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Abstract- Wind-powered base stations and roadside units have been considered as a cost 

effective greening solution in windy countries which also have limited solar irradiation. The 

practicality of such a system increases significantly in sparse areas such as countryside and 

motorways. The deployment of standalone off-grid wind powered roadside units could 

alleviate the common issues related to grid connected renewable energy farms. Hence, there 

is need to study the feasibility of an off-grid wind powered roadside unit for seamless 

connectivity. Unlike the conventional usage of reliability analysis of fault-tolerant systems, in 

this paper, reliability is redefined in the context of availability of intermittent wind for 

powering a roadside unit (RSU) in a UK motorway vehicular environment. Transient analysis 

of energy consumption (energy demand) of the RSU and harnessed wind energy are carried 

out along with real measurements for developing respective generic energy models. Further, a 

generalised methodology is developed to determine the minimum battery size for achieving a 

certain reliability standard and quality of service. Several reliability indices such as loss of 

load probability (LOLP), loss of load expectation (LOLE), energy index of reliability (EIR), 

mean time between failures (MTBF), mean time to recovery (MTTR), forced outage rate 

(FOR), etc. are obtained for the RSU. The performance results reveal that with a standard 

micro-turbine and a reasonably small battery, an RSU achieves a good reliability of 99.9% 

with significant improvement in the quality of service. 
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1. INTRODUCTION 

The rising trends of �connected vehicles� in the market, the rapid increase of motorway and 

urban road networks, and the need to deploy ubiquitous communications network among 

large number of vehicles (i.e. 34.6 million vehicles in the UK in 2012 [1]) suggest an 

imminent growth of vehicular networks comparable to that of the current cellular networks 

[2]. It is therefore evident that some of the existing operational challenges of cellular 

topology will be inherited in vehicular networks in addition to the challenge of maintaining 

seamless connectivity in highly mobile vehicles. Deployment of incumbent mobile 

technology to support vehicular communications is impractical considering the acute 

spectrum shortage which restrains higher data rates transmission and the associated large 

power consumption of complex base stations (BSs). Given that the emergence of vehicular 

communication networks is at a time the existing communication technologies are already 

consuming significant amounts of energy, and environmental concerns are rife, the key 

design objective of future vehicular networks should mitigate the problem of low data rates 

with the use of roadside units (RSUs) in a micro-macro topology. This may however be at the 

expense of potentially higher overall energy consumption [2]. 

 

Deployment of RSUs with renewable energy sources can significantly reduce the carbon 

footprint while standalone off-grid wind powered RSUs can as well alleviate common issues 

associated with grid connected renewable energy farms, and provide ease of operation 

(deployment and maintenance) in remote areas such as countryside and motorways. Such 

deployments also eliminate several power systems related issues such as distribution, 

metering and grid maintenance. With the renewable power generation technologies becoming 

increasingly cost-competitive and the option of off-grid electrification in most areas and 

locations with good resources becomes most economic [3], the renewable energy sources in 

conjunction with fast rechargeable batteries have become an attractive option to power the 

BSs/RSUs in sparse vehicular environments. 
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Since achievable renewable energy varies greatly based on the geographic locations and 

weather conditions, the design of reliable communication systems powered by renewable 

energy introduces additional complexity, especially in the case of standalone off-grid 

systems. Wind powered off-grid BSs/RSUs is a better option in windy countries like the UK, 

where the solar power is limited in several geographic locations for a substantial period of the 

year. The previous studies by the authors in [4][5] investigated the feasibility of a standalone 

wind-powered RSU in the UK and have shown that the communication Quality of Service 

(QoS) requirements can be met with a very small battery if a sleep mechanism is employed. 

In the related dissertation [5], reliability study of wind energy powered RSUs in a motorway 

environment was introduced and various power engineering reliability indices in the context 

of adequacy or inadequacy of the available wind energy were defined to meet the RSU load 

demand. The author, however, only obtained simulation results for the studied reliability 

indices such as LOLP, LOLE, EDNS, MTBF, MTTR and FOR without any analytic model. 

The study by the author was also limited to a single location (Reading in the UK) without any 

extension to and comparison with other geographic locations. 

 

The work in this paper provides comprehensive models for the wind energy and RSU 

energy consumption and use them to develop analytic models for the various reliability 

indices. Other geographic locations with different climates are also studied and compared 

with the chosen location in the UK. Furthermore, queueing models of the studied RSU are 

developed to obtain some essential QoS metrics such as average packet delay and throughput 

in term of reliability index LOLP. 

 

Our contributions in this paper are fourfold: (1) A transient analysis of energy 

consumption (energy demand) of the RSU based upon real vehicular traffic measurements 

has been carried out to develop a generic energy consumption model; (2) A transient analysis 

of harnessed wind energy based on the output of a micro-turbine and measured wind speed 

for the same geographic location has been carried out to develop a generic wind energy 

model; (3) Key reliability indices are redefined in the context of availability of intermittent 

wind power unlike the conventional usage of reliability analysis of fault-tolerant systems; and 

(4) corresponding analytic models have been proposed. 

