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Purpose: To develop an image-processing pipeline for semiautomated (SA) and reproducible analysis of hyperpolarized
gas lung ventilation and proton anatomical magnetic resonance imaging (MRI) scan pairs. To compare results from the
software for total lung volume (TLV), ventilated volume (VV), and percentage lung ventilated volume (%VV) calculation
to the current manual “basic” method and a K-means segmentation method.
Materials and Methods: Six patients were imaged with hyperpolarized 3He and same-breath lung 1H MRI at 1.5T and
six other patients were scanned with hyperpolarized 129Xe and separate-breath 1H MRI. One expert observer and two
users with experience in lung image segmentation carried out the image analysis. Spearman (R), Intraclass (ICC) correla-
tions, Bland–Altman limits of agreement (LOA), and Dice Similarity Coefficients (DSC) between output lung volumes
were calculated.
Results: When comparing values of %VV, agreement between observers improved using the SA method (mean;
R 5 0.984, ICC 5 0.980, LOA 5 7.5%) when compared to the basic method (mean; R 5 0.863, ICC 5 0.873, LOA 5 14.2%)
nonsignificantly (pR 5 0.25, pICC 5 0.25, and pLOA 5 0.50 respectively). DSC of VV and TLV masks significantly improved
(P < 0.01) using the SA method (mean; DSCVV 5 0.973, DSCTLV 5 0.980) when compared to the basic method (mean;
DSCVV 5 0.947, DSCTLV 5 0.957). K-means systematically overestimated %VV when compared to both basic (mean over-
estimation 5 5.0%) and SA methods (mean overestimation 5 9.7%), and had poor agreement with the other methods
(mean ICC; K-means vs. basic 5 0.685, K-means vs. SA 5 0.740).
Conclusion: A semiautomated image processing software was developed that improves interobserver agreement and
correlation of lung ventilation volume percentage when compared to the currently used basic method and provides
more consistent segmentations than the K-means method.
Level of Evidence: 3
Technical Efficacy: Stage 2
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Respiratory diseases affect a large portion of the popula-

tion, meaning development of sensitive imaging markers

for diagnostic and prognostic assessment of lung disease is of

growing importance. Ventilation-weighted hyperpolarized gas

(HP) and anatomical proton (1H) lung magnetic resonance

imaging (MRI) can be used for quantitative evaluation of

lung function, including detection of early obstructive

changes.1 The most commonly used quantitative measures of
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lung function derived from HP and 1H scan pairs are lung

ventilated volume percentage (%VV, the ratio of ventilated

lung volume in HP images to total lung volume in 1H

images) and its counterpart the ventilation defect percentage

(%VD 5 100%-%VV).1 Calculation of %VV, therefore,

requires segmentation of both HP and 1H image sets and,

with manual lung segmentation taking on the order of 1–2

hours, depending on image resolution, this presents a time-

consuming barrier for routine clinical application.

Development of methods to segment these scan pairs

is thus necessary for quick, accurate, and reproducible quan-

titative analysis for clinical uptake of the methodology, while

tackling technical challenges such as partial volume effects

and motion artifacts from the heart.2,3

Previous methods for HPG ventilation image segmen-

tation have been based on manual intensity thresholding,1

K-means clustering,4,5 multiple atlas labeling,6 and globally

optimal graph cuts.7 He et al recently developed a method

of characterizing the distribution of ventilation via linear

binning,8 while Zha et al added an adaptive aspect of the

K-means algorithm.9 Segmentation of 1H anatomical scans

has been proposed using a seeded region-growing algo-

rithm,4 active contours within a closed homogeneous

region,10 and a multiple atlas labeling approach.11

Most of these segmentation techniques4,6–9,12 require

little to no manual input, and the methods developed in

Refs.4 and 8 also grade ventilation. However, the K-means

segmentation method4,9 can fail, with low signal-to-noise

ratio (SNR) images due to its binary clustering nature and

inability to differentiate noise from lung tissue. A second

potential disadvantage of the method developed previously4

is the Gaussian filtering of the 1H images, which may lead

to underestimation of the total lung volume. The perfor-

mance of the method developed in Ref.7 also has limita-

tions, with low SNR HPG images as the segmentation of

the 1H anatomical image is dependent on the HPG image

itself. Although multiple atlas labeling6,11 may be the most

automated approach, its complexity and need for suitable

prior information are disadvantages.

