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Chapter 1

An exponentially convergent

Volterra-Fredholm method for

integro-differential equations

A.I. Fairbairn and M.A. Kelmanson

Department of Applied Mathematics
University of Leeds
Leeds
LS2 9JT

Abstract. Extending the authors’ recent work [15] on the explicit computation of error
bounds for Nyström solvers applied to one-dimensional Fredholm integro-differential equa-
tions (FIDEs), presented herein is a study of the errors incurred by first transforming (as
in, e.g., [21]) the FIDE into a hybrid Volterra-Fredholm integral equation (VFIE). The
VFIE is solved via a novel approach that utilises N -node Gauss-Legendre interpolation and
quadrature for its Volterra and Fredholm components respectively: this results in numerical
solutions whose error converges to zero exponentially with N , the rate of convergence being
confirmed via large-N asymptotics. Not only is the exponential rate inherently far superior
to the algebraic rate achieved in [21], but also it is demonstrated, via diverse test problems,
to improve dramatically on even the exponential rate achieved in [15] via direct Nyström
discretisation of the original FIDE; this improvement is confirmed theoretically.

1.1 Introduction

Although there is a substantial body of literature devoted to the development of methods for
approximating the numerical solution of one-dimensional Fredholm integro-differential equations
(FIDEs), corresponding error analyses, an aspect considered to be a default element in the
exposition of new numerical methods, are relatively scarce. For example, though the independent
studies (in chronological order) [27, 4, 28, 20, 5, 11, 25, 29, 6, 22, 2, 1, 16, 26] present diverse
FIDE-solution techniques of varying degrees of efficiency and (disparate) accuracy, only [20,
29, 22, 1] include a discussion of errors and, in even these cases, error analyses are limited
(see summary in [15, §1]) to estimates of convergence rates: that is, the direct computation of
theoretically predicted error bounds is absent.

The present work is therefore motivated on two fronts: to develop not only a novel numeri-
cal method that converges exponentially in the dimension N of the discrete numerical method,
but also an explicit error analysis that is implementable and yields errors in terms of only the
computed numerical solution. In [15], the authors develop a novel approach for achieving these
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2 CHAPTER 1. EXPONENTIALLY CONVERGENT VOLTERRA-FREDHOLM METHOD

two goals, but the method developed therein—based on a combination of numerical quadrature
and numerical differentiation—has a global error dictated by the latter process, which is consid-
erably less accurate than the former. Accordingly, an approach independent of [15] is presently
pursued in which the need for numerical differentiation is circumvented by first transforming the
FIDE (as in, e.g., [21]) into a Volterra-Fredholm integal equation (VFIE); though the solution
of this can be approximated in a number of ways (see, e.g., [18, 12, 10, 7, 24]), a novel approach
is adopted herein.

The remainder of this paper is structured as follows. In §1.2 is presented an FIDE-to-VFIE
conversion approach from [21], in which the VFIE is solved to (only; see below) quadratic order
in the number N of Simpson’s-rule panels used. In §1.3 the VFIE is solved numerically to spectral
order in N , the degree of the highest-order orthogonal polynomial used in the approximation of
the VFIE solution. This approach obviates the need for the numerical differentiation matrices
used in a related paper [15]. In §1.4 is presented a novel error analysis, for the VFIE numer-
ical solution procedure, whose distinctive aspect is computation of the error in the numerical
solution of the original FIDE explicitly in terms of the numerical approximation of the derivate
that results from the VFIE reformulation. In §1.5 numerical results of test problems, some
challenging, are presented that validate to spectral accuracy both the implementation outlined
in §1.3 and the error analysis of §1.4. Brief conclusions are presented in §1.6.

1.2 Conversion from FIDE to VFIE

The canonical form on the normalised interval [−1, 1] of the first-order one-dimensional Fredholm
integro-differential equation (FIDE) for the unknown function u(x) is

u(x)− µ(x)
du

dx
(x)− λ

∫ 1

−1
K(x, y)u(y) dy = f(x) , x ∈ [−1, 1] , (1.1)

in which the source function f : [−1, 1] → R, the kernel K : [−1, 1]× [−1, 1] → R and coefficient
function µ : [−1, 1] → R are prescribed functions of x, y ∈ [−1, 1] and the parameter λ ∈ R is a
constant. By hypothesis, (1.1) is solvable and so u(x) exists. In symbolic form, (1.1) is

u− µDu− λKu = f , (1.2)

where u, f ∈ C ≡ C[−1, 1], the Banach space with supremum norm ||·|| on which the action of
the differential operator D on u is defined by

Du = (Du)(x) ≡ u′(x) ,

wherein a prime denotes differentiation with respect to x. The action in (1.2) of the compact
integral operator K on u is defined by

Ku = (Ku)(x) ≡
∫ 1

−1
K(x, y)u(y) dy .

