifetime.
Furthermore, the energy efficiency can be further
improved by increase the energy level of super-nodes in
WTOM.

Table 4 shows that the network lifetime cycles should
be prolonged with the more super-nodes being added
into network using WTOM, which also contribute to
increase the invulnerability of WSN.

The negative performance that some sensors with
high node degree easily exhaust their energy leading to
network fragmentation in BA model is covered by
introducing small-world–based super-nodes deploy-
ment and energy-aware network evolution with SDN-
based mechanism in WTOM. Therefore, the overall
routing performance and structure robustness of global
network are optimized, which finally help to achieve
energy efficiency and robustness in WSN.

Conclusion

Based on complex network theory and SDWN frame-
work, an optimization WSN topology model is pro-
posed to improve the invulnerability for fault tolerance,
the adaptability for heterogeneity compatibility, and
the energy efficiency for lifetime extendancy in WSN.

By introducing virtual force driven super-nodes
deployment mechanism, redundant network resources
can be reconfigured and allocated to vulnerable crucial
network element, and small-world phenomenon can
produced according to complex network theory–based
percolation process, which can improve the survivabil-
ity and energy efficiency in WSN. According to
resource-driven preferential attachment mechanism in
topology evolution strategy, the formed network can
show the scale-free–based topology structure character-
istics, which can efficiently defend against random fail-
ure caused by node breakdown or network attack.

The experimental results show that compared with
the original BA model, the proposed optimal network
model can efficiently prolong the lifetime of WSN by
reducing the amount of exchanged information
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Figure 7. Network lifetime.

Table 4. Life time versus the number of super-nodes.

Parameter Variety in the value of parameters

Probability p 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Number a 0 1 2 3 4 5 6 7 8 9 10
Cycle r 443 474 471 481 479 475 509 488 541 562 598
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benefited from SDN-based functional architecture and
shortening the average path length due to small-world
effects created by rational deployment of super-nodes.
In terms of survivability, the invulnerability of WSN
can be enhanced by the scale-free–based network topol-
ogy characteristic.
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