 

The rest of the paper is organised as follows: A brief discussion on related work is 

presented in Section II while Section III describes the studied scenario along with energy and 
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communication parameters. Section IV details the wind energy model. Section V presents the 

energy consumption model of a standalone off-grid wind powered RSU. Section VI redefines 

and models the reliability indices for V2R scenario. The performance of the RSU in the 

context of reliability and QoS is analysed in Section VII, followed by the conclusion in 

Section VIII. 

 

2. RELATED WORK 

The exponential growth in the cellular networks operators� market and the number of 

subscribers has increased cellular traffic. This invariably pushes the limits of energy 

consumption in wireless networks to adversely impact the industry�s overall carbon footprint. 

The average annual energy consumption of a 3G BS is about 4.5 MWh with a typical 3G BS 

using about 500 W of input power to produce about 40 W of output RF power [5]. According 

to [6], 4G macro Long-Term Evolution (LTE) BS consumes no lesser power, having a power 

consumption of 1350 W at full load.  Currently, BSs account for 57% of mobile operator�s 

total energy expenditure [5]. With the current number of 3G and 4G base stations in the UK 

exceeding 12000 [5], about 50 GWh is spent in a year. This invariably leads to not only 

significant carbon emissions but also much higher operating costs for telecoms providers. In 

terms of the global carbon emissions, it is reported that information and communication 

technology (ICT) accounts for 2�2.5% of all harmful emissions [7]. According to [8], 

approximately 3% or 600 TWh of the worldwide electrical energy is consumed by the ICT 

sector, and it is estimated that energy consumption for ICT will grow to 1,700 TWh by 2030 

[8]. 

 

 Recent rapid advances in cellular technology has brought significant improvements and 

enhanced performance of mobile devices with high data consuming applications. The advent 

of android and iPhone devices alongside the massive penetration of social networking giants 

such as Facebook has necessitated high demand for data traffic and corresponding high 

operational energy in recent years. The inevitability of these challenges has compelled 

researchers and the industry to explore new technologies and strategies which are not only 

able to meet the unprecedented bandwidth and connectivity demand, but are also energy 

efficient.  The use of renewable sources of energy such as wind or solar power proves to be 

an economic and attractive option that gives these devices complete independence [4]. Global 
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environmental concerns associated with conventional energy generation have led to increase 

in the development of renewable alternative energy sources in power systems. 

 

Many nations across the globe have set high wind penetration targets in their energy 

generation mix to mitigate the greenhouse effect arising from the conventional generations. A 

recent report from Pike Research, a part of Navigant�s Energy Practice, states that the annual 

deployments of off-grid power supplies, using renewable or alternative energy sources for 

remote mobile stations will grow from fewer than 13,000 worldwide in 2012 to more than 

84,000 in 2020 [9]. China Mobile currently has one of the world�s largest deployments of 

green technologies to power its base stations (BSs), with 2,135 BSs powered by alternative 

energy in 2008 according to [10]. Among these, 1,615 BSs of these were powered by solar 

energy, 515 by solar and wind energy and 5 by other alternative sources. According to 

predictions, the yearly number of green BSs deployments worldwide will grow from 13,000 

in 2012 to more than 84,000 by 2020 [11]. More than 390,000 green BSs are expected to be 

deployed globally over this period. Solar and wind-powered cellular base stations are likely 

to become more popular in Africa, South Asia (including rural India), South America, Latin 

America, and the Caribbean where off-grid base stations are mainly deployed due to lack of 

power grids, as well as insufficient amount of fuel [10]. 

 

Various performance evaluation metrics, applicable to wind power systems have been 

defined in [12], [13] and [14]. Loss of load probability (LOLP), Loss of load expectation 

(LOLE) and the effective load carrying capability (ELCC) are defined in [13] with regards to 

only wind farms that generate huge amounts of energy in the hundreds of MW range to 

supply large scale consumers. The concept of capacity value is defined in [13] as means of 

quantifying the contribution of generating units or technologies to securing demand. The 

authors in [13] described the approximate methodologies for determining capacity values of 

power systems and also proposed a computational method for a system with non-renewable 

power sources integrated with wind power. The necessity of appending storage systems to the 

generated wind energy has also been affirmed by these papers, but with the emphasis limited 

to large amounts of energy without concern for flexibility. The authors in [15] have also 

derived indices such as LOLE, expected energy not supplied (EENS) and energy index of 

reliability (EIR) to evaluate the probabilistic reliability of off-grid hybrid solar PV-wind 

power system for the rural electrification in Nepal. This is also concerned with large amount 

of energy that is uneconomical for deployment in vehicular networks environments. 
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Some research efforts have been directed towards providing suitable energy storage for 

wind power systems due to the erratic nature of wind power for improved reliability [16-18]. 

