
Artificial Intelligence for
Engineering Design, Analysis
and Manufacturing

cambridge.org/aie

Research Paper

Cite this article: Chau HH, McKay A, Earl CF,
Behera AK, de Pennington A (2018). Exploiting
lattice structures in shape grammar
implementations. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing
32, 147–161. https://doi.org/10.1017/
S0890060417000282

Received: 15 October 2016
Revised: 17 May 2017
Accepted: 17 May 2017

Key words:
Ambiguity; bill of materials (BOM) structures;
complemented distributive lattice; design
descriptions; maximal representation; set
grammars; shape emergence

Author for correspondence:
Hau Hing Chau, E-mail: H.H.Chau@leeds.ac.uk

© Cambridge University Press 2018. This is an
Open Access article, distributed under the
terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted re-use,
distribution, and reproduction in any medium,
provided the original work is properly cited.

Exploiting lattice structures in shape
grammar implementations

Hau Hing Chau1, Alison McKay1, Christopher F. Earl2, Amar Kumar Behera1

and Alan de Pennington1

1School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK and 2School of Engineering and
Innovation, The Open University, Milton Keynes MK7 6AA, UK

Abstract

The ability to work with ambiguity and compute new designs based on both defined and
emergent shapes are unique advantages of shape grammars. Realizing these benefits in design
practice requires the implementation of general purpose shape grammar interpreters that sup-
port: (a) the detection of arbitrary subshapes in arbitrary shapes and (b) the application of
shape rules that use these subshapes to create new shapes. The complexity of currently avail-
able interpreters results from their combination of shape computation (for subshape detection
and the application of rules) with computational geometry (for the geometric operations need
to generate new shapes). This paper proposes a shape grammar implementation method for
three-dimensional circular arcs represented as rational quadratic Bézier curves based on lattice
theory that reduces this complexity by separating steps in a shape computation process from
the geometrical operations associated with specific grammars and shapes. The method is dem-
onstrated through application to two well-known shape grammars: Stiny’s triangles grammar
and Jowers and Earl’s trefoil grammar. A prototype computer implementation of an inter-
preter kernel has been built and its application to both grammars is presented. The use of
Bézier curves in three dimensions opens the possibility to extend shape grammar implemen-
tations to cover the wider range of applications that are needed before practical implementa-
tions for use in real life product design and development processes become feasible.

Introduction

Shape grammars have been used successfully to explore design spaces in various design con-
texts (Strobbe et al., 2015). They are used to both analyze existing styles and generate new
designs. Generative capability and shape emergence are two aspects of shape grammars that
make them appealing to designers, and many implementations have illustrated how designers
might take advantage of this generative capability (Chase, 2010). However, there is a range of
shape emergence capabilities in these implementations and shape emergence is generally
restricted, in each implementation, to particular kinds of shape. This paper demonstrates
the potential of lattice structures to improve the shape emergence capabilities of U13 shape
grammar implementations. Shape emergence algorithms in current implementations are com-
plex, in part, because computational geometry and shape computation are considered simul-
taneously. This paper provides a mechanism where lattices are used to reduce this complexity
by decoupling computational geometry (needed for the geometrical operations associated with
specific grammars used in the generation of new shapes) and shape computation (needed for
sub-shape detection and the application of rules). A prototype implementation of an inter-
preter kernel has been built and applied to two well-known shape grammars: Stiny’s triangles
grammar (Stiny, 1994) and Jowers and Earl’s trefoil grammar (Jowers & Earl, 2010). Early
results are promising with more applications, for wider evaluation, and integration with
suitable user interfaces as important next steps.

Background and related works

Existing shape grammar implementations that support emergence

Computer implementation of shape grammars with shape emergence is challenging (Chase,
2010; McKay et al., 2012; Yue & Krishnamurti, 2013). Five shape grammar implementations
that support shape emergence are considered here (Table 1). They were selected because tech-
nical details on their use of basic elements and how they support shape emergence are readily
available in the literature. The first three implementations (Krishnamurti, 1981; Chase, 1989;
Tapia, 1999) use two endpoints to describe straight lines in two dimensions (U12). The other
two (Li et al., 2009; Jowers & Earl, 2010) use circular arcs and curves, respectively, with the
latter using parametric Bézier curves or their variations to describe curves.

https://www.cambridge.org/aie
https://doi.org/10.1017/S0890060417000282
https://doi.org/10.1017/S0890060417000282
mailto:H.H.Chau@leeds.ac.uk

The goal of this research is to provide a shape grammar imple-
mentation method that is extensible to a wide range of curves
(any that can be represented as a rational Bézier curve) and
dimensionalities. Such implementations are needed if shape
grammars are to be used as generative design tools in product
development processes. For this reason, implementations that
support emergence in parametric grammars using rectilinear
shapes, for example, Grasl and Economou (2013) are not
included. Other implementations that allow emergence, such as
those based on bitmap representations (Jowers et al., 2010), are
not included because they represent shapes using discrete pixels,
essentially U02 which, again, limits their extensibility.

