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Cancer-cell intrinsic gene expression signatures
overcome intratumoural heterogeneity bias
in colorectal cancer patient classification
Philip D. Dunne1, Matthew Alderdice1, Paul G. O’Reilly1, Aideen C. Roddy1, Amy M.B. McCorry1, Susan Richman2,

Tim Maughan3, Simon S. McDade1, Patrick G. Johnston1, Daniel B. Longley1, Elaine Kay4, Darragh G. McArt1,*
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Stromal-derived intratumoural heterogeneity (ITH) has been shown to undermine molecular

stratification of patients into appropriate prognostic/predictive subgroups. Here, using

several clinically relevant colorectal cancer (CRC) gene expression signatures, we assessed

the susceptibility of these signatures to the confounding effects of ITH using gene expression

microarray data obtained from multiple tumour regions of a cohort of 24 patients, including

central tumour, the tumour invasive front and lymph node metastasis. Sample clustering

alongside correlative assessment revealed variation in the ability of each signature to cluster

samples according to patient-of-origin rather than region-of-origin within the multi-region

dataset. Signatures focused on cancer-cell intrinsic gene expression were found to produce

more clinically useful, patient-centred classifiers, as exemplified by the CRC intrinsic

signature (CRIS), which robustly clustered samples by patient-of-origin rather than region-

of-origin. These findings highlight the potential of cancer-cell intrinsic signatures to reliably

stratify CRC patients by minimising the confounding effects of stromal-derived ITH.
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T
he application of transcriptional gene signatures to stratify
tumours into prognostic and predictive subtypes has
evolved rapidly since the original landmark studies

demonstrated the clinical utility of this approach in breast
cancer1,2. While the number of published signatures continues to
increase, the likelihood of individual signatures achieving clinical
utility has remained very low, with some estimates putting this
figure below 1% (ref. 3). The factors dictating the eventual success
or failure of a biomarker-based gene expression signature can
often be attributed to statistical confounders such as insufficient
sample size in the initial training set employed for discovery, or
inadequate independent data sets for subsequent validation4.
While it is possible to control these statistical variables with the
addition of greater sample numbers or more relevant data sets,
it is more difficult to mitigate against the problems associated
with gene expression variations between different regions of the
tumour, arising due to changes in tumour cell purity and/or
stromal/immune infiltration. The degree of gene expression
changes associated with variation in tumour microenvironment
(TME) content; that is, stromal-derived intratumoural hetero-
geneity (ITH), may even mask the relatively more subtle changes
associated with genetic variability and heterogeneity within the
tumour epithelium5. This variation in TME content at different
regions of the tumour has long been recognized6; however, in the
era of precision medicine, the ramifications of such micro-
environmental alterations in confounding patient classification
could be of profound significance.

Recently, an international colorectal cancer subtyping consortium,
tasked with defining the transcriptional landscape of CRC, published
their assignment of four consensus molecular subtypes in CRC
(CMS1-4)7. The poor-prognostic CMS4 subtype has been found to
be heavily reliant on gene expression originating from the stromal
component, particularly fibroblasts, within the TME8,9. Importantly,
we have demonstrated that changes in region-specific tumour
biology, associated with variation in stromal content and therefore
the underlying stromal gene expression, can lead to inaccurate CRC
subtyping using CMS10. These findings suggest that even subtle
changes in stromal content may also undermine prospective patient
stratification and disease management decisions, as the region-of-
origin of the extracted tumour tissue is very often outside of the
control of the molecular profiling team. It is imperative that patient
classification using transcriptional signatures remains unaffected by
biological variables arising due to stromal-derived ITH, thereby
allowing robust identification of patient subtype, regardless of the
location from which the tumour tissue has been extracted.

By evaluating differentially expressed genes between the central
tumour (CT) and invasive front (IF) regions of primary colorectal
tumours, we previously demonstrated that stromal-derived ITH
can be a major confounder of transcriptomics-based CMS patient
subtyping10. We have now extended our analyses to include gene
expression profiles generated from lymph nodes (LN) matched to
samples obtained from the CT and invasive edge of the primary
disease. Using this extended dataset, we assessed how the
performance of clinically relevant gene signatures can vary due to
ITH. We demonstrate for the first time that transcriptomic
signatures based on cancer cell-intrinsic gene expression overcome
the confounding effects of TME-related ITH and group samples by
patient-of-origin rather than region-of-origin. These findings have
important implications for the clinical application of
transcriptomics-based patient classification approaches.

Results
Clustering of multi-regional samples from primary tumours.
We have previously demonstrated how stromal-derived gene
expression could undermine patient classification when using a

gene signature associated with the recently published CRC
CMS10. Using the random-forest (RF) methodology of generating
classification scores for CMS subtypes (as defined in the original
CMS study7) we now observe an increased relative CMS4
(mesenchymal subtype) classification score in IF samples when
compared to their patient-matched CT samples for almost 90% of
patients, which, in line with our previous work, we attribute to
stromal-derived ITH (Fig. 1a). This increase is not observed in
classification scores for CMS1 (microsatellite instability immune
subtype) or CMS3 (canonical subtype), while the epithelial-rich
CMS2 (metabolic subtype) displayed a general decrease in classi-
fication score in IF samples compared to the CT (Fig. 1a).

To investigate the extent to which stromal ITH can undermine
the prediction of patient prognosis in CRC, we assessed the ability
of four clinically relevant gene signatures, (namely Jorissen et al.11,
Eschrich et al.12, Kennedy et al.13 and Popovici et al.14,
see Methods section for detailed description of these signatures),
to cluster the transcription profiles from patient-matched central
tumour (CT, n¼ 24) and invasive front (IF, n¼ 24) (Fig. 1b). To
include a suitable CMS signature for assessment in every analysis
throughout our study, we firstly provide a clear demonstration of
the utility of the Sadanandam et al.20 CRC-assigner (CRCA) gene
signature as a surrogate for the random-forest CMS classification
system (Supplementary Fig. 1a). Using this approach, we observe
85–90% concordance in patient classification observed between
CRCA and CMS subtypes in the GSE14333 CRC dataset
(Supplementary Fig. 1b). In addition to the described signatures,
we also include the specific stem-like CRCA classifier as a surrogate
for CMS4 specifically, which we have previously proposed to
be the classification subtype that is most prone to variation due
to fibroblast content10. We confirm that over 97% of tumours
from the GSE14333 data set classified as stem-like by CRCA
were subsequently classified as CMS4, further validating this
approach (Supplementary Fig. 1c). In addition, as a positive control
for confounding variations in stromal-derived gene expression, we
employed our previously published 30 gene signature, primarily
fibroblast in origin and generated using differential expression
between the CT and IF samples in this cohort, to stratify
samples based on region-of-origin, regardless of patient-of-origin10.
The gene sets we have selected did not undergo any additional
adjustment or weighting during our analyses. Using the top-down
divisive clustering analysis (DIANA) method, we observed
0% concordant clustering of our samples by patient-of-origin
following semi-supervised clustering with this 30 gene signature
(Patients labelled A-Y, Fig. 1c,d). The stem-like (CMS4) classifier
clustered 21% of patients concordantly, further supporting the
findings from our previous study. The CRC prognostic subtyping
signatures generated by Jorissen et al.11 (29%), Eschrich et al.12

(38%) were poor at clustering samples according to patient-of-
origin, while the CMS surrogate from Sadanandam et al.20 (54%)
displayed intermediate clustering. In contrast, the prognostic
subtyping signatures of both Kennedy et al.13 (88%) and
Popovici et al.14 (88%) demonstrated a profound increase in
clustering samples based on patient-of-origin (Fig. 1c,d).

