

This is a repository copy of Water footprint of Jing-Jin-Ji urban agglomeration in China.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/118796/

Version: Accepted Version

Article:

Zhao, D, Tang, Y, Liu, J et al. (1 more author) (2017) Water footprint of Jing-Jin-Ji urban agglomeration in China. Journal of Cleaner Production, 167. pp. 919-928. ISSN 0959-6526

https://doi.org/10.1016/j.jclepro.2017.07.012

(c) 2017, Published by Elsevier Ltd. This manuscript version is made available under the CC BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Accepted Manuscript

Water footprint of Jing-Jin-Ji urban agglomeration in China

Dandan Zhao, Yu Tang, Liu Junguo, Martin R. Tillotson

PII: S0959-6526(17)31433-6

DOI: 10.1016/j.jclepro.2017.07.012

Reference: JCLP 10014

To appear in: Journal of Cleaner Production

Received Date: 20 December 2016

Revised Date: 25 May 2017

Accepted Date: 3 July 2017

Please cite this article as: Zhao D, Tang Y, Junguo L, Tillotson MR, Water footprint of Jing-Jin-Ji urban agglomeration in China, *Journal of Cleaner Production* (2017), doi: 10.1016/j.jclepro.2017.07.012.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Water footprint of Jing-Jin-Ji urban agglomeration in China

3 4

Dandan Zhao^a, Yu Tang^{b*}, Liu Junguo ^{c, a*,} Martin R Tillotson^{a,d}

5

6 ^a School of Nature Conservation, Beijing Forestry University, Beijing 100083, China,

7 <u>dan7654321@126.com</u>

- ^b Graduate School, South University of Science and Technology of China, Shenzhen, 518055,
- 9 China, tangyu@sustc.edu.cn
- 10 ^c School of Environmental Science and Engineering, South University of Science and Technology
- 11 of China, Shenzhen, 518055, China, junguo.liu@gmail.com; liujg@sustc.edu.cn
- ^d water@leeds, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom,
 m.r.tillotson@leeds.ac.uk
- 14 ***Corresponding author**.Tel/fax+86 755 8801 8012
- 15 Email address: junguo.liu@gmail.com; liujg@sustc.edu.cn
- 16

17 Abstract

18 A rapidly expanding economy and increasing water demand for agricultural and industrial production is placing enormous stress on water quantity and the aquatic environment in Northern 19 China, especially the so-called Jing-Jin-Ji (Beijing-Tianjin-Hebei) urban agglomeration, home to 20 over 110 million people producing 10% of China's overall GDP. Several studies have focused on 21 energy consumption, air pollution, CO₂ emissions and regional blue water footprint (WF) 22 23 following release of the Jing-Jin-Ji Integration Strategy by the China government in 2013. 24 However, a comprehensive assessment distinguishing blue, green and grey WF amongst different industrial sectors, ascertaining how WF transfers internally and beyond the region and final 25 demand consumption is not available. We consider this to be crucial in understanding and 26 addressing the deteriorating water situation in the Jing-Jin-Ji. In this study, we quantified the WF 27 and virtual water flow on a sectoral basis for the year 2010 through coupling the multi-regional 28 29 input-output model (MRIO) with WF assessment. The results showed that Beijing and Tianjin are 30 net importers of green, blue and grey water from Hebei and other China provinces to support their 31 needs. Conversely, Hebei exports all WF colors to Beijing, Tianjin and other provinces in China, and more than 60% of WF is transferred as virtual water. For the overall Jing-Jin-Ji region a small 32 amount of blue water (2,086 million m³) is exported, but huge amounts of green water (15,573 33 million m³) and grey water (30,620 million m³) are outsourced. A "Virtual Water Strategy" is one 34 measure which could alleviate water stress at the regional scale, with consideration of financial 35 36 compensation from water receiving regions made to water supplying regions in the context of 37 achieving water management targets. We also found that physical water transfer to Jing-Jin-Ji could not balance virtual blue water exports, not to mention compensating for internal water 38

consumption. Our research suggests that a continuation of an export-based economic development 39 40 model will worsen Hebei's water stress. Reducing the dependency of Hebei's sectoral economy on export of water intensive and low value added agricultural products may be one strategy to reduce 41 42 the pressure on regional water resources. In addition, the Beijing-Tianjin-Hebei Integration 43 Strategy drives industrial transfer from Beijing to Hebei resulting in the transfer of enterprises 44 with low water utilization efficiency and producing heavy pollution. As a result, the government 45 should consider incentivizing corporations to adopt technologies that reduce water consumption and pollution. 46

47 Keywords: water footprint; urban agglomeration; MRIO model; virtual water; industrial sectors.

48 **1 Introduction**

49 Freshwater availability is recognized as a limiting factor in economic and social development. 50 With rapid economic and population growth, global demand for freshwater has increased fourfold 51 in the last 60 years (Uitto and Schneider, 1997). Water consumption has increased twice as fast as 52 population growth during the last century (FAO and UN, 2007), and is predicted to rise by a 53 further 50% in developing countries and 18% in developed countries by 2035 (WWAP, 2006). 54 Some scientists forecast that half of the world's population will suffer the consequences of severe 55 water stress by 2030 (Oki and Kanae, 2006; Vörösmarty et al., 2010). This emerging water crisis is becoming one of the most serious challenges faced by humanity in the 21st Century (World 56 57 Economic Forum, 2015).

58 Water consumption has also grown in China. In 2014 China consumed 609.5 billion m³ freshwater resource (National Bureau of Statistics of China, 2015), equivalent to 15% of global 59 60 water withdrawal (FAO, 2016). A rapidly developing economy and increasing demand from 61 agricultural and industrial production has placed enormous pressure on the water environment. 62 This is particularly true for Northern China and the Beijing-Tianjin-Hebei urban agglomeration 63 (the so-called Jing-Jin-Ji). To address this problem the China government made its top priority in 64 2011 the implementation of the most stringent water resource management plan, concretized by 65 the "three redlines" concerning total national water use, water use efficiency, and water pollution (Liu et al., 2013). In this policy China's highest water demand area, Jing-Jin-Ji, is required to 66 reduce its total water use to 34 billion m³ (5.2 for Beijing, 4.2 for Tianjin and 24.6 for Hebei), and 67 95% of all freshwater bodies will need to reach or exceed the required water quality standard by 68 2030 (The State Council of China, 2013). In response, local governments have produced plans for 69 70 regional water security ranging from end-of-pipe control, to closing, restructuring and relocating 71 industry.