There is currently a growing interest in the reliability study of power systems especially for 

critical telecommunication systems [19] but more importantly for determining adequacy of 

wind power [13]. The modelling and analysis of harnessed wind energy from the intermittent 

wind speed for communication systems are found to differ largely from the conventional 

power systems [13]. Furthermore, the authors in [14] present the reliability and economic 

evaluation of small autonomous power systems (SAPS) containing only renewable energy 

sources. The authors derived some basic probabilistic indices that define the performance of 

renewable energy powered systems since the conventional power systems reliability indices 

that are based on deterministic criteria cannot be applied in a system that contains only 

renewable energy sources (RES). RES have a time varying capacity which depends on the 

local atmospheric conditions and therefore cannot be modelled as deterministic. 

 

In order to ensure that an off grid RSU powered by a small standalone wind energy 

conversion systems (SSWECS) [20] is able to meet the QoS for communication traffic, the 

reliability of the RSU which depends on the availability of wind and communication energy 

demand must be assessed. The stochastic nature of wind power is the prime reason for the 

evaluation of reliability indices. To the best of authors� knowledge, reliability modelling and 

analysis of an off-grid wind powered RSU, where reliability indices have been redefined in 

the context of variable wind power and transient energy demand, have not been carried out. 

Moreover, developing generic methods of scaling down battery sizes to enhance the 

flexibility of deploying dispersed roadside vehicular systems have not been undertaken. 

 

3. THE STUDIED SCENARIO 

The studied scenario considers a single RSU from a set of RSUs typically spaced 1 km 

apart along a 3 lane motorway stretch, which is in line with the wireless access for vehicular 

environment (WAVE) standard [21], as shown in Figure 1. The vehicles generate packets that 

arrive at the RSU through a collision and contention free channel [22]. The RSU collates the 

packets for the Internet through the BS. In this paper, the RSUs are battery operated wind 

powered off-grid standalone entities, coupled directly with a 0.5 m (diameter) micro turbine 

which has cut in ( ) and cut off ( ) speeds of 3.5 m/s and 21 m/s [23], 
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respectively. The hourly average wind speed samples are obtained for the years 2009 to 2013 

from the UK air information resource (AIR) database provided by the Department for 

Environment Food and Rural Affairs [24] at Newton, Reading, UK. The selected site is in the 

same geographical location as that of the M4 motorway stretch where hourly vehicular 

densities [25] have been obtained, for our analysis. Moreover, real packet size measurements 

[26] have also been utilised for performance evaluation. The parameters for the vehicular data 

generation, RSU operation and wind turbine are given in Table 1. 

 

Figure 1: Wind powered RSUs in a motorway vehicular scenario. 

Table 1: PARAMETERS FOR THE STUDIED SCENARIO. 

Parameter Notation Value 

RSU data rate  27 Mbps [2] 

Vehicle data generation rate  320 kbps [27] 

Vehicular density  3�36 [25] 

Average packet size  867.4 bytes [26] 

Packet arrival rate   

Packet departure rate   

RSU max. operational power  20 W [28] 

RSU min. operational power   [29] 

Transmit Power   W 

Propeller length (diameter)  0.5 m [30] 

Swept area 0.1963 m2 

Air density at 150C  1.225 kg/m3 [31] 

Coefficient of performance  0.45 [32] 

The studied 

scenario

Wireless link Cloud

RSU

Wind turbine with 

chargeable battery

RSU RSU
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Cut_in wind speed  3.5 m/s [23] 

Cut_off wind speed  21 m/s [23] 

 

4. WIND ENERGY MODEL 

In order to develop a model for the harnessed wind energy from a micro-turbine, a 

detailed analysis of wind energy has been carried out using the hourly average wind speed 

samples at the RSU site which were obtained from the UK air information resource (AIR) 

database [24] for a period of five years. The samples were used to obtain the hourly 

probability distribution of wind speed which was found to follow Weibull distribution. 

Several authors have concluded that Weibull distribution is an acceptable instantaneous wind 

speed model [33], [34], [35]. The Weibull probability density function (pdf) is given as 

               (1) 

where  is the instantaneous wind speed in m/s,  is the scale parameter in m/s,  is the 

unit-less shape parameter. The micro turbine parameters are shown in Table 1. 

 

The mean and variance of Weibull distributed wind speed can be expressed as [36]  

      (2) 

and 

      (3) 

where  denotes Gamma function of . The mean and variance of wind speed at each 

hour can be determined from the obtained wind data of 5 years. With the mean and variance 

of wind speed, the Weibull parameters  and  are computed for each hour using (2) and (3). 

Table 2 shows the hourly wind speed parameters which are needed to be able to generate 

wind speed data at each hour of the day throughout the thesis. Figure 2 shows the wind speed 

pdf and its Weibull fit. 

 

Table 2. WEIBULL PARAMETERS OF INSTANTANEOUS WIND SPEED. 