Stability of patient classification across tumoural regions. To
further test the ability of each signature to robustly classify
samples on a ‘per patient’ basis, regardless of the region-of-origin
of the tissue sampled, we extended the multi-region dataset
analysis to include gene expression data obtained from
a matched lymph node metastasis for each patient (LN; n¼ 24,
total dataset n¼ 72). Utilizing this cohort, we then employed a
semi-supervised analysis of each signature, using hierarchical
clustering of region-specific samples from both the primary
tumour CT and IF, alongside the LN metastasis samples.
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Figure 1 | Variation in the ability of gene expression signatures to concordantly cluster multi-region samples according to patient-of-origin.

(a) Random Forest (RF) classifier scores specifically for CMS1-4 individually in the patient-matched samples. RF scores for each patient were normalized to

the CT sample (CT¼ 1 for all patients) and IF scores were plotted relative to this. Patients are labelled alphabetically (A-Y) and colour coded according to

each individual CMS analysis for visualization (Yellow¼CMS1, Blue¼CMS2, Pink¼CMS3, Green¼CMS4). (b) Overview of the multi-region samples

used in the analysis. Detailed information on each signature is outlined in the Methods section. Briefly, the 30 gene signature was developed as a classifier

of region-of-origin in this dataset and can stratify samples into CT or IF regional groups. The Sadanandam signature is a surrogate marker of the CMS

classifier and the stem-like signature is a sub-classifier within the Sadanandam signature specifically for the CMS4 subtype. The Jorissen, Eschrich and

Kennedy signatures are stage II/III prognostic CRC classifiers. The Popovici signature classifies stage II/III CRC according to similarity to a BRAF mutant

transcriptional classifier. (c) Divisive clustering methodology (DIANA) highlights the potential of each individual gene expression signature to correctly

cluster multi-region primary tumour samples according to the patient-of-origin. Patients are labelled alphabetically (A–Y) and colour coded for

visualization. (d) Table of concordantly clustered patient samples according to each signature. CT, central tumour; IF, invasive front.
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This analysis confirmed the ability of our previously published
stromal-associated 30 gene signature to identify regions-of-origin
rather than patient-of-origin, with similar results observed
for the stem-like CMS4 classifier (Fig. 2a,b). Wide variations
in the ability of the remaining five published gene signatures to
cluster transcriptional profiles by patient-of-origin were
observed. Similar to the results of the initial DIANA analyses, we
observed lower patient clustering for the Jorissen, Eschrich and
Sadanandam signatures, when compared to either the Kennedy or
Popovici signatures (Fig. 2c–g). On closer examination, we found
that stratification of patient-matched samples was observed not
only into different individual patient clusters, but also into
distinct and opposing prognostic tumour subtypes (Fig. 2c–g).
This finding suggests that classifiers based on genes present
within the Jorissen, Eschrich or Sadanandam signatures could
potentially misclassify patients based on the tissue region-of-
origin, whereas those using genes represented in the Kennedy or
Popovici signature would provide a more robust representation
of tumour-specific signatures, not confounded by stromal ITH.
Given that the proposed clinical utility of these signatures
relates to their prognostic/predictive ability to guide disease
management decisions, these initial findings suggest that the
confounding ITH issues identified by ourselves and others8–10

could undermine transcriptomics-based precision medicine-
focused clinical interventions.

Cancer-cell specific intrinsic gene expression. To further
assess the similarity of the multi-region samples for each patient,
all seven gene expression signatures were tested using a
non-clustering statistic (Pearson correlation coefficient analysis).
To allow a quantitative comparison of both the intra- and
inter-patient similarities for each signature, we implemented an
additional normalization step in this analysis (detailed in the
Pearson similarity section of the Methods section), by assessing
the correlation between samples specifically from the same
patient, compared to samples from different patients (Fig. 3a).
Using this correlative measure, we observed sample values
normally distributed around a median of 0 for the 30 gene
signature, indicating minimal potential for identifying samples
based on their patient-of-origin (Fig. 3a, Supplementary Table 1).
Increasing similarity values were observed for all the other
signatures relative to the 30 gene signature (Fig. 3a, Suppleme-
ntary Table 1). In particular, the robustness of the Popovici
signature to group samples by patient-of-origin was evident
from these analyses. Surprisingly, given the high number of CT
and IF patient samples concordantly clustered using the Kennedy
signature (88%, Fig. 1) the median value recorded for this
signature when challenged with the addition of the LN samples
(0.53) appeared to be relatively low compared to that of the
Popovici signature (0.73) (Fig. 3a, Supplementary Table 1). In line
with the normalized data, the unadjusted similarity matrices for
the stem-like (CMS4), Jorissen, Eschrich, Sadanandam, Kennedy
and Popovici signatures also confirmed an increased qualitative
trend for all signatures compared to the 30 gene stromal-derived
signature (Supplementary Fig. 2a–g).

Given the results of the clustering and similarity analyses, we
hypothesized that the level of performance observed for each
signature would be relative to the proportion of stromal and
epithelial genes in each classifier. We also proposed that the
Popovici signature genes would be predominantly epithelial
tumour cell derived, given the superior performance of this
signature in our study. The Popovici signature was developed by
examining the transcriptional profile associated with epithelial
BRAF mutational status using gene expression data from the
PETACC15 stage II/III clinical trial14. To test our hypothesis,

we examined median expression values of transcriptional
profiles generated from individual tumour cell compartments
(epithelial, leukocyte, endothelial and fibroblast)16 for each
signature. In line with our previous study, we observed that
the 30 gene signature is predominantly fibroblast in origin
(Fig. 3b). Similarly, the stem-like (CMS4), Jorissen, Eschrich and
Sadanandam signatures are also dominated by fibroblast-derived
genes, providing an explanation for their poor performance due
to stromal-derived ITH (Fig. 3b). The Kennedy signature
appeared to have a more balanced proportion of epithelial- and
stromal-derived (leukocyte, fibroblast and endothelial) transcripts
as evidenced from their relative expression values, providing an
explanation for its performance in initial clustering analysis
(Fig. 3b). Importantly, and in line with our hypothesis, we found
that the source of the 64 genes in the Popovici signature was
predominantly epithelial in origin (Fig. 3c, Supplementary
Fig. 3a).