Fuzzy C-means (FCM) clustering,12,13 which has been

applied to HPG image segmentation,12 is based on histo-

gram information. The spatial Fuzzy C-means (SFCM)

algorithm, developed previously,14 incorporates the use of

spatial information into the calculation of the membership

function and, unlike the standard FCM algorithm, it also

allows use of neighboring pixel information when classifying

a voxel, leading to a more robust segmentation in the pres-

ence of noise and partial volume effects.

The purpose of this work was to modify the SFCM

method14 to segment both HPG and 1H images of the lung

and incorporate it into an image processing pipeline with

high resilience to noise within a graphical user interface

(GUI). Furthermore, in order to quantify the algorithm’s

performance, the secondary aim was to compare the outputs

of this novel semiautomated approach to that of the current

basic segmentation and a K-means based method for %VV

calculation.

MATERIALS AND METHODS

Patients scanned with 3He were analyzed with local Research Ethics

Committee approval, while patients scanned with 129Xe gave

informed consent as part of a separate research study.

Imaging
All imaging was carried out on a GE HDx 1.5T MR scanner (GE

Healthcare, Milwaukee, WI). 3D 1H anatomical (spoiled gradient

echo [SPGR]) and HP 3He ventilation-weighted (balanced steady-

state free-precession [bSSFP]) images were acquired during the

same breath-hold.2,15 3D HP 129Xe ventilation-weighted bSSFP

images16 and 3D 1H anatomical SPGR images were acquired in

separate breaths. Sequence parameters are provided in the Supple-

mentary Information.

Observers
Three observers (O1, O2, and O3) with 6, 1, and 5 years’ experi-

ence in lung image segmentation, respectively, performed the analy-

sis independently. O1, O2, and O3 analyzed 3He scans and O2

and O3 analyzed 129Xe scans, with both the basic method and the

semiautomated method.

Participants
Six 3He-1H scan pairs (3He SNR range 47–72) were selected from

a database of patients with respiratory conditions of various severi-

ties. Patients’ ages ranged from 23–68 years (three male, three

female) and forced expiratory volume in 1 second (FEV1) (% pre-

dicted) ranged from 24–63%. One patient suffered from horseshoe

lung, one patient had asthma, and four patients had chronic

obstructive pulmonary disease (COPD).

In addition, six 129Xe-1H scan pairs (129Xe SNR range 18–

34) from patients with lung cancer were analyzed to test the appli-

cability of the method to HP 129Xe ventilation images. Patient

ages ranged from 62–76 (three male, three female), while FEV1

(% predicted) ranged from 36–94%.

Image Analysis
The primary quantitative measure was %VV defined as ventilated

volume (VV, from HPG ventilation-weighted images) divided by

total lung volume (TLV, from 1H anatomical images)1:

%VV 5
VV

TLV
3100% (1)

The ventilated volume was masked by the total lung volume so

that only voxels included in the TLV contributed to the calculated

VV for all methods. 129Xe and separate-breath 1H acquisitions

were coregistered using ANTs registration software.17

Basic Method
Segmentations were carried out using in-house software written in

MatLab (MathWorks, Natick, MA). Thresholding was used to seg-

ment the ventilation images. 1H images were segmented manually

using the ventilation images overlaid on the 1H images.
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Semiautomated Method

SUMMARY. A summary of the semiautomated image processing

workflow is shown in Fig. 1. The GUI was implemented in Mat-

Lab. Briefly, images were filtered using a bilateral filter with the fil-

tering parameters tuned for 3He, 129Xe, and 1H images. They were

then clustered using the SFCM algorithm, using six clusters for 1H

anatomical images and four clusters for HP gas images. A single

cluster was chosen that best represented the lung, then the mem-

bership values were thresholded to create a binary mask. Spatial

and intensity membership weightings were both 1,14 however, the

pipeline will modify the spatial weighting to 2 if image SNR drops

below 20.