The FIDE (1.1) is augmented by the boundary condition (BC)

u(ξ) = ζ, ξ ∈ [−1, 1] , (1.3)

i.e. ξ is a prescribed real constant in the interval containing all Legendre nodes. When the BC
is given for the end-points ξ = ±1, the FIDE can be converted into a Volterra-Fredholm integral
equation (VFIE) following the approach in, e.g., [21]; the details of this conversion for ξ = −1
are as follows. Define the function v(x) by

v(x) ≡ u′(x) , (1.4)



1.3. NUMERICAL SOLUTION OF THE VFIE 3

integration of which, upon using (1.3), yields

u(x) = ζ +

∫ x

−1
v(y) dy , (1.5)

whence the FIDE (1.1) becomes

ζ +

∫ x

−1
v(y) dy − µ(x) v(x)− λ

∫ 1

−1
K(x, y)

(
ζ +

∫ y

−1
v(z) dz

)
dy = f(x) . (1.6)

By the existence of u(x) and (1.5), v(x) is integrable, hence the order of double integration in
the final term on the right-hand side of (1.6) can be exchanged, thereby rendering (1.6) as the
VFIE

v(x) = g(x) +
1

µ(x)

∫ x

−1
v(y) dy − λ

∫ 1

−1
k(x, y) v(y) dy , (1.7)

in which the modified source function g(x) is given by

g(x) =
1

µ(x)

(
ζ − λ ζ

∫ 1

−1
K(x, y) dy − f(x)

)
,

and the modified kernel k(x, y) by

k(x, y) =
1

µ(x)

∫ 1

y

K(x, z) dz . (1.8)

By defining the action of the (Volterra) integral operator V on v ∈ C by

V v = (V v)(x) ≡
∫ x

−1
v(y) dy , (1.9)

and that of the (Fredholm) integral operator F on v ∈ C by

F v = (F v)(x) ≡
∫ 1

−1
k(x, y) v(y) dy , (1.10)

the symbolic form of the VFIE (1.7) corresponding to FIDE (1.2) is

v = g +
V v

µ
− λF v . (1.11)

The FIDE-to-VFIE conversion for the case when the BC is at x = 1 follows analogously by
replacing integrals

∫ x

−1 with
∫ 1
x
in (1.5), (1.6), (1.7) and (1.9) and replacing

∫ 1
y
with

∫ y

−1 in (1.8).

The original FIDE (1.2) can now be solved via (1.5) and (1.7) without the need for numerical
differentiation. The symbolic equation (1.11) will form the basis of the error analysis in section
§1.4.

1.3 Numerical Solution of the VFIE

Let yj,N , j = 1(1)N be a set of N distinct nodes in [−1, 1] ordered so that −1 ≤ y1,N < y2,N <

. . . < yN−1,N < yN,N ≤ 1, using which the action of the N -node Lagrange-interpolation operator
LN on v ∈ C is defined as

LN v = (LN v)(x) ≡
N∑

j=1

Lj,N(x) v(yj,N) , (1.12)
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wherein the Lagrange basis functions are given by

Lj,N(x) =
N∏

l=1
l 6=j

x− yl,N

yj,N − yl,N
, j = 1(1)N . (1.13)

To approximate the Volterra term in (1.11), define the (Volterra-Lagrange) operator VN ≡ LN V.
Application of the operator V to both sides of the approximate Lagrange interpolation v ≈ LN v

then yields

V v ≈ VN v = (VN v)(x) ≡
N∑

j=1

τj,N(x) v(yj,N) , (1.14)

in which
τj,N(x) = VLj,N(x) , j = 1(1)N .