Hour 
Calculated 

Scale  (m/s) 

Calculated 

Shape  

Average wind 

speed   (m/s) 

[24] 
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0 5.7 2.0 6.46 

1 5.6 1.9 6.50 

2 5.7 1.9 6.59 

3 5.7 1.9 6.66 

4 5.7 1.9 6.73 

5 5.6 1.8 6.79 

6 5.6 1.8 6.81 

7 5.7 1.9 6.82 

8 5.8 1.9 6.94 

9 6.0 1.9 6.95 

10 6.2 2.0 7.07 

11 6.4 2.1 7.20 

12 6.2 2.0 7.24 

13 6.6 2.2 7.29 

14 6.6 2.2 7.28 

15 6.6 2.3 7.17 

16 6.5 2.3 7.05 

17 6.4 2.3 7.02 

18 6.4 2.3 6.92 

19 6.3 2.2 6.88 

20 6.2 2.2 6.87 

21 6.2 2.2 6.86 

22 6.1 2.1 6.79 

23 6.0 2.0 6.73 
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Figure 2: Model validation of instantaneous wind speed. 

The instantaneous power harnessed from the wind can be expressed as 

          (4) 

where  is the air density (in kg/m3);  is the turbine cross-sectional-area (in m2),  is the 

wind speed normal to  (in m/s); and  is the coefficient of performance of the wind 

turbine, which accounts for the decrease in the actual power harnessed from the wind due to 

several factors such as rotor and blade design that lead to frictional and equipment losses. 

  

Since the wind power is proportional to the third power of the wind speed as given in (4), 

the pdf of instantaneous power ( ) which also follows Weibull distribution [37] is given as  

   (5) 

where ,  and  are the wind speed scale and shape parameters, respectively. 

By comparing (5) with (1), the wind power pdf can be re-expressed in terms of wind power 

scale and shape parameters (  and ) as 

                (6) 

      where  ;      .     

The mean and variance of Weibull distributed power can also be expressed in terms of  

and  [36] as 



 

13 

 

                 (7) 

and 

         (8) 

Figure 3 shows both the simulated and modelled (Weibull distributed) wind power while 

the average hourly wind energy is shown in Figure 4. It is evident from Figure 4 that the 

hourly average wind power is peak at hours 13.00 and 14.00 due to the prevalent high wind 

speed at such times. 

 

Figure 3: Model validation of instantaneous wind power. 

 

 

Figure 4: Hourly average wind energy. 
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5. LOAD MODEL OF THE RSU 

The instantaneous power consumption of the RSU comprises of (a) the transmission 

energy per unit time which is dependent upon the varying data traffic corresponding to the 

vehicular density  and (b) the fixed power consumed by the RSU circuitry which is the 

minimum operational energy per unit time ( ). Since most APs/RSUs usually have a 

separate transmitter circuit for the ease of implementing energy efficient transmission, the 

receiving and listening power consumptions belong to the fixed power aspect of the devices. 

A typical hourly vehicular flow and densities obtained from M4 motorway (UK) which lies 

within the same geographical location where the wind data were taken are shown in Figure 5. 

The transmission energy consumption by the RSU follows a Normal distribution with mean 

 and standard deviation  which vary hourly according to the vehicular density. This is 

because the transmission energy consumption by the RSU equals the traffic load or energy 

demand which directly depends on the product of traffic density and energy per bit. Packet 

arrivals are Poisson distributed, however energy per bit is evaluated over a very short time 

period and is approximated as Gaussian random variable. Gaussian distribution is an 

excellent approximation of Poisson distribution when the total number of events becomes 

sufficiently large [38]. 

 

Since the operational energy per unit time ( ) is fixed, the probability density function 

of the energy consumption model can be expressed as 

                                      (9) 

where the random variable  denotes the total energy consumption of the RSU per unit time. 

The parameters  and  represent the mean and standard deviation of the transmission energy 

consumption. Figure 6 shows the hourly average energy consumption by the RSU, which 

represents the summation of traffic energy demand and the fixed operational energy 

consumption of the RSU at each hour. 

. 



15

Figure 5: Hourly vehicular flow and density.

Figure 6: Hourly average energy consumption by an RSU. 

6. RSU RELIABILITY MODELLING AND ANALYSIS

Reliability indices are used conventionally to analyse fault tolerance of automated 

systems. The concept of fault occurrence in automated systems is here applied to the off-grid 

RSUs in the context of the availability of wind power. Reliability analysis is crucial to 

ascertaining the communication feasibility of an off-grid RSU considering the stochastic 

nature of intermittent wind speed and hence the harnessed wind power. A number of related 

reliability indices are therefore redefined in this section.
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Following on with the probabilistic models of load and wind power obtained in Chapter 3, 

the reliability analysis of the RSU is now considered here. To obtain the hourly outage of the 

RSU (failure due to insufficient wind energy), the hourly simulated wind and load energies 

for a period of 5 years which is equivalent to   days are compared pair-

wise [14] as 

                                           (10) 

where  

 

 

where  represents the total number of days. The outage is assigned a value of 1 for an hour  

on day  if the generated wind energy sample value ( ) is less than the corresponding load 

energy sample value ( ), and  otherwise. The loss of load probability (LOLP) [39] in our 

scenario in the present context  can be redefined as 

     (11) 

where  denotes loss of load probability at hour . The expected loss of load over a 

specific time period represents another reliability index called loss of load expectation 

( ). This is the average number of hours for which the load is expected to exceed the 

available capacity [14] and can be expressed in the present case as 

                                          (12) 

where  represents loss of load expectation,  the total number of years and  the total 

number of hours in a day ( ). It signifies the average number of outage hours in a year. 