These results further reinforced the findings of our previous
work, in which we reported that cancer-cell extrinsic genes can
confound transcriptomics-based patient classification signatures10,
while also suggesting that a classifier based on intrinsic neoplastic
gene expression could potentially overcome the confounding factor
of infiltrating tumour stroma (Figs 1 and 2). To further test this
hypothesis, we utilized the recently published CRC intrinsic
signature (CRIS)17, which was generated by profiling human
transcripts from patient-derived xenograft (PDX) tissue. As the
original tumour stroma is replaced by mouse stroma in PDX
models, stromal-derived gene expression is absent from these
human-specific gene expression profiles. Therefore, this approach
allows assessment of gene expression originating only from the
cancer cells, which could otherwise be masked by extrinsic stromal
gene expression18. As with the Popovici signature, we confirmed
the epithelial nature of the CRIS gene expression signature (Fig. 4a,
Supplementary Fig. 3b). Using the DIANA method of clustering
expression profiles for the CRIS signature genes, (initially by
comparing the CT and IF samples), we demonstrated that 22 out of
24 patient samples (92%) clustered based on patient-of-origin
(Fig. 4b,c), the highest concordance of all 8 signatures assessed.
Sample clustering of CRIS genes using Euclidean metrics following
the inclusion of the additional 24 metastatic LN samples, indicated
that the CRIS signature can group samples by patient-of-origin,
irrespective of whether the sample is obtained from either primary
or metastatic material (Fig. 4d). Interestingly, we identified a
19 gene overlap between the Popovici and CRIS signatures
and on examination of these genes, we found that these are
predominantly epithelial expressed genes rather than genes
expressed in endothelial, leukocyte or fibroblasts (analysis of
variance Po0.0001, Tukey’s multiple comparison test Po0.05,
Supplementary Fig. 2d,e), further reinforcing the intrinsic signature
hypothesis.

To directly compare the patient classification results using the
published methodologies for both the CRIS and CMS classifiers,
we performed sample classification with the random-forest
CMS classifier algorithm, alongside the CRIS classifier, which
uses a nearest template prediction (NTP) classifier, on our
complete cohort. We observed that while CMS classification
results in concordant assignment of 9/24 (38%) of patient-
matched CT and IF samples, the CRIS classifier concordantly
assigns 17/24 (71%) of patient-matched CT and IF samples
(Fig. 4e,f). More detailed analysis of concordance between the
CT and LN (CMS 29%, CRIS 46%), IF and LN (CMS 21%,
CRIS 50%) and the complete multiregional data set ((CT, IF and
LN samples)—(CMS 17%, CRIS 42%)) again clearly demon-
strated a higher level of agreement using the CRIS classifier in
each sub-analysis (Fig. 4e). In addition, given the high level of
samples classified as unknown using the CMS random-forest
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classifier (UNK), the number of patients with no overlap in
subtype classification was 46% for CMS, whereas the value for
CRIS was 8% with only two patients displaying no concordant
classification in any multiregional samples (Fig. 4e,f). In
agreement with the data in Fig. 1a, and in line with our previous

work10, we observed the effect of stromal-derived ITH in our
cohort through the differences that we observed in CMS
classification, particularly CMS4, of samples according to
region-of-origin in the CT, IF and matched LN tissue
(Supplementary Fig. 4).
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Figure 2 | Assessment of multi-regional sample clustering using primary and matched metastatic tissue. (a–g). Hierarchical clustering of our extended

patient cohort, including CT, IF and LN tumour tissue, based on semi-supervised expression profiles of genes from the previously published 30 gene

signature (a) and each individual independent gene signature, namely the stem-like (CMS4) (b), Jorissen (c), Eschrich (d), Sadanandam (CMS) (e),

Kennedy (f) and Popovici (g) signatures. Top overlay bar represents colour coded patient-of -origin, labelled A–Y, with the bottom overlay bar representing

region-of-origin, CT, green; IF, blue; LN, white.
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Combined assessment of patient classification. Further com-
parison of the CRIS signature using the patient similarity
normalized index as before (Fig. 3a), indicated that the robustness
of the CRIS signature (0.62) is ranked higher than all signatures

other than Popovici signature using this metric (Fig. 5a,
Supplementary Fig. 2h). To further test and compare the data
obtained by clustering and similarity analyses, we performed a
further semi-supervised clustering approach, whereby we
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Figure 3 | A higher proportion of epithelial transcripts enables concordant clustering of patient tumour samples regardless of region-of-origin. (a) Dot

plots using normalized Pearson similarity scores for each individual gene expression signature as indicated. Error bars on dot plots represent s.d. values,

with median bar. The colour label key for each signature is indicated on the right of this plot. (b) Median expression of all probesets annotated to the genes

according to the cell-specific source of the transcripts in the 30 gene, stem-like (CMS4), Jorissen, Eschrich, Sadanandam (CMS) and Kennedy signatures

using epithelial, fibroblast, endothelial, and leukocyte populations isolated by FACS (GSE39396). (c) Median expression of all probesets annotated to the

genes according to the cell-specific source of the transcripts in the Popovici signature using epithelial, fibroblast, endothelial, and leukocyte populations

isolated by FACS (GSE39396).
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Figure 4 | The CRC intrinsic signature (CRIS) enables concordant clustering of patient tumour samples regardless of region-of-origin. (a) Median

expression of all probesets annotated to the genes according to the cell-specific source of the transcripts in the CRIS signature using epithelial, fibroblast,

endothelial, and leukocyte populations isolated by FACS (GSE39396). (b) DIANA clustering of CT and IF patient samples based on the gene expression of

the CRIS signature. (c) Table of concordantly clustered patient samples (as in Fig. 1d) now including the CRIS signature. (d) Hierarchical clustering of our

extended patient cohort, including CT, IF and LN tumour tissue, based on semi-supervised expression profiles of CRIS signature genes. Top overlay bar

indicates patients, bottom overlay bar indicated region-of-origin. (e) Table of concordantly clustered patient samples using either the CMS Random-forest

(RF) classifier or the CRIS Nearest Template Predictor (NTP) classifier. (f) Caleydo (StratomeX) graphical representation of the highest predicted