72 Economic activity and social provision require freshwater as one type of input element. 73 Water pollution and water consumption have placed huge pressure on the water environment 74 (White et al., 2015). Understanding the structure of the economy in relation to water flow from 75 production to household consumption is essential to solve finite freshwater resource scarcity. In the past few years Jing-Jin-Ji has become one of the most important industrial areas of China 76 77 producing a wild range of products and services for other regions. For example, in 2014, 78 Jing-Jin-Ji accounted for 27% total steel and 6% total agricultural production in China (National 79 Bureau of Statistics of China, 2014). Products related to metal and agriculture comprised 13% and 80 4% respectively of Jing-Jin-Ji's total industrial output (National Bureau of Statistics of China, 2015). However, these underpinning industries also incur enormous water consumption and 81

produce significant water pollution. In 2014, Jing-Jin-Ji directly consumed 25.4 billion m³ freshwater (63% to agriculture and 14% to industrial sectors), and discharged nearly 5.5 billion tons wastewater to the environment. Water pollution and other environmental issues have a negative impact on freshwater availability and create a "choke point" in terms of sustainable development. The region faces huge obstacles in achieving the "Beijing-Tianjin-Hebei Integration Strategy".

Hoekstra and Hung (2002) introduced the concept of the water footprint (WF) as a 88 89 consumption-based indicator of water use. The WF is the total volume of freshwater used to produce goods and services consumed by people, business, nations or economic regions both 90 directly and indirectly (Klaus Hubacek et al., 2009). In water footprint and virtual water flow 91 92 studies, water is typically classed as one of three types: blue, green or grey water (Chapagain and 93 Hoekstra, 2004). Allan (1998) introduced the concept of 'virtual water' as an alternative strategy 94 to alleviate water scarcity, specifically using virtual water import as a tool to reduce the burden of 95 domestically scarce water resources. Over time, the term 'virtual water' has expanded to mean the volume of water that is required to produce any good or service. 96

97 Several studies have focused on the Jing-Jin-Ji since the Integration Strategy was announced 98 in 2013, for example ground subsidence (Zhang et al., 2016), energy consumption (Wang and 99 Chen, 2016), carbon emissions (Han et al., 2016), and air pollution (Zhao et al., 2016a). White et al. (2015) estimated the blue WF and water stress in the Haihe River Basin for the year 2007. 100 101 Wang and Chen (2016) investigated the nexus between water and energy for urban agglomerations, selecting Jing-Jin-Ji as a case study. Zhao et al (2010) calculated the blue WF for 102 the Haihe river basin based on the input-output analysis tool for the years 1997, 2002, 2007. Most 103 studies have focused on blue WF; a comprehensive water footprint assessment distinguishing blue, 104 105 green and grey water footprint amongst different industrial sectors and ascertaining how WF 106 transfers within and beyond the region and final demand consumption hasn't been identified. We 107 consider such a study to be important in addressing the water situation in the Jing-Jin-Ji.

108 2 Materials and Methods

109 **2.1 Study site**

110 The Jing-Jin-Ji urban agglomeration is one of the key infrastructure development areas for China. It is located on the coast of the Bohai Sea (Figure 1) with a total area of 21.67 million ha, is 111 112 home to greater than 110 million inhabitants (8% of China's total population), and a GDP equivalent to ca. 10% of that for China in 2014. Available freshwater volume is about 13.8 billion 113 m^3 , just 0.5% of China's total, and the high population density of 500 persons per km², and low 114 water resource endowment of 125 m³ per person/year make the Jing-Jin-Ji highly water stressed. 115 116 Each part of the Jing-Jin-Ji plays a different role in regional water utilization. Currently, the 117 imbalance between economic development, administrative systems, and water scarcity severely 118 hinder further integration and cooperation.

119

120 2.2 Multi-regional input-output model (MRIO)

121 Multi-regional input-output modelling (MRIO) is a powerful tool for tracing the 122 environmental impact of consumption between sectors amongst different economic regions. The 123 tool was developed by Leontief in the late 1930s (Leontief, 1941, 1970). The MRIO approach was 124 chosen for several reasons: first, MRIO is based on final rather than apparent consumption

(production is assigned to the end-product) and, second, MRIO can comprehensively describe 125 126 supply chain effects which is vital for allocating responsibility to the final consumer. Furthermore, MRIO is well recognized for calculating the WF of industrial sectors. As a result, we used an 127 environmentally extended MRIO model to capture the water flows and their interconnections 128 129 along the supply chain between industrial sectors within the Jing-Jin-Ji, and externally with other 130 China provinces in 2010. We extracted a three-region input-output table for the Jing-Jin-Ji based 131 on the latest China multi-regional input-output tables for 2010 compiled by Liu et al., 2014). Liu's model has been used in various studies (Feng et al., 2013), (Feng et al., 2014), (Zhao 132 et al., 2015) and (Liang et al., 2014). Here, our three-region model of the Jing-Jin-Ji included 133 detailed information for 30 industrial sectors (see table S1) of inter-provincial trade and export. 134 135 The model structure is presented in table S2. For clarity we utilized some mathematical symbols, formulas and equations in the following sections. Scalars are denoted by italicized lower case 136 137 letters (e.g. x), matrices are indicated by bold upright capital letters (e.g. X), and vectors by bold upright lower case letters (e.g. x). The monetary flow balance in each row can thus be written as: 138

- 139
- 140 141

 $\sum_{s=1}^{3} \sum_{j=1}^{30} z_{ij}^{rs} + \sum_{s=1}^{3} y_i^{rs} + \sum_{t=1}^{28} e_i^{rt} = x_i^r$ (1)

142 Where, z_{ij}^{rs} refers to inter-provincial industrial demand from sector *i* in province *r* to sector *j* in 143 province *s*. y_i^{rs} indicates finished products of sector *i* produced in province *r* and consumed in 144 province *s*. e_i^{rt} refers to exports from sector *i* in province *r* to the other 27 provinces in China and 145 other countries, and x_i^r is the total output of sector *i* in region *r*.

146 According to the MRIO model, the technical coefficient from sector i in province r to 147 produce unit output for sector j in province s can be formulated by:

 $a_{ij}^{rs} = z_{ij}^{rs} / x_j^s \quad (2)$

 $\mathbf{A}\mathbf{x} + \mathbf{y} + \mathbf{e} = \mathbf{x} \quad (3)$

- 148 149
- 150

151 Combining Eq (1) with Eq (2) yields Eq (3) as follows:

152 153 154

Where A is a technical coefficient matrix, y is a vector of total final demand by sector, e is a
vector of export by sector, and x means total output of each sector.