ALGORITHM DEVELOPMENT: FCM VS. SFCM. The FCM algo-

rithm assigns N pixels to C clusters via Fuzzy memberships (l).12

These Fuzzy memberships do not take into account the spatial

information, only intensity information. The SFCM algorithm, on

the other hand, makes use of a window centered on each voxel of

the image,14 which incorporates the membership information of

these voxels. This spatial information will then weight the mem-

bership function towards the correct cluster (with a specific weight

being placed on the intensity and spatial memberships) only if the

voxel was, for example, corrupted by noise, and would be incor-

rectly classified by the standard FCM method.

To decide whether to use FCM or SFCM as the clustering

technique in this work, both FCM and SFCM segmentations were

carried out on all 3He and 129Xe gas images and then assessed

qualitatively (by visual inspection of features included/excluded by

the algorithm) and quantitatively by comparing the unedited venti-

lated volume returned by the separate algorithms (the initial venti-

lation mask including airways).

Using the same number of clusters, the FCM method consis-

tently included areas of low signal intensity deemed to be defects

or noise via qualitative assessment. Additionally, there was a signifi-

cant difference between the FCM and SFCM ventilated volumes

for both 3He and 129Xe images (P 5 0.0312 for both) (see Supple-

mentary Information for detailed results; Fig. 2, for example, from

one patient). Therefore, SFCM was used in the final semiauto-

mated method.

FIGURE 1: a: Workflow for image analysis; a(i) Raw 1H anatomical image, single slice from 3D SPGR sequence, a(ii) 1H mask single
slice including airways, a(iii) 1H mask single slice following removal of airways, a(iv) 3D representation of the 1H mask, a(v) HP gas
ventilation image single slice from 3D bSSFP sequence, a(vi) HP gas ventilation mask single slice including airways, a(vii) HP gas
ventilation mask single slice following removal of airways, and a(viii) 3D representation of the 3He mask. VV 5 (viii) and TLV 5 (iv).
b: Segmentation method overview; b(i) original image, b(ii) image following application of bilateral filter, b(iii) cluster images, b(iv)
selected cluster, and b(v) initial binary mask including airways.

FIGURE 2: (a) Original HPG image: unfiltered, (b) FCM mask overlaid on original image, and (c) SFCM mask overlaid on original
image. The yellow circles point out some of the areas where FCM includes low-intensity values that are excluded in the SFCM
method.
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FILTERING. To improve robustness and resilience against image

noise and artifacts, a bilateral filter was used.18 The key property of

this filter in the context of image segmentation is that edges are

maintained due to the use of a nonlinear combination of range and

domain filtering that weights pixel values depending on spatial and

intensity similarity. Filter parameters that maintained ventilation

defect integrity, smoothed artifact/noise, preserved edges, and

ensured TLV was within an acceptable error margin (65%) of man-

ual segmentation were empirically determined by processing 12 sets

of HP gas ventilation and 1H anatomical image pairs. The training

images (from patients with COPD and healthy volunteers) used for

this optimization process were acquired in the same way, but are sep-

arate from the data used to evaluate algorithm performance.

Different filter values and mask thresholds were required for
129Xe and 3He images due to differing imaging resolutions and

SNR. 3He images (SNR range 25–67) filter had a window size of

3 3 3 and spatial and intensity standard deviation of 3 and 0.15,

respectively, with a binary mask threshold (membership threshold)

of 0.1. For 129Xe images (SNR range 20–45) the filter intensity

standard deviation was increased to 0.2 and the binary mask

threshold decreased to 0.05. For 1H images the intensity standard

deviation was reduced to 0.1 and a binary mask threshold of 0.15

was used. All processing was carried out in-plane.