To approximate the Fredholm term in (1.11), define the (Fredholm-Gauss) operator FN that
approximates the action of F by the Nyström quadrature

F v ≈ FN v = (FN v)(x) ≡
N∑

j=1

wj,N k(x, yj,N) v(yj,N) , (1.15)

in which wj,N and yj,N are respectively the weights and abscissae of the Gaussian integration
rule. As the weight function in the integral (1.10) for F v is unity, the nodes yj,N can be chosen as
Gauss-Legendre, Legendre-Gauss-Radau or Legendre-Gauss-Lobatto distributions. Via (1.14)
and (1.15), the discrete approximation of VFIE (1.7) is obtained as

vN(x) = g(x) +

N∑

j=1

{
τj,N(x)

µ(x)
− λwj,N k(x, yj,N)

}
vN(yj,N) (1.16)

which, when collocated at nodes x = yi,N , i = 1(1)N , yields the N ×N linear system

(IN −MN)vN = gN . (1.17)

The matrix and vector entries in (1.17) are given by, for i, j = 1(1)N ,

{IN}i,j = δij , {MN}i,j =
τj,N(yi,N)

µ(yi,N)
− λwj,N k(yi,N , yj,N) ,

(1.18)

{vN}i = vN(yi,N) and {gN}i = g(yi,N) ,

wherein δij is the Kronecker delta. Inversion of (1.17) yields the N nodal values vN(yi,N) which,
when substituted into the inversion formula (1.16), give the approximate solution vN(x) of (1.7),
which in symbolic form is

vN = g +
VNvN

µ
− λFNvN . (1.19)

Note that computing vN(x) directly via the inversion formula (1.16) is more accurate [13] than
using Lagrange interpolation (1.12). By (1.5), the exact solutions v and u, of the VFIE and
FIDE respectively, satisfy the symbolic equation

u = ζ + V v , (1.20)

to which application of D to both sides yields Du = DV v, i.e. v = DV v, so that (D)−1 = V.
Additionally, (1.20) implies that there are two cases to consider when recovering the numerical
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solution uN from its derivative vN computed via (1.17)–(1.19). First, if vN(x) is exactly integrable
(case 1) then the approximate numerical solution uN of (1.2) can be computed from vN as

ũN = ζ + V vN . (1.21)

Second, if functions µ(x), K(x, y) and f(x) in IDE (1.1) are such that (1.19) is not exactly
integrable (case 2) then the approximate numerical solution uN of (1.2) must in this case be
computed from vN as

ûN = ζ + VN vN , (1.22)

which yields ûN(x) as a polynomial of degree N in x. Note that this method requires only
(1.17)–(1.18), as vN(x) does not need to be computed via (1.19) since only its nodal values,
given by the solution vector vN of (1.17), are present in the last term in (1.22).

1.4 Error Analysis

A theoretical analysis of the error incurred in computing uN is now presented. Though a basic
consideration of errors appears in the VFIE approach in [21], it not only computes the Volterra
component of the VFIE crudely using Simpson’s rule, but also concerns only convergence rates
of ||v − vN || (NB and not ||u− uN ||) using a known exact solution. By contrast, the present
work computes both Volterra and Fredholm components of the VFIE to spectral accuracy and,
moreover, determines explicit error bounds for ||u− uN || using only the approximate derivative
vN of the numerical solution uN . The error analysis is now presented for cases 1 and 2 given in
(1.21) and (1.22) respectively.

Case 1

Defining the linear operators S and SN as

S ≡ V

µ
− λF and SN ≡ VN

µ
− λFN , (1.23)

the exact solution (1.11) of VFIE (1.7) can be written as

v = g + S v (1.24)

and the numerical solution (1.19) of (1.11) can be written as

vN = g + SN vN . (1.25)

Subtraction of (1.25) from (1.24) yields

v − vN = S v − SN vN = S (v − vN) + (S− SN) vN . (1.26)

Since v = Du and vN = D ũN , (1.26) can be rearranged to yield

(I− S)D (u− ũN) = (S− SN) vN ,

giving an explicit error formula for the exact solution u of the FIDE (1.1) as

u− ũN = (D− SD)−1
(
(S− SN) vN

)
,

yielding the error bound
||u− ũN || ≤ C σN , (1.27)
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where
C =

∣∣∣∣(D− SD)−1
∣∣∣∣ and σN = ||(S− SN) vN || . (1.28)

The term σN can be expressed via (1.25) as

σN = ||S vN − vN + g|| , (1.29)

which demonstrates that the error is proportional to the residual obtained when the numerical
solution vN(x) is inserted into the exact VFIE (1.7). Alternatively, via (1.23), a bound on σN

can be obtained as

σN ≤ ||(V− VN) vN ||
||µ|| + |λ| ||(F − FN) vN || , (1.30)

in which ||(V− VN) vN || is obtained from the definition of VN , which gives

(V− VN) vN(x) = V (I− LN) vN(x) =
V pN(x)

N !
v
(N)
N (η) , η ∈ (−1, 1) , (1.31)

wherein pN(x) is the monic polynomial whose roots are the N nodes yi,N , i.e.

pN(x) =
N∏

i=1

(x− yi,N) . (1.32)

Therefore, in (1.31), there results

||(V− VN) vN || ≤ QN

∣∣∣∣v(N)
N

∣∣∣∣ = QN

∣∣∣∣ũ(N + 1)
N

∣∣∣∣ , (1.33)

in which

QN ≡ ||V pN(x)||
N !