CMS score (CMS1-4, UNK¼Unknown assignment) and CRIS subtype (CRIS-A-E) for each sample according to region-of-origin. Concordant subtype

assignment of samples is indicated by orange coloured linker, discordant subtype assignment of samples is indicated by grey coloured linker.
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sequentially increased the number of clustering branches, or
clades, from 2 (initial subtyping) up to 24 (the total number of
patients) for each individual signature. This enabled step-wise
measurement of the extent to which patients samples remain
correctly clustered together through increasing stratification and
demonstrated that the 30 gene, stem-like (CMS4), Jorissen and
Eschrich signatures were unable to robustly cluster patient sam-
ples into the same subtype, confirming our earlier assessment of
the lack of accuracy of these signatures (Fig. 5b). In contrast, these
analyses confirmed the ability of the Kennedy, Popovici and CRIS
signatures to cluster patient samples into the same initial patient
subtype, regardless of the site-of-origin, which is a key require-
ment for prognostic/predictive signatures (Fig. 5b). The Sada-
nandam signature20 displayed an immediate reduction in its
ability to maintain multiregional sample clustering according to
patient-of-origin, to below that of the Kennedy, Popovici and
CRIS signatures. Importantly, while Popovici and CRIS signatures

both maintain their capacity to cluster samples according
to patient-of-origin even at the final level of stringency
(75% concordance); this analysis further explains the reduced
ability of the Kennedy signature for patient clustering using the
normalized similarity method (Fig. 5a), as although this signature
displays effective subtyping ability in the initial stages, its
suitability for the most stringent individual patient clustering
ultimately is reduced to almost 50% in our data set, similar to the
results of the Sadanandam (CMS) signature (Fig. 5b).

The potential clinical utility of both the Popovici and CRIS
signatures for patient classification is further reinforced by their
ability to maintain patient-specific clustering throughout this
step-wise analysis, with only a minimal decline in their efficiency
as the stringency increases (Fig. 5b). By plotting the score recorded
for each signature at 2 and again at 24 clusters, the ability of
the Kennedy signature for initial assignment into 2 potentially
prognostic subgroups is again demonstrated (100% initial subgroup
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Figure 5 | Assessment of multi-region sample clustering into concordant subtypes and into individual patient clusters. (a) Dot plots using normalized

Pearson similarity scores for each individual gene expression signature (as in Fig. 3a) now including the CRIS signature. Error bars on dot plots represent

s.d. values, with median bar. (b) Patient group overall ratio plot demonstrating the ability of each individual signature to concordantly cluster patient

samples as an indication of confounding transcriptional ITH. For example, the 30 gene signature displays an immediate drop in concordant sample

clustering, indicating high levels of confounding transcriptional ITH. The CRIS signature maintains a high level of concordant clustering at both the initial

subtype, (left of x axis), and continues to cluster samples according to each individual patient, (right of x axis). The proportion of patients with all samples

in the same cluster is measured on the y axis from 1 to 0, relative to the number of clusters on the x axis from 2 to 24. Each continuous signature score is

colour coded as outlined in the legend and in the colour label key.
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concordance; Supplementary Fig. 5) although its ability is reduced
as the number of patient clusters evaluated, and therefore the
stringency, increases. This analysis highlights the robust nature of
both the Popovici and CRIS signatures to concordantly cluster
samples into both the same initial subgroup and to continue to
maintain a high level of concordance in the final patient clusters
according to patient-of-origin (Supplementary Fig. 5).

Discussion
We and others have previously demonstrated how transcrip-
tional-based patient classifiers, such as the CMS8–10, are affected
by tumour sampling region due to changes in the stromal-derived
cellular content and region-specific gene expression profiles
across the 3D structure of the tumour architecture10. The ability
of a transcriptional-based signature to consistently classify a
patient’s subtype even at a metastatic site was posed as one of the
challenges which remain to be addressed by Morris and Kopetz
recently18. Thus, the addition of metastatic tissue to our analysis
is highly relevant, as it represents tissue which has undergone the
process of EMT, invasion and tumour initiation at the metastatic
site. Data presented here further supports our previous work,
by confirming that sampling tissue from the invasive regions
of a primary tumour increases the likelihood of a tumour
being assigned a CMS4 classification. Indeed, in line with the
dependence of CMS4 on the presence of fibroblasts/stroma, the
ability of either the published random-forest CMS algorithm or
the Sadanandam stem-like classifier, (as a surrogate of CMS4), to
concordantly cluster patient samples was low across all analyses
performed in this study. Importantly, using the published
CMS classifier, we observed a high level of unclassified samples
in all regions, particularly in the invasive front or metastatic
samples, the majority of which were assigned as epithelial-rich
CMS2/3 in the centre of the primary tumour, demonstrating
the limited clinical utility of CMS classification using tissue
from the IF or indeed the metastatic lymph nodes. Thus, the
changes in cell type populations in the surrounding TME provide
a stringent test of the performance of a published transcriptional
signature. Given our experimental design and sample collection,
we were able to directly assess individual signatures for their
ability to consistently classify patients, regardless of the site from
which the tissue was extracted. Our previous data highlighted
the extent to which stromal-derived ITH can undermine CMS
patient stratification10; we now reveal that this confounding
issue can also compromise other published transcriptional-based
signatures.

Unsupervised clustering of large transcriptomic array data will
generally cluster samples according to patient-of-origin. However,
classification of patient samples into prognostic/predictive subtypes
is generally dependent on small pre-defined gene signatures that
can themselves be confounded by region-of-origin of the tissue.
When patient stratification is distilled to this level of granularity,
subtle changes in the global gene expression profiles at different
regions can have profound implication for subtype assignment.
Similar to results with our 30 gene signature, the stem-like CMS4
classifier is confounded by region-of-origin when attempting to
classify individual patient samples. Signatures such as the Jorissen
and Eschrich signatures11,12 also failed to cluster samples from the
same patient into the same tumour subtypes in our dataset. The
Sadanandam classifier displayed an intermediate ability to concor-
dantly cluster samples according to patient-of-origin. In summary,
these 4 signatures could potentially yield different diagnostic
classification results for an individual patient, depending on the site
of tissue sampling. In the case of the Kennedy signature13, we
observed highly robust and concordant patient stratification at the
initial prognostic subtype stage, fulfilling the purpose for which this

signature was designed. However, the confounding effects of
transcriptional variation at different regions of a tumour reduce the
ability of the Kennedy signature to be applied at an individual
patient classifier level.

In contrast, the Popovici signature14 and the recently proposed
CRIS signature17 precisely cluster samples according to
patient-of-origin. We have also demonstrated that both the
Popovici and CRIS signatures are enriched for cancer-cell specific
intrinsic gene expression. Signatures based on intrinsic genes can
thus classify tumours according to the transcriptional variations
in neoplastic epithelial cells that may otherwise be difficult to
detect among the transcriptional ‘noise’ generated by stromal
cell types within the overall TME, thereby allowing true inter-
patient variation to be identified. This method of examining
neoplastic signalling in isolation from the surrounding stroma
was also proposed by Morris and Kopetz as a way of potentially
improving gene expression classification18. Our findings
confirm the utility of both the Popovici and CRIS signatures for
patient stratification and further support the development of
intrinsic gene expression signatures as a means to avoid patient
misclassification as a result of confounding changes in TME and
the stromal, particularly fibroblast, cellular contents in a tumour.