 

To investigate the unmet capacity in the duration of study, the loss of energy expectation 

(LOEE) is determined. This is the expected energy in (kWh) that will not be supplied when 

the load exceeds the available generation, and can be derived from the hourly unmet demand 

in (10) as follows: 

The unmet demand  is the amount of energy deficit at any hour t over the total 

number of days  and can be expressed as 

                                (13) 

The loss of energy expectation (LOEE) denoted by  is the total energy not met in a year 

and can be obtained as yearly average for  years case study as 
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                                           (14) 

The EDNS which is the expected demand not served in an hour of the day (averaged over 

the 24 hours) can be obtained from the product of the state probability and the unmet demand 

for the hour as 

                                              (15) 

The average EDNS over a 24 hour period can be expressed as 

                                                 (16) 

The EDNS in hour  is denoted by , while the average EDNS is denoted by . The 

energy index of reliability,  [14] indicates the energy throughput of an RSU. It is the 

fraction of the expected load served to the total demand as applied to our study scenario: 

                                                      (17) 

where  is the energy demand of the RSU over the whole year. The energy index of 

unavailability, , which is the complement of EIR, can be expressed as  

                                                         (18) 

The definitions of the various reliability indices used in this section are summarised in Table 

3. 

 

 

 

 

Table 3. DEFINITIONS OF RELIABILITY INDICES. 

Reliability Index Definition 

 The number of times wind power is less than load in a given hour 

. 

 Loss of load probability at hour  is the probability of wind power 

being less than load for the hour. 

 Loss of load expectation is the number of times there is an outage 

in a year. 

 Loss of energy expectation is the amount of energy not 
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supplied/met in a year. 

 Expected demand not served in an hour  is the product of state 

probability and the unmet demand for the hour. 

 Energy index of reliability is the proportion of energy requested 

that has been met. 

 Energy index of unavailability is the proportion of energy 

requested that has not been met. 

 Forced outage rate is the proportion of average outage time.  

 

 

7. ANALYTIC MODELS FOR LOLP, LOLE, LOEE, EDNS, MTBF, MTTR AND FOR 

The quantities of interest in Table 3 rely mainly on determining the probability that the 

load power is greater than the available wind power. Hence, the analytic models of the above 

reliability indices can be obtained from the probability density functions of wind energy and 

load. The instantaneous transmission energy consumption by the RSU follows a Normal 

distribution with mean  and standard deviation  according to the vehicular density as 

explained in Section 5. The instantaneous wind power follows Weibull distribution as 

discussed in Section IV. The pdfs of wind power and the RSU power demand (load) can be 

expressed respectively as 

                                      (19) 

and 

          (20) 

The  which represents the probability of failure, i.e., the probability that wind power is 

less than or equal to load can be expressed as  

          (21) 

Hence, 

(22) 

where ; and  is maximum 

power demand (load). Substituting (19) and (20) in (21), (21) becomes 
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            (23) 

Integrating the integrand in bracket according to [40], (23) becomes 

 

Since solving the above integral is not possible analytically, if we are interested in the 

worst case hourly failure probability , then this occurs at  in which case 

 and  

Hence, 

    (24) 

 denoted by   can be expressed analytically in terms of  obtained in (6.15) as  

    (25) 

Where  represents the total number of days. 

Similarly, the model for the LOEE, which represents the average unmet demand in a year, 

can be obtained as the product of failure probability and the total energy demand in a year as 

    (26) 

where  denotes LOEE and  is the total load demand in a year. 

, the unmet energy in an hour, can also be expressed analytically as  

                  (27) 

where  represents  and . 

The unavailability of sufficient wind power causes the RSU to fail. It remains non-

operative until the available wind power becomes higher than the load energy. The 

corresponding down time duration is represented as time to recover (TTR). Similarly, the up 

time duration during which the RSU remains operative (till the RSU fails) is represented as 

time before failure (TBF), as shown in Figure 7. 
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Figure 7: Reliability timing diagram of the RSU. 

The average values of TTR and TBF over a certain duration can be defined as mean time 

to recover (MTTR) [41] and mean time before failure (MTBF) [41], which can be derived 

from the probability density functions of failure and recovery times obtained from wind and 

load energy samples. The reliability or survival rate function  of a Weibull distribution 

 [42] can be expressed as 

                (28) 

where  is the CDF of . The hazard or failure rate  is the probability of failure at 

time  given that it has worked till time . This can be written as  

   .    (29) 

The time before failure ( ) function is the reciprocal of the failure rate which is given as 

.                 (30) 

The mean time between failures (MTBF) can be obtained by taking expectation of  

over time  ranging from  to . 