The Leontief inverse matrix $(I-A)^{-1}$ captures both direct and indirect inputs. Solving for x results can also be expressed in terms of the well-known Leontief inverse equation (4):

 $\mathbf{x} = (\mathbf{I} - \mathbf{A})^{-1}(\mathbf{v} + \mathbf{e})$ (4)

 $\mathbf{w}\mathbf{f}^s = \mathbf{d}^s * \mathbf{x}^s \quad (5)$

160 161

157

162

163 Thus, the WF considering the supply chain in Jing-Jin-Ji can be calculated as:

164 165

166

167 Where, \mathbf{wf}^{s} is the vector of the total water footprint related to the production of goods and 168 services along the whole national supply chain triggered by final consumption in each sector (blue

169 WF, green WF and grey WF) of province *s*; \mathbf{d}^s is the vector of direct water use intensity, which 170 means the water consumption directly discharged to increase one unit of total economic output in 171 each sector; and \mathbf{x}^s is the vector of total economic output in province *s*.

Equation (5) captures the total direct and indirect water consumption associated with the final demand of a region. However, it isn't able to distinguish between the water for final consumption from domestic water resources (DWF) and virtual water trade. To calculate the Virtual Water Export (VWE) and Virtual Water Import (VWI) from province *s* to other provinces, equation (5) can be rewritten as:

177

178 179

180 181 d^{s} , A^{ss} and e^{rs} of region s are, respectively, direct water use intensity, technical coefficient of domestic intermediate inputs, and import from province s to province r.

 $\mathbf{vwe^s} = \mathbf{d^s}(\mathbf{I} - \mathbf{A^{ss}})^{-1} \sum_{r \neq s} \mathbf{e^{sr}}$ (6)

The virtual water import of province *s*, **vwi^s**, may be treated as the virtual water export from
other regions to province *s*. So, **vwi^s** is calculated by summing over the virtual water exports of
other regions to province *s*, equation (7):

185 186

187

 $\mathbf{vwi^s} = \sum_{r \neq s} \mathbf{d^r} (\mathbf{I} - \mathbf{A^{rr}})^{-1} \mathbf{e^{rs}}$ (7)

188 d^r , A^{rr} and e^{sr} of region *r* are, respectively, direct water use intensity, technical coefficient of 189 domestic intermediate inputs, and export from province *r* to province *s*.

190 The Consumption-based water footprint (CWF) in province *s* is the sum of consumed 191 domestic water resources (DWF) to meet the internal final demand of province *s*, and the 192 consumption of external water resources via virtual water import from external provinces in goods 193 and services (VWI). CWF can measure the impact that the final demand of one province has on 194 another province's water resources (equation 8):

195 196

197

202

203 204

The Production-based water footprint (PWF) in province *s* is the sum of domestic water resources consumed for domestic demand (DWF) and exported to other provinces via embodied virtual water in goods and services (VWE) for external demands. This accounts for the use of the Jing-Jin-Ji's domestic water resources to meet internal and external demands (equation 9):

CWF=DWF+VWI (8)

PWF=DWF+VWE (9)

205 2.3 Data sources

In this research we used the GEPIC model (GIS-based Environmental Policy Integrated Climate model) (Liu, 2009) to simulate direct blue and green water footprint for the primary agricultural sector, particularly the main agricultural crops. The GEPIC model has been used to calculate water consumption in agriculture at the global, national and regional scales and several studies have shown it to have good performance in China (Liu et al., 2007b; Liu et al., 2007a; Liu and Yang, 2010; Zhao et al., 2014); we have therefore used the same parameters in our simulations. Detailed simulation processes for the GEPIC model may be found in Liu (2009) and Liu and Yang

(2010). Our results showed that blue WF and green WF of crop production in China was about 213 85,050 million m³ and 580,900 million m³ respectively, however Mekonnen and Hoekstra's (2011) 214 previously calculated these two indicators as 118,600 million m³ and 623,880 million m³ 215 respectively; our simulations are therefore smaller by 28% and 7% of their study. One of the most 216 217 important reasons for this difference is that our calculations were focused solely on the 218 agricultural growing season, but Mekonnen and Hoeksta's results were calculated for the whole 219 year. Our study was concerned with the actual water consumption by agricultural output, thus the 220 water footprint during the growing season was considered more suitable for this purpose. The AgMERRA climate forcing dataset was obtained from the AgMIP group (Ruane et al., 2015). 221

222 Blue water use of the secondary and tertiary sectors was obtained from the China Water 223 Resource Bulletin of different provinces (The Ministry of Water Resources of China, 2011). Water 224 use data in each sector was converted to blue WF by multiplying with the water consumption 225 coefficient, which was taken from the provincial Water Resource Bulletin (The Ministry of Water Resources of China, 2011). Total blue WF at secondary and tertiary sector level was disaggregated 226 into 29 sectors based on water consumption per unit of economic output for 30 provinces in 2007, 227 228 which was estimated from the China Economic Census Yearbook 2008 (National Bureau of 229 Statistics of China, 2008). For the grey WF for each sector, Hoekstra et al. (2011) introduced a 230 global standard. In China, water quality is categorized into five grades (Ministry of Environmental Protection of China, 2002), with Grade III and above indicating water suitable for fishery, 231 232 aquaculture, and recreational purposes. Water resources categorized below Grade III indicate poorer quality which is deemed unsuitable for safe use. Grade V indicates water which is so 233 seriously polluted so as to be unfit for any beneficial use. Here, we estimated the grey WF 234 component according to these rules and calculated the volume of water needed to assimilate 235 236 nutrients so that they could achieve Grade III status. COD, NH₃-N, TN and TP discharges were 237 selected as water pollutant indicators to estimate the grey WF for each sector. We then selected the 238 maximum dilution water consumption as the grey WF for that sector; this practice has been 239 successfully applied by Zeng et al. (Zeng and Liu, 2013). Agricultural non-point source discharge pollution data in 2010 was estimated based on agricultural non-point pollution datasets from the 240 241 China Economic Census Yearbook 2008. Annual water pollutant discharge data (measured in tons) 242 for each sector at national level is recorded in the Environmental Statistics Yearbook (National Bureau of Statistics of China, 2011). We disaggregated this data into provincial scales based on the 243 province's economic outputs on a sector scale by assuming that the technology level and 244 efficiency in each area/province was homogeneous. 245

246 247

Figure 1 Geographical location of the Jing-Jin-Ji national capital region.