; (1.34)

moreover, by standard Gaussian quadrature results [19],

||(F − FN) vN || ≤ ψ
(ν)
N F2N − ν , (1.35)

in which [15]

ψ
(ν)
N ∼ 22ν − 1

√
π

N (1 − 2ν)/2

( e

4N

)2N

, N → ∞ and FM = max
x,y∈[−1,1]

∣∣∣∣
∂M

∂yM

(
k(x, y) vN(y)

)∣∣∣∣ , (1.36)

in which ν corresponds to the number of endpoints included in the distribution, i.e. ν = 0, 1
and 2 for Legendre, Radau and Lobatto nodes respectively. Combining (1.30), (1.33) and (1.35)
yields

σN ≤ QN

∣∣∣∣v(N)
N

∣∣∣∣
||µ|| + |λ|ψ(ν)

N F2N − ν . (1.37)

With σN in (1.27) bounded by (1.37), the constant C given by (1.28) can be bounded via

C =
∣∣∣∣((I− S)D

)
−1
∣∣∣∣ = ||D−1 (I− S)−1|| = ||V (I− S)−1|| ≤||V|| ||(I− S)−1|| , (1.38)

in which, adopting the approach of Atkinson [3, Eqns. (4.1.13)–(4.1.17)], ||V|| is computed as

||V|| = ||V 1|| = max
x∈[−1,1]

|x+ 1| = 2 .

By (1.23), operators S and SN are linear combinations of V, F, VN and FN , for which, by the
definitions of Lagrangian interpolation and Gaussian quadrature respectively, (V−VN) v(x) → 0
and (F − FN) v(x) → 0 as N → ∞ for all v ∈ C and x ∈ [−1, 1]. That is, SN v is pointwise
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uniformly convergent to S v as N → ∞ for all v ∈ C and x ∈ [−1, 1], and hence, by [3, Thm 4.1.2]
and [17, Eq. (4.7.17b)], (I− S)−1 in (1.38) exists and is uniformly bounded by

∣∣∣∣(I− S)−1
∣∣∣∣ ≤ 1 +

∣∣∣∣(I− SN)
−1

∣∣∣∣ ||S||
1−||(I− SN)−1|| ||(S− SN) S||

, (1.39)

the denominator of which is positive by construction. The sub-elements on the right-hand side
of (1.39) are computed using the approach in Atkinson [3, Eqns. (4.1.13)–(4.1.17)], which gives
||S|| as

||S|| = ||S 1|| ≡||s|| ,

say, in which s(x) is given by (1.9), (1.10) and (1.23) as

s(x) =
x+ 1

µ(x)
− λ

∫ 1

−1
k(x, y) dy . (1.40)

Similarly, ||(S− SN) S|| in (1.39) is computed as

||(S− SN) S|| = ||(S− SN) S 1|| = ||(S− SN) s||

and ||(I− SN)
−1|| as

||(I− SN)
−1|| = ||(I− SN)

−1 1|| ≡||rN || ,

say, in which rN(x) is the solution of

rN − SN rN = 1 ,

whose left-hand side is of the same form as VFIE (1.25). Consequently, nodal values of rN(x)
are found by solving a linear system with the same matrix as in (1.17), i.e.

(IN −MN) rN = 1 , (1.41)

in which IN and MN are as given in (1.18) and the entries of the vectors rN and 1 are given by

{rN}i = rN(yi,N) and {1}i = 1 , i = 1(1)N .

It is noted that, for the purposes of efficiency, (1.17) and (1.41) can be solved in the partitioned
form

(IN −MN) (vN |rN) = (gN |1) .