Large individual and collaborative efforts aimed at
defining CRC molecular subtypes have confirmed the important
role that the stroma plays in patient stratification and
prognosis7,19–23. These recent findings mirror older traditional
pathology-based studies which have shown that high levels of
stromal infiltrate provide valuable prognostic information for
disease management24–26. Identification of a patient’s overall
tumour subtype, including both intrinsic and extrinsic
components within the TME, remains an important tool
for both translational research and clinical decision-making.
Data presented here do not negate the relevance of these
now well-established and clinically informative stromal-based
subtypes; rather we have highlighted the potential challenge
of robustly identifying a patient’s molecular subtype using
transcriptional signatures which also capture stromal-derived
gene expression. This issue may be particularly problematic
when patient stratification decisions are based on the often
small amounts of primary or metastatic biopsy tissue which are
available for analysis in prospective clinical trials, where control
over region-of-origin and stromal content of the tissue samples is
limited. Data presented here indicate how gene expression
signatures which are predominantly derived from neoplastic
epithelial cells can alleviate such confounding issues, enabling
more robust patient classification regardless of the region(s) from
which the tissue has been extracted. These findings may facilitate
better transcriptional-based tracking of primary and metastatic
disease from an individual patient and may ultimately help in the
development of better genomic tools for stratification around
patient prognosis or indeed prediction of outcome from therapy.
This level of disease tracking and biological understanding is
particularly important for the increasing numbers of patients
diagnosed with early stage disease. Dukes A/B accounts for up to
71% of bowel screen-detected CRC cases27, where prevention or
informed treatment following disease progression can make
a significant impact to cancer survival rates.

The platforms used in the generation of the gene signatures in
this study include Affymetrix and custom cDNA arrays, alongside
next generation sequencing (NGS) technology. Inevitably, when
comparing the utility of these signatures, there will be some cases
when individual genes/probes are not universally represented
across all platforms, resulting in gene dropout. To ensure that this
dropout was minimized, we utilized consensus ‘core genes’ for the
signatures (detailed in Supplementary Data 1) and as defined
previously by Sanz-Pamplona et al.4 to enable cross-platform
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validation of signatures. Comprehensive updating was performed
on the DSA array annotation to include recently annotated
transcripts and additional gene aliases from Entrez ID, Unigene
ID, HUGO and RefSeq was also performed. Despite these efforts,
inevitably no match was found for a small number of genes
in a number of the signatures but the levels of gene drop-out
were minimal. As such, the genes used in our study are as
a representative of the original signatures. Importantly however,
the use of core genes has previously been shown to maintain the
prognostic value of the original signatures studied.4

The approach we have taken here is not aimed at validating the
outcome predicted for each signature; rather we aim to
stringently test the ability of each signature to concordantly
cluster and, in turn, identify samples from different regions-of-
origin from the same patient, without modification or weighting
of the signature genes. Despite the overall robust nature of
the Popovici and CRIS signatures observed in this study, our
cell-lineage specific analysis indicates that there are still some
residual stromal-derived transcripts in the Popovici and CRIS
signatures, which may explain the small drop in patient-specific
clustering at the most extreme statistical limits of our analyses. In
addition, although the ability of a signature to robustly cluster
patient samples regardless of region-of-origin is important for a
clinical test, this characteristic on its own is not sufficient for it to
be a clinical useful tool. Clinical utility is only possible if the
cancer-cell intrinsic signatures themselves also provide additional
prognostic/predictive or important clinical information beyond
currently utilized methods. The generation of patient classifiers
and the validation of their clinical utility in large retrospective
cohorts should attempt to address the confounding variable of
changes in tumour content as a first step in refining signatures
with prognostic or predictive potential. The generation of a large
data repository of clinical samples containing profiles from
multiple regions of each tumour, similar to the datasets that we
and others have assembled10,28, may provide an important
resource to help improve the identification of robust clinically
relevant transcriptional signatures. Such a repository would also
allow a more in-depth analysis of ITH, not only within a patient,
but also at each site in the primary or metastatic lesion using
increased numbers of samples at each tumour site.

As in our previous study10, we show here that the confou-
nding issue of stromal derived intratumoural heterogeneity
is also evident in a number of clinically-relevant transcriptional
signatures. However, we now extend this observation to demon-
strate that gene signatures based on epithelial cancer-cell intrinsic
gene expression result in significantly more robust and reliable
stratification of CRC patients, when compared to stromal-
dependent signatures such as CMS. The refinement of patient
classifiers through a well-informed pipeline, including stromal-
derived ITH as an inherent covariate as demonstrated in this
study, has the potential to translate this biology-driven research
into informative clinical signatures that can be reliably employed
as diagnostic, prognostic or predictive tools.

In conclusion, our data support the clinical evaluation of
signatures based on intrinsic gene expression, such as the
Popovici and CRIS signatures, which are largely unaffected
by the confounding variable of stromal-derived ITH. These
cancer-cell intrinsic signatures have the potential to be used
clinically to inform precision medicine decisions, ultimately
leading to improved patient outcomes.

Methods
The initial dataset. The patient samples employed in this study were as described
previously10. Briefly, we selected fresh primary tumour colon resection specimens
from 25 patients where we had sufficient high quality material to extract RNA
from the regions of interest. Each patient was labelled alphabetically from A to Y.

This resulted in 75 transcription profiles, 25 patients’ samples at 3 regions per
sample, namely the Invasive Front (IF), Central Tumour (CT) and Lymph Node
(LN). These 75 samples were analysed on the CRC disease specific array (DSA)
platform (Almac Diagnostics Ltd). This CRC DSA has a total of 61,528 probe sets
and encodes 52,306 transcripts, which we have determined to represent 15,273
annotated genes. The CRC DSA provides robust profiling of RNA derived from
FFPE tissue samples compared to Affymetrix microarrays, due to its disease
specific content (B20,000 transcripts are unique to the CRC DSA) and enhanced
ability to detect degraded RNA by using a 30-based probe design.

Following the generation of transcriptional data, we used distribution analysis,
hierarchical clustering (condition tree) and principal components analysis (PCA)
to assess the quality of the data before analysis. The distribution of sample data
(histogram of normalized intensity values) should approximate a normal
distribution and should be free of outliers, demonstrated through hierarchical
clustering and decomposition techniques (PCA and/or MDS). Hierarchical
clustering (condition tree) shows the relationships among the expression levels of
samples, allowing identification of any spurious samples. From the initial QC
analyses of the microarray data, we identified 2 samples as outliers from the PCA
and clustering tree methods (Supplementary Fig. 6) which were then removed from
the analysis. Subsequent alignment of patient ID codes revealed that these 2
samples originated from the same patient; therefore the remaining sample from
that patient (Patient M) was also removed from further downstream analyses. Our
approach ensured that each patient was represented by samples from 3 different
regions of the tumour (which we refer to as multi-region samples). The final
processed cohort therefore contained 72 transcriptional profiles; 24 IF, 24 CT and
24 LN tumour data deposits.