248 **3 Results**

3.1 The water footprint of the Jing-Jin-Ji distinguishing between blue water, green water andgrey water

In 2010, in terms of the consumption-based water footprint (CWF) for Jing-Jin-Ji, we found there was a total of 15,292 million m³ blue water or 146 m³ per capita, and 36,477 million m³ green water or 349 m³ per capita consumed by domestic homes and businesses. This varied between 2,964 million m³ blue WF in Beijing and 17,987 million m³ green water in Hebei. A further 292,710 million m³ freshwater or 2,800 m³ per capita was used to dilute the resulting water pollution discharged by business and household activities, which is significantly greater than the

- sum of the blue WF and green WF (See Table 1). In the CWF account, virtual water imports made
 an important contribution to the water footprint of all categories (55% for blue WF, 78% for green
 WF, and 63% for grey WF). This was particularly true for Beijing and Tianjin, where more than 80%
 of the total CWF was restricted to import from other provinces. Hebei mainly relied on its local
 water resource rather than the import of blue WF and grey WF (See Figure 2).
- 262 For the production-based water footprint (PWF), 17,348 million m³ blue water or 166 m³ per capita, and 20,903 million m³ green water or 200 m³ per capita, was used to produce goods and 263 services. This ranged from 750 million m³ blue WF in Beijing to 19,047 million m³ green WF in 264 Hebei. Dealing with water pollution consumed 262.089 million m^3 freshwater or 2.507 m^3 per 265 capita to achieve the Grade III water quality standard, which is greater than the total available 266 267 water resource in this area (National Bureau of Statistics of China, 2011). In the production-based approach account, virtual water export also played a major role for all types of water footprint (60% 268 269 for blue WF, 64% for green WF, and 58% for grey WF). This was particularly the case for Hebei, 270 which accounted for almost 90% of total virtual water export. Overall, about 60% of water was 271 traded virtually and areas such as Beijing and Hebei imported and exported substantial proportions of their water. The CWF approach to accounting for the Jing-Jin-Ji's green WF and grey WF led to 272 273 a higher estimate than the PWF approach because of the significant net import of virtual water, 274 however the region is a modest net exporter of virtual water in terms of blue WF.
- 275

Table 1: Jing-Jin-Ji's regional water consumption. Domestic consumption refers to the
consumption of local water resources to meet the internal final demand of one zone; virtual water
import is the consumption of external water resource from other provinces to meet local final
demand; virtual water exports shows the consumption of local water resources to meet the final
demand of another province.

		Blue W	/F [10 ⁶ n	n ³]		Green	WF [1	$0^6 \mathrm{m}^3$]		Grey V	VF [10 ⁶ 1	n ³]	
		Beijing	Tianjin AC	Hebei CEPTI	Total ED M.	Beijing ANUS	Tianjin CRIP	Hebei	Total	Beijing	Tianjin	Hebei	Total
Domestic	Absolute	502	488	5,898	6,888	544	528	6,928	8,001	15,306	13,215	80,322	108,843
Consumption water footprint (DWF)	Per capita (m ³)	26	38	82	66	28	41	96	77	780	1,017	1,117	1,041
Virtual Water Import	Absolute	2,462	2,865	3,078	8,404	9,776	7,641	11,059	28,476	63,173	51,561	69,134	183,867
(VWI)	Per capita (m ³)	125	221	43	80	498	588	154	272	3,220	3,969	961	1,759
Virtual Water Export	Absolute	248	471	9,741	10,460	270	514	12,119	12,902	7,484	12,451	133,312	153,246
(VWE)	Per capita (m ³)	13	36	135	100	14	40	168	123	381	958	1,853	1,466
Production-based	Absolute	750	959	15,639	17,348	814	1,042	19,047	20,903	22,790	25,666	213,634	262,089
water footprint (PWF)	Per capita (m ³)	38	74	217	166	41	80	265	200	1,162	1,976	2,970	2,507
Consumption-based	Absolute	2,964	3,353	8,976	15,292	10,320	8,169	17,987	36,477	78,478	64,776	149,456	292,710
water footprint (PWF)	Per capita (m ³)	151	258	125	146	526	629	250	349	4,000	4,987	2,078	2,800

281 282

3.2 The water footprint distribution among different industrial sectors

283 The WF component of different industrial sectors in the CWF account is summarized in 284 Figure 2. The ratios of VWI to total CWF in Beijing and Tianjin exceeded 80%, and for green WF the proportion reached 95%. A further decomposition to VWI showed that Beijing and Tianjin 285 dependence on VWI from other provinces was mainly from food related sectors i.e Agriculture, 286 and Food and Tobacco Processing. Beijing's agricultural VWI was 1,329 million m³ (54% of the 287 blue VWI), 5,866 million m³ (60% of the green VWI), and 32,850 million m³ (52% of the grev 288 VWI). This value was 1,518 million m³ (53% of blue VWI), 3,897 million m³ (51% of green 289 VWI), and 23,202 million m³ (45% of the grey VWI) for Tianjin. Considering local and supply 290 chain water consumption, Food and Tobacco Processing was the second largest virtual water 291 importer for these two cities. These results suggest that Beijing and Tianjin were supporting their 292 populations through the importation of huge amounts of virtual water. In other words, Beijing and 293 294 Tianjin were largely supported by other external provinces. As for the third Jing-Jin-Ji region, 295 Hebei, we found that domestic water footprint played a major role in the blue CWF and grey CWF categories, but only a minor role in the green CWF. In detail, Agriculture was the biggest water 296 consumption sector in all water lists, ranging from 44,177 million m³ (55% of domestic grey CWF) 297 to 1.231 million m³ (40 % of blue VWI), and Food and Tobacco Processing was the second largest 298 water consumption sector. 299

300 301

302

Figure 2 Consumption-based water footprint (CWF) [10⁶m³]

303 Figure 3 shows the water footprint components for different industrial sectors contained in the PWF account. In Beijing, an interesting observation was that about two-thirds of the total PWF 304 was consumed internally for all water footprint colors, which indicated mostly local water 305 resource being used to meet local demand. A further analysis of the domestic PWF showed that 306 nearly 35% was consumed in the Other Services sector: 170.68 million m³ for blue PWF, 152.3 307 million m³ for green PWF and 5,357 million m³ for grey. The Agriculture, and Hotels, Food and 308 309 Beverage Places sectors made an important contribution to domestic PWF. In Tianjin, half of the PWF was consumed by domestic demand, the other half being used for export in virtual water 310 311 trade. In detail, the food related sectors accounted for 55% of the blue PWF, 70% of the green PWF and nearly 20% of the grey PWF. Water use and water pollution in the Construction sector 312 could not be ignored: for the biggest area, Hebei, more than 60% of total PWF was used for export 313 314 through virtual water flow. Furthermore, Hebei was the region that exported major water resource 315 to other provinces. In particular, food related commodities contributed nearly 80% of PWF (70% for Agriculture, and 10% for Food and Tobacco Processing). 316