Solving (1.41) gives the nodal vector rN , the elements of which are used in the Nyström inversion
formula

rN(x) = 1 +

N∑

j=1

{
τj,N(x)

µ(x)
− λwj,N k(x, yj,N)

}
rN(yj,N) ,

from which ||rN || can be computed directly; similarly, ||s|| can be computed directly from (1.40).
Finally, (1.27), (1.29) and (1.38) give the case-1 theoretical bound

||u− ũN || ≤
2 (1 +||rN || ||s||)

1−||rN || ||(S− SN) s||
||S vN − vN + g|| (1.42)

on the (case-1) error u− ũN that is explicitly computable in terms of only the derivative vN of
the case-1 numerical solution ũN .
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Case 2

Subtraction of (1.22) from (1.21) and addition of u− u = 0 to the resulting left-hand side gives
a bound on the case-2 error as

ũN − u+ u− ûN = (V− VN)vN ⇒||u− ûN || ≤||u− ũN ||+||(V− VN) vN ||

which, by (1.33) and (1.42), yields

||u− ûN || ≤
2 (1 +||rN || ||s||)

1−||rN || ||(S− SN)s||
||S vN − vN + g||+QN

∣∣∣∣v(N)
N

∣∣∣∣ . (1.43)

As the case-2 solution arises when vN(x) is not integrable, the bound (1.43) is not computable as
the operator S contains the Volterra operator V via (1.23). Therefore, the term||S vN − vN + g|| in
(1.43)—defined as σN in (1.29)—must be bounded using (1.37). Similarly, as S s will in general
be uncomputable, a bound (analogous to (1.37)) on ||(S− SN) s|| can be found as

||(S− SN) s|| ≤
QN ||s(N)||

||µ|| + |λ| ψ(ν)
N S2N − ν ,

in which

SM = max
x,y∈[−1,1]

∣∣∣∣
∂M

∂yM

(
k(x, y) s(y)

)∣∣∣∣ .

Collecting results, the computable case-2 error bound is given by

||u− ûN || ≤
2 (1 +||rN || ||s||)

(
QN

∣∣∣∣v(N)
N

∣∣∣∣+ |λ|||µ||ψ(ν)
N F2N − ν

)

||µ|| −||rN ||
(
QN ||s(N)||+ |λ|||µ||ψ(ν)

N S2N − ν

) +QN

∣∣∣∣v(N)
N

∣∣∣∣ . (1.44)

Computable error bounds (1.42) and (1.44) have now been derived for the general FIDE (1.2).
Asymptotic large-N approximations for QN were obtained in terms of N and ν; the details

are cumbersome and omitted for reasons of space. These approximations explicitly reveal that
the present VFIE approach is of order O(N (ν2

− ν − 7)/2) times more accurate than the direct
FIDE approach, henceforth denoted as “case 0”, used in [15].

1.5 Numerical Results

Using the algebraic manipulator Maple, the methods and bounds derived above were respec-
tively implemented and validated on four test problems, each with known solutions, chosen to
demonstrate the accuracy of the theory on potentially challenging problems. The components
of each test problem are shown in Table 1.1. As the results were qualitatively similar for each
nodal distribution, only the results for the Legendre distribution, for which ν = 0, are presented.

Problem Type Solution u(x) µ(x) Kernel K(x, y) λ

1 Smooth sinx+ x2 secx (x3 − 1) y cos y 1
3

2 Runge 1
1+25x2

1
x−2 (x+ 1)(y2 − 5) −1

2

3 Steep e15x ex ex+y 1

4 Oscillatory cos 12x 1
x5−3x+1

sinx y3 2

Table 1.1: Test problems with solutions of four qualitatively distinct forms. The Runge phe-
nomenon [8, 9], extreme gradient and high-frequency oscillations, in the solutions of problems
2, 3 and 4 respectively, offer well-documented challenges to approximation methods.



Figure 1.1 shows that, for each test problem, the case-1 errors are lower than the case-2
errors and so, as expected, it is more accurate to integrate the numerical VFIE solution exactly
to obtain the FIDE solution rather than to integrate its Lagrange interpolant. Additionally,
as predicted at the end of Section 1.4, the new case-1 and case-2 errors are smaller in magni-
tude than the case-0 errors incurred in [15], confirming that bypassing the need for numerical
differentiation by converting from FIDE to VFIE form yields a more accurate numerical solution.