Classification of CMS and CRIS molecular subtypes. The consensus molecular
subtype (CMS) for each region profiled was determined using the random forest
classifier described by Guinney et al.7 The CMSclassifier R package was
downloaded from github (https://github.com/Sage-Bionetworks/crcsc) and scripts
executed in R studio version 3.3.1. The colorectal intrinsic subtypes (CRIS) were
determined using the nearest template prediction (NTP) classifier, available from
GenePattern (https://genepattern.broadinstitute.org/gp/pages/login.jsf). The
thresholds used for statistical significance were generated using Benjamini-
Hochberg–corrected false discovery rate (BH.FDR) o0.2 (ref. 29).

Gene expression signatures employed in the study. To avoid variations
inherent during probeset-to-gene annotation conversion from signatures developed
using different platforms, we utilized previously published consensus gene lists for
each signature to be evaluated, as implemented by Sanz-Pamplona and colleagues4.
We then cross-referenced this consensus gene list with the genes from our CRC
DSA Affymetrix microarray platform, resulting in a list of signature genes used in
this study (Supplementary Data 1). To further minimise any gene dropout from the
signatures used in this study, we updated the annotation for the CRC DSA to
current HUGO nomenclature by matching the Entrez Gene ID of each probe to
HUGO gene symbols obtained from the HUGO Gene Nomenclature Committee
(HGNC) dataset file: ‘hgnc_complete_set’ as available on 31st January 2017 from
the EBI ftp server: (ftp://ftp.ebi.ac.uk/pub/databases/genenames/new/tsv/
hgnc_complete_set.txt)

In addition, we have used a combination of Entrez ID, Unigene, HUGO and
Refseq to comprehensively update the annotation file for the DSA array. Probes
without Entrez Gene IDs that had a RefSeq or Unigene ID in the original
annotation were assigned an Entrez Gene ID using the NCBI Batch Entrez tool.
Probes that hadn’t any identifiers apart from a gene symbol were updated by
matching that gene symbol to a previous gene symbol or alias found in the
hgnc_complete_set file. Despite these efforts, inevitably no match was found for a
small number of genes in some signatures and they were lost for subsequent
analysis. The overall levels of gene dropout were minimal; the signature with the
highest dropout (Eschrich; 10.3% dropout) was due to a loss of only three genes
missing from the core gene signature. Given this limitation, the signatures used in
our study can only serve as a representation of the original signatures. Importantly
however, our study is focussed on dissecting the cellular source of the core genes
related to their ability to robustly cluster patient samples to outline parameters that
could potentially improve future signature/classifier design. Each individual
signature, in its original form, has demonstrated prognostic value and was selected
as they represent the most clinically relevant and widely employed signatures to
support the aims and findings in this study.

The 30 gene signature was previously generated10 as a contrast between CT and
IF in this cohort (Supplementary Data 1).

The Eschrich et al.12 signature was developed using 78 pre-selected frozen colon
tumours samples based on their OS survival status at 36 months, good 436
months survival (n¼ 30), poor o36 months survival (n¼ 48) across Dukes
stage B, C and D. Three adenoma samples were included within the good
prognostic group. Transcription profiles were generated on cDNA arrays.
Using a leave-one-out cross validation approach, a 43 gene signature was developed
(Supplementary Data 2).

The Jorissen et al.11 signature was developed from transcriptional profiles
from 553 colorectal samples using Affymetrix HG-U133Plus2.0 GeneChip arrays.
This cohort consisted of 293 fresh frozen tumour specimens, with the remaining
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260 samples being identified from publically available gene expression data.
Differential gene expression (DEG) changes were identified between Dukes stage A
and D in both the in-house and public datasets. Additional analysis was also
undertaken between primary stage D and metastatic tissue, to develop ‘metastasis
associated genes’ which through 2-fold cross validation were used to generate a 163
gene classifier which could stratify the stage B and C samples into prognostic
subtypes. The prognosis signature was enriched for downregulated immune
response genes and upregulated cell signalling and extracellular matrix genes
(Supplementary Data 3).

The Sadanandam et al.20 signature was developed from the transcriptional
profiles from 445 primary CRC resections (GSE13294 and GSE14333) using
Affymetrix HG-U133Plus2.0 GeneChip arrays. Consensus-based non-negative
matrix factorization was used to define five molecular subtypes. The 786 subtype-
specific signature genes were then identified using significance analysis of
microarrays (SAM) and prediction analysis for microarrays (PAM). This signature
was used as a surrogate for the CMS classification. The 207 genes associated with
classification of the stem-like subtype from the original Sadanandam et al.20

signature were used as a surrogate for CMS4 (Supplementary Data 4).
The Kennedy et al.13 signature was developed from a cohort of stage II FFPE

colon cancer tumours, preselected for samples based on: risk of recurrence within 5
years of surgery; disease recurrence (n¼ 73) or no recurrence (n¼ 143).
Transcriptional data was generated on the Almac Colorectal Cancer DSA platform.
Using cross validation, a 634 probeset signature was developed which identified a
prognostic subtype in stage II, which was further validated in an independent
cohort of 144 samples. This signature has subsequently been validated in an
additional stage II clinical trial cohort30 (Supplementary Data 5).

The Popovici et al.14 signature was developed using 668 stage II/III FFPE colon
cancer tissue samples from the PETACC-3 phase III clinical trial investigating
adjuvant treatment and disease-free survival in colon cancer15. Transcriptional
profiling was performed on the Almac Colorectal Cancer DSA platform. A 64 gene
classifier was developed using multiple top scoring pair’s method and cross-
validation based mutational status which identifies samples with signalling similar
to BRAF mutant tumours. This signature was found to identify a poor-prognostic
subtype, based on overall survival in the training dataset and independent
validation cohorts (Supplementary Data 6).

The colorectal intrinsic signature (CRIS)17 was developed using 515 patient-
derived xenograph tumours from liver metastasis tissue extracted from 244
patients. Implantation of patient tissue into murine models resulted in the
replacement of non-transformed stromal cells with murine stroma. The neoplastic
epithelial component of the original tumour tissue is preserved. Transcriptional
profiles were generated using Illumina human-specific 48k gene chips. The
resulting transcripts were tested for cross-species contamination to ensure that they
originated from cancer cell intrinsic expression only. Following non-negative
matrix factorization and cross-validation, a final 565 gene classifier was developed
which could stratify a number of in-house and independent datasets into subtypes
with prognostic utility. The CRIS signature has been shown to have improved
prognostic significance compared to the CMS classifier in a number of independent
datasets, by clustering patients based on the subtype of their intrinsic epithelial
expression profile, rather than the tumour bulk tissue which includes the
non-neoplastic TME (Supplementary Data 7).

For all analyses, we have used the gene sets as detailed in Supplementary
Data 1–7, followed by hierarchical clustering or Pearson similarity assessment with
standard methodology. The gene sets did not undergo any adjustment or weighting
and were not modified with any algorithm.