The downtime pdf  can be expressed as the probability that the wind power is less 

than the load power for any given value of load power for the duration of time . Therefore, it 

is the complement of the reliability function and is expressed as  

          (31) 

Time to repair denoted by  can be expressed as   

                                      (32) 

The mean time to repair (MTTR) can be obtained by taking expectation of  over 

time  to . The forced outage rate ( ) denoted by  can be expressed in terms of MTTR 

and MTBF [43] as 

                           (33) 

 

UP TIME

DOWN TIME

Time to Recover 

(TTR)

Time Between Failure (TBF)
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Time Before 
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8. RESULTS AND DISCUSSIONS 

The pdf of positive  is shown in Figure 8 while Figure 9 shows the pdf of negative 

. The energy deficit and surplus levels of the RSU have been obtained from the 

energy consumption and wind energy models. The hourly surplus/deficit energy is obtained 

by subtracting the hourly energy demand from hourly wind energy. The positive and the 

negative values obtained for 1825 hourly samples are used for the probability density plots in 

Figure 8 and Figure 9. 

 

Figure 8: Probability density function of instantaneous (positive)  
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Figure 9: Probability density function of instantaneous (negative)  

 

It is clear from Figure 8 and Figure 9 that there are number of instances where the wind 

energy is insufficient to keep the RSU operational. The computation of surplus/deficit energy 

from a sample size of 43800 reveals 36.9% energy deficiency (negative ) and 63.1% 

energy surplus (positive ). As seen in Figure 9, deficits beyond -30 kJ (i.e. -50 kJ to -

72 kJ) refer to the unavailability of wind energy due to very low (i.e. less than cut-in) wind 

speed. The deficit that occurs from the moment the wind speed attains the cut-in speed of 3.5 

m/s and above is shown between -30 kJ and 0 kJ as the turbine now functions. There is no 

deficit between -30 kJ and -50 kJ as the minimum load energy which constitutes the deficit 

when the turbine has zero output is 54 kJ. The high percentage surplus energy realised can be 

stored to meet the incurred deficit. 

 

With the surplus energy being almost twice the deficit energy, the additional surplus 

energy after meeting the deficit via battery can be disregarded as it cannot be injected back 

into the grid (RSU is off-grid standalone). This is to prevent the continuous build-up of 

surplus energy and limit the size of battery for the standalone RSU. Moreover, determining 

the required battery size for a given communication demand is crucial for the ease of 

deployment. Thus the battery with minimum capacity should be able to cater for the 
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maximum deficit at any point in time during the whole day. The instantaneous cumulative 

energy level can be obtained as 

                                               (34)  

where  denotes the current energy level and  denotes the previous energy level in the 

battery, and is set to an initial value of 0 kJ.  and  represent the generated instantaneous 

wind (i.e. available) and load (i.e. demand) energies, respectively. To determine the 

maximum discharge level (i.e. deficit), we disregard the surplus energy by placing a ceiling 

as . The resulting maximum discharge level of -637 kJ obtained for the studied scenario 

requires a maximum battery of size 29.4 Ah (considering a 12 V deep cycle battery with a 

50% depth of discharge (DOD) [44]). However to determine the minimum battery size which 

facilitates a certain level of reliability and QoS, the cumulative discharge level needs to be 

converted into the probabilistic domain by obtaining cumulative probability plot for the 

discharge behaviour. 

 

Having determined the battery sizes for 96% and 99.9% availabilities as 7.9 Ah and 22.7 

Ah respectively, the performance of the RSU is evaluated with respect to key reliability 

indices for the three cases: I) No battery, II) 7.9 Ah battery, and III) 22.7 Ah battery. The 

respective analytic models are verified with simulation. The battery sizes of 7.9 Ah and 22.7 

Ah yield 96% and 99.9% availabilities, respectively. 

 

 

Figure 10: LOLP of the RSU with and without battery. 
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Figure 10 shows the hourly probability of failure (LOLP) (both simulation and analytic 

results) for the three cases: I) No battery, II) 7.9 Ah battery and III) 22.7 Ah battery against 

the hours of the day. As expected, in the case of no battery, the LOLP is very high (i.e. up to 

0.44) at some hours of the day. This is due to the relatively low wind energies (see Figure 4) 

compared to the load demands (Figure 6) at those hours, thus, necessitating the need for 

integrating a battery. During the midday the load demand increases, however the wind energy 

increases substantially resulting in a much lower LOLP even without a battery. The LOLP for 

the RSU with no battery remains relatively high, ranging between 0.30 and 0.44. A 7.9 Ah 

battery enabling 96% availability lowers the LOLP to a range below 0.1 for most hours of the 

day while 22.7 Ah battery which presents 99.9% availability keeps the LOLP at 0 for most 

hours of the day. 

 

While the hourly LOLP represents the shortage probability, the EDNS signifies the 

amount of shortage. Thus the hourly EDNS (Figure 11) exhibits a similar trend as that of 

hourly LOLP (Figure 10). The hourly EDNS in the case with no battery has a peak of 9.35 kJ 

at 0800 hrs with a minimum of 4.12 kJ at 1600 hrs. The EDNS for the cases with batteries are 

significantly low as expected. For example, the 7.9 Ah battery lowered the EDNS to a 

maximum of 1.28 kJ while 22.7 Ah battery maintained EDNS around 0 kJ for most of the 

day. 