317

319

318

Figure 3 Production-based water footprint (PWF) $[10^6 m^3]$

320 3.3 Net virtual water flow

The Jing-Jin-Ji exported a total of 2,056 million m³ blue virtual water, but imported 15,574 321 million m³ green virtual water, and 30,621 million m³ grey virtual water (Figure 4). In particular, 322 Hebei played a vital role in Jing-Jin-Ji virtual water flow, being the biggest exporter of water 323 resource and also the biggest importer, accounting for more than 50% of virtual water trade within 324 the area. In fact, Hebei was a net virtual water exporter of 6,663 million m³ blue, 1,060 million m³ 325 green, and 64,178 million m³ grey virtual water. Conversely, Beijing and Tianjin were net virtual 326 water importers of all colors. In other words, Hebei appeared to be a "Producer", whilst Beijing 327 and Tianjin were "Consumers". Water intensive products from the Agriculture, and Food and 328 329 Tobacco Processing sectors transferred about two-thirds of virtual water to other provinces from 330 Hebei. Figure 4 also illustrates the predicament faced by Beijing and Tianjin, which imported a large amount of virtual water from other provinces compared to their exports, and are clearly 331 332 out-of-balance.

³³³

336

337 **3.4** The inter-region net virtual water flow by region and sector

Virtual water transfers within the Jing-Jin-Ji and external regions for the main classes of industrial account (primary, secondary and tertiary) are summarized in Figure 5. Overall, Hebei transferred all virtual water colors to Beijing and Tianjin for all industrial sectors. For primary and secondary industries, Beijing imported virtual water from Tianjin, but in terms of tertiary industry it exported water to Tianjin. In detail, we found that virtual water flowed from the economically poor and less populated region (Hebei) to the more affluent and densely populated regions (Beijing and Tianjin).

<sup>Figure 4: net virtual water flows in the Jing-Jin-Ji by sector. The bar color indicates sector as in
TableS1; the dot in the diagram shows the amount of net virtual water import or export.</sup>

There was a large difference in the amount of virtual water flow between Hebei and 344 Beijing-Tianjin. The biggest value was 5,183 million m³ grey WF from Hebei to Beijing for 345 primary industry, and the minimum was just 13 million m³ green WF for tertiary industry. In 346 addition, Beijing plunders its water resources from Tianjin (24 million m³ blue WF, 28 million m³ 347 green WF, and 538 million m³ grey WF) for the development of primary and secondary industries, 348 349 only compensating in small part to Tianjin in tertiary industries (4 million m³ blue WF, 4 million m³ green WF, and 74 million m³ grey WF). In terms of water resources, we found that 971 million 350 m³ blue WF in total was transferred from Hebei to Beijing-Tianjin through goods and services, 351 which is about 7% of available water resource in Hebei. 352

353

Figure 5: Net virtual water flows within the Jing-Jin-Ji. The Agricultural sector was defined as primary industry; Coal Mining and Dressing through to the Construction sector was defined as secondary industry; and Freight Transport and Warehousing through to Other Services was defined as tertiary industry; as per Table S1.

358 **4 Limitations of this study**

This study conducted a comprehensive water footprint analysis in production-based and 359 360 consumption-based accounting among different industrial sectors within the Jing-Jin-Ji and between other provinces. We also addressed the importance of offset mechanisms in terms of 361 virtual water trade. However, we would like to recognize some limitations of the study. First, 362 363 because of data availability, we assumed that the technology level and efficiency in each area/province was homogeneous in order that we could decompose the water pollutant discharge 364 into each province, and for each sector based on the province's economic outputs on a sector scale. 365 This assumption can also be found in Hollanda et al. (2015) for the impacts of energy demand on 366 global freshwater resources. Second, the boundary of our study was restricted to the Jing-Jin-Ji. 367 368 We placed our emphasis on the internal impact induced by trade within the three areas, and less so 369 on trade with other provinces; this gap should be taken into consideration in future studies. Due to data limitations we were also unable to calculate Jing-Jin-Ji's virtual water transfer to other 370 countries; such boundary setting is commonplace, and can be seen in other work (Guan and 371

Hubacek, 2007; Zhang and Anadon, 2014; Zhang et al., 2011). Finally, our analysis framework
attributes bilateral trade only into final consumption without considering the impact of
intermediate imports. This phenomenon, whereby exporters import intermediate products (e.g.,
raw materials) from upstream industries and produce final products for re-export to final
consumers, cannot be traced clearly. The relevant discussion about these problems and their
possible solutions can be found in other papers (Lenzen et al., 2007; Zhao et al., 2016b; Zhao et al.,
2010).

5 Discussion and Conclusions

This study investigated the water footprint in the Jing-Jin-Ji region of China by 380 distinguishing blue, green and grey water. For the first time we have quantified virtual water 381 transfer in terms of water consumption and water pollution with four pollutant indicators in a 382 383 physically water scarce region. The results showed that the Jing-Jin-Ji exports only small amounts of blue water but outsources huge amounts of green water and grey water (Figure 4). A 384 considerable amount of water footprint was transferred as virtual water. Our study demonstrated 385 that the quantitative targets of "the most stringent water resources management policy" for 386 387 Jing-Jin-Ji can only be met at the expense of exporting provinces which provide virtual water to it 388 and receive outsourced pollution in return. A "Virtual Water Strategy" is one measure which could alleviate water stress at the provincial scale. On the one hand it will relieve the water crisis in the 389 390 receiving provinces, on the other hand it will impose pressure on the providing provinces through 391 their supply chains, especially for water stressed areas. As a result, financial compensation from net water receiving provinces to water supplying regions could be considered in the context of 392 393 achieving water management targets.