AUTOMATED/MANUAL EDITING. 1H masks had data outside

the lung region removed by a border-clearing algorithm (see

Supplementary Information for details). Main airways and vessels,

and any regions of noise or tissue misclassified as lung volume,

were removed manually from the masks using the software ITK-

SNAP.19

K-means Method
All datasets were analyzed using a modified version of the method

developed by Kirby et al.4 The size of the window used in the

Gaussian filter for 1H anatomical image segmentation was reduced

from 15 3 15 to 3 3 3 and the standard deviation reduced to

0.01, the radius of the closing structuring element was reduced

from 15 to 7, and data outside the lung region was removed by a

border-clearing algorithm. No filtering of HP gas images was

applied as per Ref. 4

Performance Evaluation
Performance analysis was carried out on %VV, VV, and TLV on a

slice-by-slice basis. Intraclass correlation (ICC) using the two-way

mixed model for absolute agreement, Bland–Altman analysis, and

Spearman’s or Pearson’s correlation (R) were performed using

GraphPad Prism (GraphPad Software, La Jolla, CA). Spatial com-

parisons were carried out on VV and TLV masks using the Dice

Similarity Coefficient (DSC). T-tests and Wilcoxon signed rank

tests were performed to assess statistical difference between analysis

metrics.

TABLE 1. Correlation, Bland-Altman and Intraclass Correlation Analysis of %VV for 3He and 129Xe Data

3He data

Parameter O1 vs. O2 O1 vs. O3 O2 vs. O3 O1 vs. K-means O2 vs. K-means O3 vs. K-means

%VV Basic method

R 0.909 0.859 0.819 0.905 0.850 0.894

ICC 0.850 0.920 0.850 0.726 0.660 0.670

Bias 6 LOA -6.9% 6 12.9% -1.7% 6 14.2% -5.3% 6 15.5% -8.0% 6 27.4% -11.2% 6 30.0% -0.8% 6 32.0%

%VV Semi-automated method

R 0.988 0.981 0.978 0.901 0.905 0.926

ICC 0.990 0.970 0.980 0.702 0.730 0.788

Bias 6 LOA -1.1% 6 5.6% -3.5% 6 8.3% 2.4% 6 8.7% -11.2% 6 29.6% -10.1% 6 28.4% -7.7% 6 26.5%
129Xe data

Parameter O2 vs. O3 O2 vs. K-means O3 vs. K-means

%VV Basic method

R 0.884 0.836 0.740

ICC 0.579 0.610 0.356

Bias 6 LOA 20.0% 6 24.3% -10.9% 6 30.4% -31.0% 6 34.6%

%VV Semiautomated method

R 0.929 0.860 0.883

ICC 0.905 0.589 0.660

Bias 6 LOA -0.9% 6 19.1% -13.3% 6 33.8% -12.4% 6 28.5%
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RESULTS
3He
Table 1 shows the correlation, Bland–Altman limits of

agreement (LOA) and ICC for %VV computed by different

observers and methods. Correlation improved (P 5 0.25)

between observers when using the semiautomated method

(%VV mean R 5 0.984) when compared to the basic

method (%VV mean R 5 0.863), while mean ICC also

increased (P 5 0.25) from 0.873 using the basic method to

0.980 using the semiautomated method. LOA (P 5 0.50)

and %VV bias magnitude (P 5 0.25) were reduced when

using the semiautomated method (%VV mean

LOA 5 7.5%, mean jbiasj5 2.3%) when compared to the

basic method (%VV mean LOA 5 14.2%, mean

jbiasj5 4.6%). These improvements were also seen in the

VV and TLV measures. DSC significantly improved using

the semiautomated method (VV mean DSC 5 0.973, TLV

mean DSC 5 0.980) when compared to the basic method

(VV mean DSC 5 0.947, TLV mean DSC 5 0.957) (P <

0.01 for both VV and TLV DSC).