DIANA clustering methodology. As outlined above, patients were assigned an
alphabetical label A–Y; patient sample M was removed as an outlier before analysis.
Divisive analysis clustering (DIANA) was performed on the expression values of
the patient matched IF and CT samples, ascertaining to each of the gene signatures
on default settings. This was completed using the ‘cluster’ package in R statistical
environment (v3.2.3). The DIANA method is particularly suited to test inter-
patient heterogeneity in sample pairs, as it continuously splits samples into two
clusters until it reaches single samples, which allows an assessment of both the final
patient clustering and the extent to which an individual signature could be
undermined by stromal derived transcriptional ITH. Resulting dendrograms were
assessed for patient clustering and values were tabulated.

Transcriptional clustering analysis. Partek Genomics Suite software, version 6.6;
2016 Partek, Inc., St Louis, MO, USA., was used for independent dataset analysis.
For the purpose of clustering, data matrices were standardized to the median value
of probe sets expression. Standardization of the data allows for comparison of
expression levels for different probe sets. Following standardization, two-dimen-
sional hierarchical clustering was performed (samples� probe sets/genes).
Euclidean distance was used to calculate the distance matrix, a multidimensional
matrix representing the distance from each data point (probe set-sample pair) to all
the other data points. Ward’s linkage method was subsequently applied to join
samples and genes together, with the minimum variance, to find compact clusters
based on the calculated distance matrix.

Normalized pearson similarity scoring. The Pearson correlation coefficient was
used to define the ratio between the covariance and the standard deviation of
multi-region samples for each individual patient. By generating a score for each
sample compared to each other sample, this method allowed us to build a matrix
based on an enumeration of the similarities of all three samples (IF, CT and LN) for
each individual patient. Increased scores indicate that samples display a higher
similarity with other matched region-specific samples from the same patient. As
the standard Pearson method allows direct correlation of one sample to another,
we wished to test if each individual patient score was higher than that observed
across all of the samples. To this end, we used a normalized method, which
calculates the relative similarity between the three samples from the same patient,
compared to their similarity to samples from all other patients within our dataset,
from a score of 0 (no increased correlation of patient matched samples compared
to samples from different patients) to 1 (maximum correlation of patient matched
samples compared to all other samples).

Patient group overall ratio. We used sequential analyses to give an assessment
of the ability of each signature to both cluster patient samples into the same
higher-order prognostic/predictive subtype, followed by the ability of the signature
to robustly differentiate and cluster primary and metastatic samples according to
patient of origin. The various signatures indicated above were used to cluster
the data, using hclust, with Ward’s linkage and Euclidean distance metric. The
resultant dendrogram was then analysed using the cutree function to extract the
group membership, as the number of groups is sequentially increased, from 1 to 24
(the number of patients). At each level, the Patient Group Overall Ratio (PGOR)
was calculated as: PGOR¼Number of Patients Grouped in the Same Cluster/Total
Number of Patients,that is, the PGOR¼ 1 if all samples for all patients are found in
the same cluster at a particular level, and PGOR¼ 0 if none of the samples group
together consistently. The evolution of the PGOR was plotted against the number
of clusters, showing the consistency of patient clustering.

Data availability. Our transcriptional data and updated annotation files, alongside
patient and region identifiers has been uploaded to the NCBI Gene Expression
Omnibus (GEO) repository (http://www.ncbi.nlm.nih.gov/geo/) and is available
under accession numbers GSE95109 and GPL23083. For testing of the cell lineage-
specific source of the transcripts, gene expression profiles from an independent CRC
dataset were downloaded from NCBI Gene Expression Omnibus (GEO) (http://
www.ncbi.nlm.nih.gov/geo/) under accession number GSE39396. The GSE39396
dataset contains microarray profiles from fresh colorectal specimens where FACS has
been used to divide cells into specific endothelial (CD45þEPCAM�CD31�FAP� ),
epithelial (CD45� EPCAMþCD31�FAP� ), leukocyte (CD45�EPCAM�CD31þ

FAP� ) and fibroblast (CD45�EPCAM�CD31�FAPþ ) populations before micro-
array profiling. Plots based on transcriptional data were plotted using GraphPad Prism
version 5.03 for Windows, GraphPad Software, La Jolla CA, USA, www.graphpad.com.
In addition, for the comparison of CRC sample classification by the Sadanandam
signature20 and the CMS, gene expression profiles under the accession number
GSE14333 were downloaded from NCBI GEO. This data set contains the
transcriptional profiles of 290 primary colorectal cancers using Affymetrix HG-
U133Plus2.0 GeneChip arrays. Patient samples defined as ‘unknown’ by CMS
classification in the original Sadanandam study cohort were removed from our CMS
analysis. The figure based on this data was created using Caleydo (StratomeX) version
3.1.5 for Windows. All data utilized in this manuscript are available from the
corresponding author on request.

References
1. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish

tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98,
10869–10874 (2001).

2. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406,
747–752 (2000).

3. Kern, S. E. Why your new cancer biomarker may never work: recurrent
patterns and remarkable diversity in biomarker failures. Cancer Res. 72,
6097–6101 (2012).

4. Sanz-Pamplona, R. et al. Clinical value of prognosis gene expression signatures
in colorectal cancer: a systematic review. PLoS ONE 7, e48877 (2012).

5. Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes and
consequences of genetic heterogeneity in cancer evolution. Nature 501,
338–345 (2013).

6. Polyak, K., Haviv, I. & Campbell, I. G. Co-evolution of tumor cells and their
microenvironment. Trends Genet. 25, 30–38 (2009).

7. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer.
Nat. Med. 21, 1350–1356 (2015).

8. Isella, C. et al. Stromal contribution to the colorectal cancer transcriptome.
Nat. Genet. 47, 312–319 (2015).

9. Calon, A. et al. Stromal gene expression defines poor-prognosis subtypes in
colorectal cancer. Nat. Genet. 47, 320–329 (2015).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15657 ARTICLE

NATURE COMMUNICATIONS | 8:15657 | DOI: 10.1038/ncomms15657 | www.nature.com/naturecommunications 11

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
www.graphpad.com
http://www.nature.com/naturecommunications


10. Dunne, P. D. et al. Challenging the cancer molecular stratification dogma:
intratumoral heterogeneity undermines consensus molecular subtypes and potential
diagnostic value in colorectal cancer. Clin. Cancer Res. 22, 4095–4104 (2016).

11. Jorissen, R. N. et al. Metastasis-associated gene expression changes predict poor
outcomes in patients with dukes stage B and C colorectal cancer. Clin. Cancer
Res. 15, 7642–7651 (2009).

12. Eschrich, S. et al. Molecular staging for survival prediction of colorectal cancer
patients. J. Clin. Oncol. 23, 3526–3535 (2005).

13. Kennedy, R. D. et al. Development and independent validation of a prognostic
assay for stage II colon cancer using formalin-fixed paraffin-embedded tissue.
J. Clin. Oncol. 29, 4620–4626 (2011).