394 Serrano et al. (2016) assessed water footprint based on the consumption-based approach for the EU27 showing that the average blue WF is 398 m³ per capita, which is about 2.5 times bigger 395 than our result for China (143 m³ per capita in the Jing-Jin-Ji region). It is known that European 396 397 citizens consume large amounts of water-intensive food products in their diets, such as cheese, 398 butter and beef. Conversely, Chinese citizens are more likely to have food with a lower water 399 footprint, such as rice, vegetables and pork. Thus, a domestic diet distinction between these two 400 regions resulted in a large difference in demand for water resource. Zhao et al. (2015) analyzed the 401 virtual blue water transfer and internal domestic consumption for China's 30 provinces for 2007. 402 He found that Beijing and Tianjin were net virtual blue water importers, and Hebei was a net 403 virtual blue water exporter; our findings for the blue WF account are consistent with this. However, 404 Zhao's absolute blue water values for the Jing-Jin-Ji were about 52% higher than our results. One 405 reason for this is that Zhao selected water use as his basic blue water element; we also know that 406 water use refers to the quantity of water distributed to users, including water lost in transmission. 407 The blue water footprint used in our study was the volume of freshwater consumed to produce 408 goods or services. Distinct from water use, water footprint in its accounting treatment excludes return flows which are a portion of a diverted water that is not used consumptively or returned to 409 its original source or another region (U.S. Geological Survey, 2016). This comparison indicates 410 411 that water footprint among supply chains could replace water use to obtain a more accurate picture 412 of overall water consumption.

In 2015, the middle route of the South-North-Water-Transfer-Project (SNWTP) transferred
 1,320 million m³ physical water (822 million m³ for Beijing, 373 million m³ for Tianjin, and 125

million m³ for Hebei) (The State Council of China, 2015); just one-fifth of its targeted volume. 415 However, our results showed that the Jing-Jin-Ji exported 2,056 million m³ virtual blue water 416 which was nearly twice that of physical water flow and 12% of available water resource in the 417 418 region. For the Jing-Jin-Ji physical water transfers cannot balance virtual blue water export, not to 419 mention compensating for provincial water consumption. It is well known that over exploitation of 420 groundwater has been a serious problem in the region, and there is no doubt water scarcity will be 421 aggravated by huge virtual water export. In addition, as the biggest net virtual blue water exporter, Hebei transferred 6,663 million m³, but only 14.5% of this was to the Beijing-Tianjin megacities 422 (526 million m³ for Beijing, and 445 million m³ for Tianiin). From our point of view, improving 423 the ratio of internalization of Hebei's virtual water flow will have positive impacts on water 424 425 management.

426 Blue water presents high opportunity costs due to its potential as an input element in the 427 value chain for high value added products and services, rather than its frequent use in intensive primary industry irrigation. As a result, blue water is addressed through water resource policies in 428 429 China such as reservoir construction, water transfer projects, and flood management etc. However, 430 green water is often ignored due to its exclusive use in agricultural production and "invisibility" in 431 sustaining local ecosystems. Over exploitation of green water may lead to degradation of the local 432 environment, therefore careful planning for agricultural production is crucial to sustainable local 433 water management.

434 In 2010, Hebei exported huge amounts of water intensive and low value added products to 435 other provinces. Amongst its exports, the two most water-intensive sectors (Agriculture, and Food and Tobacco Processing) accounted for 78% - 85% of Hebei's export-related water consumption, 436 437 but only contributed 7% to total economic output for the area. A continuation of an export-based 438 economic development model may further worsen Hebei's water stress, impair hydro-ecosystems, 439 and potentially crowd out internal production. Therefore, to reduce these unbalanced water losses, 440 reducing the dependency of this economy on export of water intensive and low value added agricultural products may lead to a more sustainable virtual water balance and reduce the pressure 441 442 on internal water resources.

In 2010, 30,621 million m³ grey water was imported to the Jing-Jin-Ji. If there isn't virtual water trade-off, water pollution in Jing-Jin-Ji will deteriorate, and about twice the amount of Jing-Jin-Ji's annual watershed will be needed to dilute pollutants to the minimum Grade III reuse standard. Food related sectors were the largest contributor to water pollution. In particular, Agriculture sector non-point source pollution was the main polluting sector; products from this sector were supplied internally for household consumption; Food and Tobacco Processing is second with these products mainly consumed by urban households.

450 The central government's "Beijing-Tianjin-Hebei Integration Strategy" will lead to a 451 reduction of industrial intensity in Beijing by 2030. Some businesses are likely to retain their 452 headquarters in Beijing, but relocate production facilities to Hebei and/or Tianjin. This will decrease total water consumption in Beijing, and contribute large indirect water flows from 453 Beijing to Tianjin and Hebei. This helps to balance water flows among these areas, however the 454 455 strategy has also created some problems: the core benefit of the Jing-Jin-Ji is that the three areas 456 are integrated, thereby facilitating flow and potentially increasing efficiency. However, because Beijing is the national capital it enjoys certain bureaucratic advantages over Tianjin and Hebei, 457 and industrial transfer from Beijing to Hebei also results in transfer of some businesses with low 458

water utilization efficiency and heavy pollution, without requiring these businesses to adopt new
technologies that improve utilization efficiency and decrease water pollution in their new location.
Therefore, the government must pay greater attention to encouraging businesses to adopt
technologies that reduce water consumption and pollution.

463

464 Acknowledgments

This study was supported by the National Natural Science Foundation of China (41571022, 465 41625001), the Beijing Natural Science Foundation Grant (8151002), the National Natural 466 Science Foundation of China (91325302, 91425303), and the Major Science and Technology 467 Program for Water Pollution Control and Treatment of China (2015ZX07203-005). Additional 468 support was provided by the Southern University of Science and Technology (Grant no. 469 470 G01296001). The present work was partially developed within the framework of the Panta Rhei Research Initiative of the International Association of Hydrological Sciences (IAHS) by the 471 working group "Water Scarcity Assessment: Methodology and Application". 472

473

474 Appendix

475 *Table S1. Sector categories*

ID	Sectors	Legend
Primary Sectors		
1	Agriculture	
Secondary Sectors		
2	Coal Mining and Dressing	
3	Petroleum and Naturl Gas Extraction	
4	Metals Mining and Dressing	
5	Nonmetal Minerals Mining and Dressing	
6	Food and Tobacco Processing	
7	Textile Industry	
8	Garments, Leather, Furs, Down and Related Products	
9	Timber Processing and Furniture Manufacturing	
10	Papermaking, Cultural, Educational and Sports Articles	
11	Petroleum Processing and Coking	
12	Chemicals	
13	Nonmetal Mineral Products	
14	Smelting and Pressing of Metals	
15	Metal Products	
16	General and Specialized Machinery	
17	Transportation Equipment	
18	Electric Equipment and Machinery	
19	Electronic and Telecommunications Equipment	
20	Instruments, Meters Cultural and Office Machinery	
21	Other Manufacturing Products	

22	Electricity and Heating Power Production
23	Gas and Water Production and Supply
24	Construction
Tertiary Sectors	
25	Freight Transport and Warehousing
26	Wholesale and Retail Trade
27	Hotels, Food and Beverage Places
28	Real Estate and Social Services
29	Scientific Research
30	Other Services