The K-means method underestimated TLV when com-

pared to both other methods. %VV was overestimated

when compared to the basic (mean bias 5 5.0%) and semi-

automated (mean bias 5 9.7%) methods (Fig. 3, for exam-

ple). The Bland–Altman plot in Fig. 4a(iii) shows poor

agreement of the K-means method %VV with the basic

method for O2 and is representative of the pattern seen

when comparing K-means with both the basic (%VV mean

LOA 5 29.8%) and semiautomated (%VV mean

LOA 5 28.2%) methods for all observers.

On average, the semiautomated method underesti-

mated %VV by 4.6% when compared to the basic method

carried out by the same observer, with a mean LOA of

19.7%. The semiautomated method reduced average seg-

mentation time from 1 hour (basic) to 25 minutes.

129Xe
Correlation, LOA, bias magnitude, and DSC improved

between observers when using the semiautomated method

when compared to the basic method (Fig. 4b(i,ii)). The K-

means method underestimated TLV and overestimated

%VV compared to the other methods to a greater extent

than for the 3He data. The semiautomatic method underes-

timated %VV by 2.3% compared to the basic method for

O2 (Fig. 4b(iv)) and overestimated %VV by 18.6% for O3.

The mean LOA for %VV calculated by the same observer

between the basic and semiautomatic methods was 26.4%.

DISCUSSION

The semiautomated image processing workflow developed

reduced interobserver variability, a problem in longitudinal

imaging studies when multiple observers may be required.

The use of the coregistered dual 3He-1H image acquisition2

in this work circumvents the need for image registration,

which is commonly used in %VV analysis by other

groups.4,8,20 However, image registration was required for

the 129Xe image analysis.

The semiautomated method results were more similar

to those of the basic method than those obtained by the

fully automated K-means method.4 Remaining differences

in %VV values returned by the basic and semiautomated

FIGURE 3: a: Ventilation mask output by the basic, SFCM, and K-means method; a(i) Original image, a(ii) Basic mask overlaid on
original image, a(iii) SFCM mask overlaid on original image, a(iv) K-means mask overlaid on original image. b: 1H anatomical mask
output by the basic, SFCM, and K-means method, b(i) original image, b(ii) basic mask overlaid on original image, b(iii) SFCM mask
overlaid on original image, and b(iv) K-means mask overlaid on original image.
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method could be explained by the basic method including

pixels that correspond to tissue on the 1H image but where
3He signal is also present, while the proposed method con-

siders the edge of the lung from the 1H image as the

ground truth to exclude those pixels.

In the development phase of the semiautomated

method, filtering followed by SFCM clustering was found

to be robust to choice of imaging sequence and parameters.

The technique returned similar masks of ventilated volume

from HP gas images acquired with different sequences

(SSFP/SPGR) and parameters (TE, TR) from the same sub-

jects (see supplementary information). Semiautomatic seg-

mentations of both the HP gas and proton images analyzed

here were consistently of good quality, from images acquired

with a range of fields of view (FOVs) (36–40 cm) and SNR

(18–72) from patients with a variety of different diseases.

Beyond removal of the main airways and vessels, little man-

ual editing of the masks was required.

The K-means method underestimated TLV when com-

pared to both other methods due to Gaussian filtering of

the 1H images, despite the filtering being substantially

reduced in this work. This effect was exacerbated by the

lower resolution of the 1H images paired with the 129Xe

images. In addition, the original ventilation masks returned

by the K-means method classified regions of noise as venti-

lated lung tissue. Both these factors lead to a systematic

overestimation of %VV by the K-means method, which has

implications for its use calculating outcome measures in

clinical studies.

The limitations of this technical development study

are the small numbers of patients analyzed as well as the

reduced number of observers who segmented the 129Xe

images and the lack of comparison to other established tech-

niques for %VV calculation.

In conclusion, the method presented here provides a

robust and repeatable means of semiautomated lung MRI

segmentation and was demonstrated on both 3He and 129Xe

ventilation images. The method proposed improves interob-

server agreement, and is easier and quicker to use than the

current basic segmentation used to calculate lung ventilation

volumes.
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