 

Figure 11. EDNS with and without battery. 
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To determine FOR, the MTBF and MTTR are obtained by taking samples of uptimes and 

downtimes of the RSU. These are used to obtain distributions of time between failures and 

time to recover, as shown in Figure 12 and Figure 13 respectively. Figure 12 shows the 

survivor function of the time between failures for all the four cases. The survivor function,

also known as a survival function or reliability function, is a property of any random variable 

that maps a set of events (in this case failure of an RSU), onto time. It indicates the 

probability of a system or unit surviving until a given time, i.e. time before failure in this 

application. The various time limits (in hours) the RSU can function reliably or survive is 

shown against the probability of reliability as survivor function. The RSU with no battery 

(i.e. case I) only lasts a maximum of 20 hours before a failure. Case II (with 7.9 Ah battery) 

can provide continuous operation of up to 500 hours while case III (with 22.7 Ah battery) 

achieves a maximum of 35,000 hours of uninterrupted service. As expected in all reliability 

indices, the survivor function approaches zero as age (mean time before failure in this case) 

increases without bound.

Figure 12: Time before failure (TBF) with and without battery.

The simulation result of the time to recover, as in Figure 13, shows that recovery time for 

all cases (with and without batteries) is primarily between 1 to 2 hours, reaching up to 11 

hours rarely. Although all the cases exhibit very similar recovery times, inclusion of larger 

battery moves the curves in Figure 13 up, i.e., the probability of the system recovering within 

say 4 hours is a higher probability (area under curve) if a larger battery is used.
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Figure 13: Time to recover (TTR) pdf with and without battery. 

The overall reliability of the RSU is analysed using the LOLE, EIR, EIU and FOR as 

shown in Figure 14. The LOLE without a battery is 36.9% which corresponds to the 

percentage of energy deficit. This is expected since the loss of load is caused by energy 

deficiency. Hence the probability of such energy deficiency is equivalent to the LOLE. A 7.9 

Ah battery brings the LOLE down to 8.3% while 22.7 Ah achieves a very low LOLE of 

1.4%. The EIR without battery subsequently has lower value (i.e. 72%) compared to the 

89.9% with a 7.9 Ah battery and even higher (99%) with a 22.7 Ah battery. The 

unavailability index (EIU) attains 28.1% with no battery while the cases of 7.9 Ah and 22.7 

Ah battery-equipped RSU are limited to 10% and 1.3% , respectively. These are all due 

to the fact that less RSU failure or outage occurs with increased energy supply from wind and 

battery of relatively bigger sizes. 

 

The MTBF predicts the average uptime whereas the MTTR predicts the average duration 

of outages. The MTBF and MTTR are used to determine the FOR in (33). As shown in 

Figure 14 the integration of a battery with the RSU significantly improves the MTBF, 

whereas the improvement in MTTR is marginal as recovery is independent of a battery size. 

As expected, FOR is highest for the no battery case. Battery addition reduces the FOR from 

27% to 2.1% and 0.02% respectively with 7.9 Ah and 22.7 batteries. These are once again 

due to the fact that less RSU failure or outage occurs with increased energy supply from wind 
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and relatively bigger size battery. The MTBF is hence improved, leading to a reduced forced 

outage rate. 

 

 

Figure 14: Overall performance of the RSU. 

 

Finally, the QoS of the RSU is evaluated in terms of packet dropping (or blocking) 

probability, average packet delay and throughput while considering the RSU as a queue with 

an infinite buffer. The real channel impairments are ignored in this analysis for the purpose of 

investigating the performance of the RSU in the context of its energy supply only. The 

assumption of RSU having infinite buffer is not far-fetched as modern access points can be 

equipped with large memory such as embedded multimedia card (EMMC) [45]. Since the 

RSU has an infinite buffer, the packets are only lost (blocked) due to the unavailability of the 

RSU. Hence, the LOLP is the packet dropping (blocking) probability. Having already 

obtained the packet dropping probability (i.e. LOLP), we now determine the average packet 

delay at the RSU. 

 

A typical grid connected RSU serves all packets at the maximum data rate . However, 

the RSU in our case drops all the arriving packets during its down time (when unavailable). 

To determine the throughput and the average packet delay for the successfully transmitted 

packets, the RSU is modelled as an M/M/1 queue [46] where the first M represents the 

Poisson arrival of the packets from the vehicles, second M refers to the service rate and 1 
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denotes the number of server (i.e. RSU transmitter). Thus, the hourly average packet delay 

 can be obtained from the response time expression of an M/M/1 queue as 

 .                                                   (35) 

Here  refers to the hourly density of vehicles. Figure 15 shows the average packet delay 

against the hours for all the four cases. The values of , the arrival rate ( ) and the service 

rate ( ) used in this computation are obtained from the vehicular traffic profile at M4. The 

average packet delay is relatively low in all the cases with the values ranging between 0.26 

ms and 0.45 ms. The average packet delay is lowest in case I due to the less number of 

packets awaiting service in the buffer after a significant packet loss arising from high .  

The reduced  in cases II and III resulted into a slightly higher average packet delay as 

the buffer now has an increased number of waiting packets to be served by the RSU. 