Figure 1.1 also reveals that the case-1 error bound is more accurate (by comparison with the
actual computed errors) than the case-2 error bound, particularly for problem 2 in which the
case-2 error bound diverges whilst the true errors converge with increasing N : this divergence,
and the large discrepancy between true case-2 errors and error bounds for the other problems, is
due to the terms

∣∣∣∣v(N)
N

∣∣∣∣ and F2N − ν in the error bound (1.44). Via the mean-value theorem used
to derive (1.31), the truncation parameter η ∈ (−1, 1) that yields the true error (V− VN) vN is
unknown, so v(N)

N (η) must be replaced by
∣∣∣∣v(N)

N

∣∣∣∣, the latter of which may be much greater than
the former. The same argument applies to the Gaussian-quadrature error term (1.35), which
includes the unknown values of x and y in (1.36); as these are unknown, F2N − ν must be computed
by maximising over x, y ∈ [−1, 1], and so the quadrature error may also be over-estimated.

1.6 Conclusions

A novel method for the accurate numerical solution of one-dimensional, first-order Fredholm
integro-differential equations has been developed by first converting the problem into a Volterra-
Fredholm integral equation. The technique has been validated on diverse and challenging test
problems. A novel error analysis has been conducted and validated to yield explicitly computable
(using only the numerical solution) error bounds that predict true computational errors to spec-
tral accuracy. Two independent sub-approaches have been analysed depending upon whether
or not intermediate stages of the novel process admit exact integration. For both cases, errors
are shown theoretically and numerically to be smaller in magnitude than the errors incurred by
a previous approach [15].
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[6] N. Bildik, A. Konuralp and S. Yalçinbaş, Comparison of Legendre polynomial approximation

and variational iteration method for the solutions of general linear Fredholm integro-differential

equations, Comput. Math. Appl., 59 (2010), 1909–1917.

9



10 REFERENCES

Figure 1.1: Logarithmic plots showing convergence or divergence with N of error eN = ||u−uN ||
and bound bN given by (1.42) and (1.44), for cases 0, 1 and 2 for each of problems (a) 1
“smooth”, (b) 2 “Runge”, (c) 3 “steep” and (d) 4 “oscillatory”. All computations are conducted
on Legendre nodes, i.e. ν = 0. Note the divergence of the case-2 bound for the Runge problem,
as discussed in the text. In all four problems, the new case-1 and case-2 errors are smaller than
those incurred in [15].

[7] A. H. Borzabadi and M. Heidari, A successive numerical scheme for some classes of Volterra-

Fredholm integral equations, Iranian Journal of Mathematical Sciences and Informatics, 10 (2015),
1–10.

[8] J. P. Boyd, Defeating the Runge Phenomenon for equispaced polynomial interpolation via Tikhonov

regularization, Appl. Math. Lett., 5 (1992), 57–59.

[9] J. P. Boyd, Exponentially accurate Runge-free approximation of non-periodic functions from sam-



REFERENCES 11

ples on an evenly spaced grid, Appl. Math. Lett., 20 (2007), 971–975.

[10] Z. Chen and W. Jiang, An approximate solution for a mixed linear VolterraFredholm integral

equation, Appl. Math. Lett., 25 (2012), 1131–1134.

[11] P. Darania and A. Ebadian, A method for the numerical solution of the integro-differential

equations, Appl. Math. Comput., 188 (2007), 657–668.

[12] H. Laeli Dastjerdi and F. M. Maalek Ghaini, Numerical solution of Volterra–Fredholm in-

tegral equations by moving least square method and Chebyshev polynomials, Appl. Math. Model., 36
(2012), 3283–3288.

[13] A. I. Fairbairn and M. A. Kelmanson, Computable theoretical error bounds for Nyström meth-
ods for Fredholm integral equations of the second kind. In Proc. 10th UK Conf. on Boundary Integral

Methods, 85–94, 2015.

[14] A. I. Fairbairn and M. A. Kelmanson, Spectrally accurate Nyström-solver error bounds for 1-D

Fredholm integral equations of the second kind, submitted to Appl. Math. Comput., June 29 2016,
20pp.

[15] A. I. Fairbairn and M. A. Kelmanson, Computable a priori error bounds for Nyström methods

applied to 1-D integro-differential Fredholm equations, submitted to IMA J. Num. Anal., February
15 2017, 19pp.

[16] M. Fathy, M. El-Gamel and M. S. El-Azab, Legendre-Galerkin method for the linear Fredholm

integro-differential equations, Appl. Math. Comput., 243 (2014), 789–800.

[17] W. Hackbusch, Integral Equations: Theory and Numerical Treatment, Birkhäuser Verlag, Basel,
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