Shape grammar interpreter (Krishnamurti, 1981), uses straight
lines as basic elements, but lines parallel with the y-axis are trea-
ted differently to lines that are not. Chase (1989) reports further
progress on the consideration of automatic subshape recognition
of shapes consisting of straight lines in any orientation and GEdit
(Tapia, 1999) presents users with a visualization of choices of
how shape rules based on straight lines can be applied. Shape
grammar synthesizer (Chau et al., 2004; Li et al., 2009) uses
straight line segments and circular arcs in three dimensions and
Jowers and Earl (2011) used quadratic Bézier curve segments as
basic elements in two dimensions. Each of these implementations
considers computational geometry and shape computation simul-
taneously with special cases used to cater for the different
geometric combinations in the shape computation process. As a
result, extending any of these [five] implementations to cover
more shapes and/or dimensionalities would be challenging
because of the growth in the number of special cases needed,
which is in the order of an n2 problem. The approach proposed
in this paper explores the potential of lattice structures to decou-
ple steps in a shape computation from the geometrical operations
associated with specific grammars. This removes the need for the
treatment of special cases and so makes the method more exten-
sible because it transforms it into the order of an n problem. A
fuller description of the proposed approach and a detailed com-
parison with Jowers and Earl’s method are included in later sec-
tions of this paper.

In the 1999 NSF/MIT Workshop on Shape Computation, one
of the four sessions was devoted to computer implementations of
shape grammars (Gips, 1999). One discussion area considered
whether a single implementation could support both shape
emergence and parametric grammars. It was acknowledged that
significant research challenges needed to be resolved before
both could be achieved. Nearly two decades later, we can find
the most substantial grammars, especially in architectural design,
are parametric and can be used to both describe styles and gener-
ate new designs. On the other hand, Grasl and Economou (2013)

made significant headway to support shape emergence in para-
metric grammars using straight lines.

Graph grammar implementations for spatial grammars

Graph grammars are a popular approach for the analysis of styles
in architectural and other kinds of design (Rudolph, 2006; Grasl,
2012). Grasl and Economou (2013) used graphs and a meta-level
abstraction in the form of a hypergraph. Graph grammars also
offer tractable implementations of shape grammars, in that they
make use of established algorithms for graph operations and
rules. The graphs describe shapes in terms of the incidence of
shape elements. A range of incidence structures are used in imple-
mentations. Each depends on the underlying parts chosen to
represent a shape. These range from elements corresponding to
the polygons of edges in the shape to incidence between line ele-
ments. Substructures in these incidence structures can correspond
to emergent shapes. Graph type incidence structures represent
binary relations among elements. Higher dimensional relations,
where several elements may be mutually related, can be repre-
sented by hypergraphs (Berge, 1973). This correspondence is
used to good effect by Grasl and Economou (2013) in their appli-
cation of graphs and hypergraphs to enable shape emergence in
straight line shapes in U13. The graph grammar implementations
allow recognition of substructures which may correspond to
emergent shapes.

Terminology and the application of lattice theory

The approach proposed in this paper is used for each rule appli-
cation in a given shape computation process where the rule is
applied under affine transformations except shears. For this rea-
son, there are two inputs: a shape rule and an initial shape.
Lattice structures are used because of their ability to represent
all possible combinations of the collection of shape elements
that form the initial shape and could result from the application
of the rule. Each node in the lattice represents either a shape ele-
ment that is a maximal shape (and so not divisible in the shape
computation step) or an aggregation of such elements including
both sub-shapes that are parts of the initial shape description
and emergent shapes.