14. Popovici, V. et al. Identification of a poor-prognosis BRAF-mutant-like
population of patients with colon cancer. J. Clin. Oncol. 30, 1288–1295 (2012).

15. Van Cutsem, E. et al. Randomized phase III trial comparing biweekly infusional
fluorouracil/leucovorin alone or with irinotecan in the adjuvant treatment of
stage III colon cancer: PETACC-3. J. Clin. Oncol. 27, 3117–3125 (2009).

16. Calon, A. et al. Dependency of colorectal cancer on a TGF-beta-driven program
in stromal cells for metastasis initiation. Cancer Cell 22, 571–584 (2012).

17. Bertotti, A. et al. Abstract 107: unsupervised analysis of cancer-cell intrinsic
transcriptional traits defines a new classification system for colorectal cancer
with improved predictive and prognostic value. Cancer Res. 76, 107–107
(2016).

18. Morris, J. S. & Kopetz, S. Tumor microenvironment in gene signatures: critical
biology or confounding noise? Clin. Cancer Res. 22, 3989–3991 (2016).

19. Dienstmann, R. et al.Colorectal Cancer Subtyping Consortium (CRCSC)
identification of a consensus of molecular subtypes. ASCO Meeting Abstracts.
J. Clin. Oncol. 32, abstract 3511 (2014).

20. Sadanandam, A. et al. A colorectal cancer classification system that associates
cellular phenotype and responses to therapy. Nat. Med. 19, 619–625 (2013).

21. Cancer Genome Atlas Network. Comprehensive molecular characterization of
human colon and rectal cancer. Nature 487, 330–337 (2012).

22. Marisa, L. et al. Gene expression classification of colon cancer into molecular
subtypes: characterization, validation, and prognostic value. PLoS Med. 10,
e1001453 (2013).

23. De Sousa E Melo, F. et al. Poor-prognosis colon cancer is defined by a
molecularly distinct subtype and develops from serrated precursor lesions.
Nat. Med. 19, 614–618 (2013).

24. Jass, J. R., Love, S. B. & Northover, J. M. A new prognostic classification of
rectal cancer. Lancet 1, 1303–1306 (1987).

25. Jass, J. R. Classification of colorectal cancer based on correlation of clinical,
morphological and molecular features. Histopathology 50, 113–130 (2007).

26. Jass, J. R. & Morson, B. C. Reporting colorectal cancer. J. Clin. Pathol. 40,
1016–1023 (1987).

27. Logan, R. F. et al. Outcomes of the Bowel Cancer Screening Programme (BCSP)
in England after the first 1 million tests. Gut 61, 1439–1446 (2012).

28. Martinez-Cardus, A. et al. Epigenetic homogeneity within colorectal tumors
predicts shorter relapse-free and overall survival times for patients with
locoregional cancer. Gastroenterology 151, 961–972 (2016).

29. Hoshida, Y. Nearest template prediction: a single-sample-based flexible class
prediction with confidence assessment. PLoS ONE 5, e15543 (2010).

30. Niedzwiecki, D. et al. Association between results of a gene expression signature
assay and recurrence-free interval in patients with stage II colon cancer in

cancer and leukemia group B 9581 (alliance). J. Clin. Oncol. 34, 3047–3053
(2016).

Acknowledgements
This work was supported by The Entwistle Family Travel Scholarship (PDD),
CRUK/MRC Stratified Medicine Programme (S:CORT; P.D.D., M.A., S.R., T.M.,
P.G.J. and M.L.) and 2 separate CRUK PhD studentships (A.R. and D.G.M.) and
(A.M.B.M. and M.L.).

Author contributions
P.D.D. conceptualized the research, performed experiments, analysed and interpreted
data and wrote, revised and finalised the manuscript. M.A., P.G.O., A.C.R. and A.M.B.M.
performed experiments, analysed data and edited final figures. S.R., T.M., P.G.J., S.S.M.,
D.B.L. and E.K. provided expertize and intellectual input to the overall project. E.K.
provided patient samples and transcriptional data. D.G.M. and M.L. conceptualized the
research, interpreted data, edited and finalised the manuscript. All authors read and
approved the final manuscript before submission.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing interests: P.G.J.: Previous Founder and Shareholder of Almac Diagnostics;
CV6 Therapeutics: Expert Advisor and Shareholder; Chugai Pharmaceuticals:
Consultant. The remaining authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Dunne, P. D. et al. Cancer-cell intrinsic gene expression
signatures overcome intratumoural heterogeneity bias in colorectal cancer patient
classification. Nat. Commun. 8, 15657 doi: 10.1038/ncomms15657 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/

r The Author(s) 2017

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15657

12 NATURE COMMUNICATIONS | 8:15657 | DOI: 10.1038/ncomms15657 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Clustering of multi-regional samples from primary tumours
	Stability of patient classification across tumoural regions

	Figure™1Variation in the ability of gene expression signatures to concordantly cluster multi-region samples according to patient-of-origin.(a) Random Forest (RF) classifier scores specifically for CMS1-4 individually in the patient-matched samples. RF sco
	Cancer-cell specific intrinsic gene expression

	Figure™2Assessment of multi-regional sample clustering using primary and matched metastatic tissue.(a-g). Hierarchical clustering of our extended patient cohort, including CT, IF and LN tumour tissue, based on semi-supervised expression profiles of genes 
	Combined assessment of patient classification

	Figure™3A higher proportion of epithelial transcripts enables concordant clustering of patient tumour samples regardless of region-of-origin.(a) Dot plots using normalized Pearson similarity scores for each individual gene expression signature as indicate
	Figure™4The CRC intrinsic signature (CRIS) enables concordant clustering of patient tumour samples regardless of region-of-origin.(a) Median expression of all probesets annotated to the genes according to the cell-specific source of the transcripts in the
	Figure™5Assessment of multi-region sample clustering into concordant subtypes and into individual patient clusters.(a) Dot plots using normalized Pearson similarity scores for each individual gene expression signature (as in Fig.™3a) now including the CRI
	Discussion
	Methods
	The initial dataset
	Classification of CMS and CRIS molecular subtypes
	Gene expression signatures employed in the study
	DIANA clustering methodology
	Transcriptional clustering analysis
	Normalized pearson similarity scoring
	Patient group overall ratio
	Data availability

	SorlieT.Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implicationsProc. Natl Acad. Sci. USA9810869108742001PerouC. M.Molecular portraits of human breast tumoursNature4067477522000KernS. E.Why your new cancer biom
	This work was supported by The Entwistle Family Travel Scholarship (PDD), CRUKsolMRC Stratified Medicine Programme (S:CORT; P.D.D., M.A., S.R., T.M., P.G.J. and M.L.) and 2 separate CRUK PhD studentships (A.R. and D.G.M.) and (A.M.B.M. and M.L.)
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