 

 

Figure 15: Average packet delay of the RSU. 

 

Similarly, the hourly throughput ( ) of the RSU can be obtained as  

            (36) 

As shown in Figure 16, the average throughput of the RSU varies inversely with the 

 as expected. The case I with no battery which has the highest  portrays the 

lowest throughput at all time. This is evident from the fact that many packets were dropped 

by the RSU during its periods of unavailability. The two cases with different battery sizes 
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show improved throughput with the 22.7 Ah battery having the highest (1500 packets/s). The 

two peak values in both Figure 15 and Figure 16 at hours 8.00 and 17.00 are in conformity 

with the peak vehicular flow and density at such busy hours of the day. 

 

 

Figure 16. Average throughput of the RSU. 

 

COMPARISON WITH OTHER WINDY AND NON-WINDY LOCATIONS 

The hourly wind speed data for different US cities (San Franciso, Berkeley, Boston and 

Galveston) for a period of 5 years [47] were obtained and the instantaneous wind energies 

were generated at each location through the wind model. To represent vehicular traffic of 

these cities, an hourly vehicular densities from I-80 inter-state expressway [48] were obtained 

and the instantaneous load energies were generated through the load model. 
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Figure 17: Comparative cumulative probability of discharged energy. 

 

Figure 17 compares the cumulative deficits of the various cities investigated. The x-axis 

represents the cumulative deficit while y-axis is the probability that the cumulative deficit is 

less than say 500 kJ. From the computation of total surplus/deficit energy based on the source 

data, it is found that locations such as San Francisco and Berkeley in the US do not have 

sufficient wind speed and the yearly average deficit indicates acute wind energy shortages i.e. 

27 kWh and 47 kWh, respectively where a single RSU is considered. Therefore, integrating 

an energy-storage (e.g. fast rechargeable battery) will be meaningless since the battery will be 

unable to recharge due to the insufficient wind energy in such locations. However, windy 

locations in the US such as seaside Galveston and I-80 stretch near Boston are found to have 

on average yearly surplus wind energy i.e. 380 kWh and 195 kWh while the main city of 

study interest (Reading, UK) has enough yearly wind energy i.e. 412 kWh average yearly 

surplus. 

 

As discussed before, the continuous deficit of wind energy results in very large cumulative 

discharged energy in non-windy locations such as San Francisco and Berkeley (see Figure 

17). Therefore, any battery size would be insufficient (given our RSU and wind turbine 

parameters, and wind speeds) in these locations due to the lack of wind energy required for 

recharging. However, significantly lower battery sizes are required in windy locations like 

Reading (UK) and Galveston compared to Boston. Considering a 12 V deep cycle battery 

with a 50% depth of discharge (DOD) [44], a battery size of 28.8 Ah is required in Galveston 

compared to 59 Ah in Boston to completely eradicate outage while in Reading, UK, a battery 
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size of 29.4 Ah is needed. The respective maximum battery sizes for the various cities were 

obtained from their maximum cumulative discharged energies which are 637 kJ, 623 kJ, 1277 

kJ, 479100 kJ and 851095 kJ for Reading, Galveston, Boston, San Francisco and Berkeley 

respectively. The battery size in general can further be reduced if a certain percentage of 

outage is allowed. However, this requires further in depth analysis with the help of the 

discussed reliability indices. 

 

9. CONCLUSIONS 

In this paper, we carried out transient analyses of energy consumption of an RSU and 

harnessed wind energy from a micro-turbine for that RSU in a motorway vehicular 

environment. Subsequently we proposed corresponding analytic models. Furthermore, we 

proposed analytic model for obtaining the minimum battery size for achieving certain levels 

of reliability and Quality of Service (QoS). The main thrust of this work is to redefine and 

model usual reliability indices in the context of intermittent availability of wind power in 

vehicular communications. The transient models and the reliability analyses proposed in this 

paper are generic and can be used for any location, where the need for fast and standalone 

RSU deployment is of paramount importance. 

 

Considering the M4 motorway vehicular environment as a study scenario, we evaluated 

the performance of a wind powered RSU in terms of reliability indices such as loss of load 

probability, expected demand not served, loss of load expectation, energy index of reliability 

and forced outage rate, and QoS parameters such as average packet delay and throughput. 

The forced outage rate of 27% with no battery was brought down to only 0.03% with a 

battery of size 22.7 Ah. Similarly, the loss of load probability was reduced to 0.009 (almost 

zero) with 22.7 Ah battery, compared to the case of no battery where the loss of load 

probability was 0.44 at some hours of the day. The results revealed that the RSU was able to 

achieve 90% and 99% reliabilities with 7.9 Ah and 22.7 Ah batteries, respectively. The 

achieved reliability is good compared to the industrial standard reliability (99.9% or 

99.999%) which is maintained with adequate resource provisioning. Furthermore, the RSU 

achieved an acceptable average packet delay (between 0.26 ms and 0.45 ms ) for all the cases 

studied and equally showed an improved throughput of up to 50% with the least battery size 

considered in the study. 
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