Terminology
A partially ordered set (poset) has a binary ordering relation that is
reflexive, anti-symmetric, and transitive conditions. The binary
relation≤ can be read as “is contained in”, “is a part of,” or “is
less than or equal to” according to its particular application
(Szász, 1963). When Hasse diagrams (Figs. 8, 12) are used to

Table 1. Basic elements of selected shape grammar implementations that support emergence

Name
Shape grammar interpreter

(Krishnamurti, 1981)
A Prolog implementation

(Chase, 1989)
GEdit (Tapia,

1999)

Shape grammar synthesizer
(Chau et al., 2004; Li et al.,

2009)
Quad interpreter

(Jowers & Earl, 2010)

Basic element
type(s)

Straight lines (non-vertical and
vertical lines have different
descriptions)

Straight lines in 2D Straight lines
in 2D

Straight lines in 3D and limited
support of circular arc

Quadratic Bézier
curve in 2D

Descriptors Endpoints Endpoints Endpoints Endpoints and control
polygons

Control polygons

Parametric
variable range

n/a n/a n/a [0,1] [0,1]

148 H.H. Chau et al.

represent posets, the ordering relation is represented by a line
adjoining two nodes that have different vertical positions, where
the lower node is a part of the upper one. Their horizontal posi-
tions are immaterial. Visual representations of lattices, in the
form of Hasse diagrams are used in this paper to illustrate how
the use of lattices can decouple computational geometry and
shape computation aspects. Hasse diagrams are not required in
actual use where it is sufficient to store and relate all elements of
a lattice symbolically.

A lattice, in our case, is a poset of shapes. Each node is a shape
in algebra Uij, which is a subshape of the initial shape for the
given rule and has a set of basic elements (Stiny, 1991). Each
basic element is a shape in its maximal representation
(Krishnamurti, 1992) and can be divided into its relatively max-
imal parts. These relatively maximal parts are a segmentation of
non-overlapping parts based on the element’s intersections with
other basic elements in the initial shape. Any two relatively max-
imal parts of a basic element have no common parts. However,
these relatively maximal parts are not in maximal representation
and can be recombined to form the original basic element.

Lattice theory
Ganter and Wille (1999) use lattices as a basis for formal concept
analysis which enables the definition of ontologies (Simons, 1987)
induced on sets of objects through their attributes. Numerous
applications are reported in the literature especially in the
Concept Lattice and Their Applications conference series (Ben
Yahia & Konecny, 2015; Huchard & Kuznetsov, 2016) which
ranges across architecture, engineering and healthcare, and in
The Shape of Things workshop series (Rovetto, 2011;
Ruiz-Montiel et al., 2011). Aggregations of objects in a formal
concept lattice [an ontology] allow parts of the aggregation, the
objects, to be recategorized using their attributes. For example,
cats, dogs, and snails may be the objects that are initially grouped
as family pets; defining them in a formal concept lattice could
allow them to be recategorized as mammals and mollusks for a
different purpose. In this paper, we use lattices in a different
way: to provide a symbolic representation of an initial shape in
the context of a shape rule in terms of their common parts.
The use of lattices in shape applications is less common but
there are examples in the literature. For example, March (1983,
1996) used lattices to describe geometric shapes, Stiny (1994,
2006) used a lattice of parts to describe continuity in a sequence
of shape rule applications and Krstic (2010, 2016) used lattices in
shape decompositions.

A lattice (Szász, 1963; Grätzer, 1971) is a poset such that the
least upper bound and the greatest lower bound are unique for
any pair of nodes. As a result, for any pair of shapes (represented
as nodes) in the lattice, there exists a unique least upper bound

and a unique greatest lower bound. This property is exploited
in the detail of the implementation when calculating, for a
given shape, its parents, children, and siblings. A lattice satisfies
idempotent, commutative, associative, and absorption laws and
is one of the fundamental abstract algebra constructs. In this
paper, the nodes in a lattice are used to represent shapes in alge-
bra U13, and the binary ordering relation ≤ is the subshape rela-
tion. In essence, we use the lattice to create a temporary set
grammar based on the initial shape and the rule that is to be
applied.

The lattices we use are complemented distributive lattices
because, for any complemented lattice, the complement of any
node always exists and is unique, and for any distributive lattice,
the join of any two nodes always exists and is unique. A comple-
mented distributive lattice is a Boolean algebra and these proper-
ties allow shape difference and sum operations to be defined in
terms of complements and joins. We exploit this as a basis for
set grammar computation of the initial shape and the shape
rule represented by the lattice.

Proposed method

The crux of the proposed method is to reduce a shape grammar to
a set grammar for each application of a rule, A→ B, by decom-
posing an initial shape, C, into a finite number of shape atoms
in the context of the left-hand side of the rule, A. Each atom is
a combination of relatively maximal [shape] parts of C. Since
shape C has a finite number of atoms, a corresponding temporary
set grammar can be used to compute the shape difference opera-
tions needed to calculate the complements C− t(A) symbolically
without considering the actual geometry of either C or A. For any
given lattice node that is a t(A), its complement C− t(A) can be
derived from the lattice.