476

Table S2. Three region input-output table for the Jing-Jin-Ji (modified from Guan et al (2014)

	Interm	ediate D	emand		Final	Demand			Water account			
	Beijing	Tianjin	Hebei	Final consumption	Captial formation	Interprovincial export	International exports	Total output	Direct blue water footprint	Direct green water footprint	Direct Grey water footprint	
Beijing	Z		у		e		х	· · · ·				
Tianjin								D				
Hebei												
Imports												
Total Inputs												

477

478 **References**

- 479 Allan, J.A., 1998. Virtual water: a strategic resource. Global solutions to regional deficits. Ground
- 480 Water. 36, 545–546. DOI: 10.1111/j.1745-6584.1998.tb02825.x
- 481 Chapagain, A., Hoekstra, A., 2004. Water footprints of Nations, Research Report Series No. 16.
- 482 UNESCO-IHE, Netherlands.
- The State Council of China, 2013. Targets of the Implementation of the most stringent waterresource mananament. The State Council of China, Beijing, China [in Chinese]
- FAO, 2016. AQUASTAT Main Database Food and Agriculture Organization of the United
 Nations (FAO). Website accessed on[19/05/2017 16:54]
- FAO, UN, 2007. Coping With Water Scarcity. An Action Framework for Agriculture and FoodSecurity
- 489 Feng, K., Davis, S.J., Sun, L., Li, X., Guan, D., Liu, W., Liu, Z., Hubacek, K., 2013. Outsourcing
- 490 CO2 within China. Proc. Nati Acad Sci. U. S. A. 110, 11654-11659. DOI:
 491 10.1073/pnas.1219918110
- Feng, K., Hubacek, K., Pfister, S., Yu, Y., Sun, L., 2014. Virtual scarce water in China. Environ.
 Sci & Technol. 48, 7704–7713. DOI: 10.1021/es500502q
- 494 Guan, D., Hubacek, K., 2007. Assessment of regional trade and virtual water flows in China. Ecol.
- 495 Econ. 61, 159-170. DOI: 10.1016/j.ecolecon.2006.02.022
- 496 Guan, D., Hubacek, K., Tillotson, M.R., Zhao, H., Liu, W., Liu, Z., Liang, S., 2014. Lifting
- 497 China's water spell. Environ. Sci & Technol. 48, 11048–11056. DOI: 10.1021/es501379n
- 498 Han, R., Tang, B., Fan, J., Wei, Y., 2016. Integrated weighting approach to carbon emission quotas:
- 499 An application case of Beijing-Tianjin-Hebei region. Jour. of Clean. Prod. 131.
- 500 (DOI: 10.1016/j.jclepro.2016.05.001)
- 501 Hoekstra, A., Hung, P.Q., 2002. Virtual water trade: A quantification of virtual water flows

- 502 between nations in relation to international crop trade. Value of Water Research Report Series No.
- 503 12. UNESCO-IHE, De1ft, The Netherlands.
- Hoekstra, A.Y., Chapagain, A.K., Aldaya, M.M., Mekonnen, M.M., 2011. The water footprint
 assessment manual: Setting the global standard. Earthscan, London, UK.
- 506 Hollanda, R.A., Scott, K.A., Flörke, M., Brown, G., Ewers, R.M., Farmer, E., Kapos, V.,

507 Muggeridge, A., Scharlemann, J.P.W., Taylor, G., Barrett, J., Eigenbrod, F., 2015. Global impacts

- 508 of energy demand on the freshwater resources of nations. Proc. Nati Acad Sci. U. S. A. 112, 6707-
- 509 6716. DOI: 10.1073/pnas.1507701112
- 510 Mekonnen, M.M., Hoekstra, A.Y., 2011. National water footprint accounts: the green, blue and
- 511 grey water footprint of production and consumption, Value of Water Research Report Series No.
- 512 50, UNESCO-IHE, Delft, the Netherlands.
- Klaus Hubacek, Guan, D., Barrett, J., Wiedmann, T., 2009. Environmental implications of
 urbanization and lifestyle change in China: Ecological and water footprints. J. of Clean. Prod. 17,
 1241-1248. DOI: 10.1016/j.jclepro.2009.03.011

516 Lenzen, M., Murray, J., Sack, F., Wiedmann, T., 2007. Shared producer and consumer

- 517 responsibility Theory and practice. Ecol. Econ. 61, 27-42. DOI:
 518 10.1016/j.ecolecon.2006.05.018
- Leontief, W.W., 1941. Structure of American Economy, 1919-1929: an empirical application of
 equilibrium analysis. Harvard University. Press, Cambridge, MA.
- 521 Leontief, W.W., 1970. Environmental repercussions and the economic structure: an input–output
- 522 approach. Rev. of Econ. Stat. 52, 262–271. DOI: 10.2307/1926294
- Liang, S., Zhang, C., Wang, Y., Liu, W., Liu, W., 2014. Virtual atmospheric mercury emission
 network in China. Environ. Sci & Technol. 48, 2807–2815. DOI: 10.1021/es500310t
- Liu, J., 2009. A GIS-based tool for modeling large-scale crop-water relations. Environ. Model &
 Soft. 24, 411-422. DOI: 10.1016/j.envsoft.2008.08.004
- Liu, J., Chuanfu Zang, Tian, S., Liu, J., Yang, H., Jia, S., You, L., Liu, B., Zhang, M., 2013. Water
 conservancy projects in China: Achievements, challenges and way forward. Global.
 Environ.Change. 23, 633-643. DOI: 10.1016/j.gloenvcha.2013.02.002
- 530 Liu, J., Wiberg, D., Zehnder, A.J.B., Yang, H., 2007b. Modelling the role of irrigation in winter
- wheat yield, crop water productivity, and production in China. Irrigation Science. 26, 21-33. DOI:
 10.1007/s00271-007-0069-9
- Liu, J., Williams, J.R., Zehnder, A.J.B., Yang, H., 2007a. GEPIC modelling wheat yield and crop
- water productivity with high resolution on a global scale. Agricultural System. 94, 478-493. DOI:
 10.1016/j.agsy.2006.11.019
- Liu, J., Yang, H., 2010. Spatially explicit assessment of global consumptive water uses in cropland:
 Green and blue water. J. of Hydrol. 384, 187-197. DOI: 10.1016/j.jhydrol.2009.11.024
- 538 Liu, W., Tang, Z., Chen, J., Yang, B., 2014. Multi-regional input–output model for 30 provinces of
- 539 China in 2010. China Statistics Press, Beijing. [in Chinese]
- 540 Ministry of Environmental Protection of China, 2002. Environmental quality standard for surface
- 541 water (GB3838-2002). China Environmental Science Press, Beijing, China. [in Chinese]
- 542 National Bureau of Statistics of China, 2008. China Economic Census Yearbook 2008. National
- 543 Bureau of Statistics of China, Beijing, China. [in Chinese]
- 544 National Bureau of Statistics of China, 2011. China's Environmental statistics yearbook. China
- 545 Statistics Press, Beijing, China. [in Chinese]

- 546 National Bureau of Statistics of China, 2014. China statistical yearbook. China Statistic Press,
- 547 Beijing. [in Chinese]
- 548 National Bureau of Statistics of China, 2015. China Input-output table in 2012. National Bureau of
- 549 Statistics of China, Beijing. [in Chinese]
- National Bureau of Statistics of China, 2011. China statistic yearbook. China Statistic Press,
 Beijing, China. [in Chinese]
- National Bureau of Statistics of China, 2015. China statistic yearbook. National Bureau of
 Statistics of China, Beijing, China. [in Chinese]
- 554 Oki, T., Kanae, S., 2006. Global hydrological cycles and world water resources. Science. 313,
- 555 1068-1072. DOI: 10.1126/science.1128845
- Ruane, A.C., Goldberg, R., Chryssanthacopoulos, J., 2015. Climate forcing datasets for
 agricultural modeling: Merged products for gap-filling and historical climate series estimation.
- 558 Agr. Forest. Meteorol. 200, 233-248. DOI: 10.1016/j.agrformet.2014.09.016
- 559 Serrano, A., Guan, D., Duarte, R., Paavola, J., 2016. Virtual water flows in the EU27: A
- 560 consumption based approach. Journal of Industrial Ecology. 20, 547-558. DOI: 10.1111/jiec.12454
- 561 The Ministry of Water Resources of China, 2011. Provincial Water Resource Bulletin The
- 562 Ministry of Water Resources of China, Beijing, China. [in Chinese]
- 563 The State Council of China, 2015. The progress of South-North-Water-Transfer-Project. The
- 564 committee office of South-North-Water-Transfer-Project, Beijing, China. [in Chinese]
- 565 http://www.nsbd.gov.cn/zx/zxdt/201601/t20160106_434247.html
- 566 U.S. Geological Survey, 2016. Water Science Glossary of Terms.
- 567 http://water.usgs.gov/edu/dictionary.html
- 568 Uitto, J., Schneider, J., 1997. Fresh resources in arid lands. United Nations University Press,
 569 Tokyo.
- 570 Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Proussevitch, A.A., Green, P.,
- 571 Glidden, S., Bunn, S.E., Sullivan, C.A., Liermann, C.R., Davies, P.M., 2010. Global threats to
- human water security and river biodiversity. Nature. 467, 555-561. DOI: 10.1038/nature09440
- Wang, S., Chen, B., 2016. Energy-water nexus of urban agglomeration based on multiregional
 input-output tables and ecological network analysis: A case study of the Beijing-Tianjin-Hebei
- 575 region. Applied Energy. 178, 773 783. DOI: 10.1016/j.apenergy.2016.06.112
- 576 White, D.J., Feng, K., Sun, L., Hubacek, K., 2015. A Hydro-economic MRIO Analysis of the
- 577 Haihe River Basin's water footprint and water stress. Ecological Modelling. 318, 157-167. DOI:
- 578 10.1016/j.ecolmodel.2015.01.017
- 579 World Economic Forum, 2015. Global Risks Landscape. World Economic Forum.
- 580 WWAP, 2006. The State of the Resource. In World Water Development Report 2. WWAP, Paris.
- Zeng, Z., Liu, J., 2013. Historical trend of grey water footprint of Beijing, China (Chinese article).
 Journal of Natural Resources. 28, 1169-1178.
- Journal of Natural Resources. 28, 1109-1178.
 Zhang, C., Anadon, L.D., 2014. A multi-regional input output analysis of domestic virtual water
- trade and provincial water footprint in China. Ecol. Econ. 100, 159-172. DOI:
 10.1016/j.ecolecon.2014.02.006
- 586 Zhang, Y., Wu, H.a., Kang, Y., Zhu, C., 2016. Ground Subsidence in the Beijing-Tianjin-Hebei
- 587 Region from 1992 to 2014 Revealed by Multiple SAR Stacks. Acta Geodaetica et Cartographica
 588 Sinica. DOI: 10.11947/j.AGCS.2016.20160072
- 589 Zhang, Z., Yang, H., Shi, M., 2011. Analyses of water footprint of Beijing in an interregional input

- 590 output framework. Ecol Econ. 70, 2494-2502. DOI: 10.1016/j.ecolecon.2011.08.011
- Zhao, H., Zhang, Q., Huo, H., Lin, J., Liu, Z., Wange, H., Guan, D., He, K., 2016a.
 Environment-economy tradeoff for Beijing–Tianjin–Hebei's exports. Applied Energy.(In press)
- 593 Zhao, Q., Liu, J., Khabarov, N., Obersteiner, M., Westphal, M., 2014. Impacts of climate change
- 594 on virtual water content of crops in China. Ecological Informatics. 19, 26–34. DOI:
- 595 10.1016/j.ecoinf.2013.12.005
- 596 Zhao, X., Liu, J., Qingying Liu, Tillotson, M.R., Guan, D., Hubacek, K., 2015. Physical and
- 597 virtual water transfers for regional water stress alleviation in China. Proc. Nati Acad Sci. U. S. A.
- 598 112, 1031–1035. DOI: 10.1073/pnas.1404130112
- Zhao, X., Liu, J., Yang, H., Duarte, R., Tillotson, M.R., Hubacek, K., 2016b. Burden shifting of
 water quantity and quality stress from megacity Shanghai. Water. Resour. Res. 52. DOI:
 10.1002/2016WR018595
- 602 Zhao, X., Yang, H., Yang, Z., Chen, B., Qin, Y., 2010. Applying the Input-Output method to
- account for water footprint and virtual water trade in the Haihe River Basin in China. Environ. Sci
- 604 & Technol. 44, 9150 9156. DOI: 10.1021/es100886r

ALA ALA

Highlights

- Assessing water footprint (WF) is crucial in understanding water deterioration
- WF and virtual water flows are assessed with a multi-regional input-output model
- Jing-Jin-Ji region exported little blue water, but outsourced much green and grey water
- Joint efforts between water receiving and supplying regions are a key for management
- Corporations need to adopt technologies to reduce water consumption and pollution

CER MARINE