For the purpose of describing one step of a shape computation,
which involves the application of a shape grammar rule, a tem-
porary set grammar (represented as a lattice) is derived from
the rule and the initial shape. This set grammar is only valid
for one step of a shape computation. [Shape] atoms, which consist
of a number of relatively maximal parts, are nodes in the lattice. A
node represents a shape which is composed of atoms. An atom is
a non-decomposable shape during this step of the shape compu-
tation. All possible matching t(A) and their complements C−
t(A) are also nodes in the lattice.

A four-step process (Fig. 1) is proposed for applying a shape
rule which may have many potential applications to the initial
shape. Aspects of computational geometry and shape computa-
tion are decoupled. The computational geometry of basic ele-
ments is used in steps 1 and 4, and shape computation in the
second and the third. Steps 2 and 3 use the shape algebra of

Fig. 1. Proposed method.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 149

the set grammar represented by the lattice without considering
actual geometry. This is possible because atoms of the set gram-
mar are relatively maximal to one another.

Step 1: divide basic elements into parts

First, basic elements (Fig. 2b) of an initial shape C (Fig. 2a) are
divided into relatively maximal parts (Fig. 2c) under transforma-
tions using their registration points (Krishnamurti & Earl, 1992).
These parts are regrouped to form atoms (Fig. 2d). These atoms of
C are indivisible during an application of a shape rule A→ B
under any valid transformation t (Fig. 2e–g). The left-hand side
A of the rule determines the decomposition of C.

Registration points are endpoints, control vertices, and
intersection points of basic elements of shapes A and C. Three
non-collinear registration points from each shape determine a three-
dimensional (3D) local coordinate frame that consists of an origin
and three orthogonal unit vectors. Each pair of these coordinate sys-
tems determines a candidate transformation. This transformation
denotes translation, rotation, mirror, proportional scaling or a com-
bination of them. All valid transformations that satisfy the subshape
relation t(A)≤ C are found by an exhaustive search, provided there
are at least three non-collinear registration points.

There are other approaches that require less than three regis-
tration points to define a coordinate frame. One example is
matching Stiny’s (2006, p. 261) that has two or more intersecting
lines. It uses only one registration point but requires a pre-defined
scaling factor. There is potentially an infinite number of matches
which present problems for automatic shape recognition when
one wishes to enumerate all possible matches. Another example
is two non-intersecting non-parallel lines in three dimensions
(Krishnamurti & Earl, 1992). Their shortest perpendicular dis-
tance gives two registration points and a length for an automatic
scaling calculation. Any endpoint on these lines gives the third
registration point. Details are expanded in the subsection
“Determination of curve-curve intersections”. A logical extension
to two more cases of this approach would be the use of the short-
est perpendicular distance between a straight line and a circular
arc, or two circular arcs. Each case is slightly different in the

determination of three registration points. In principle, we
could have incorporated the latter approach but did not for the
sake of simplicity in demonstrating the core idea of the proposed
method.

Each matching t(A) is then used to operate on C iteratively to
divide the basic elements of C into its parts unless the two shapes
are identical. Since both shapes t(A) and C are in maximal repre-
sentation, each basic element in t(A) is a subshape of one and
only one basic element in C. Since that basic element in t(A) is
a proper subshape of the element of C, the element of C is divided
into two or three parts: the match and its complement where the
complement could be in one part or two discrete parts depending
on the spatial relation between that basic element of t(A) and the
corresponding element in C. For example, u2 (Fig. 2c) is a sub-
shape of U (Fig. 2b), and its complement consists of two relatively
maximal parts u1 and u3 (Fig. 2c).

The next iteration looks for a match of another basic element
of t(A). It is similar to the first iteration except that some basic
elements of Cmay be already divided into their relatively maximal
parts. Each relatively maximal part of C could be further subdi-
vided if its spatial relation with another basic element in t(A)
demands it. The process is repeated until all basic elements in
this t(A) are either matched or not. Shape C is then partitioned
into a set of relatively maximal parts.

Certain combinations of these relatively maximal parts could
be either entirely a subshape of all t(A) or not at all under
every valid transformation. Each combination is regrouped as
an atom. Putting all atoms together results in a visual equivalent
of C but with a different underlying representation. In addition,
certain combinations of these atoms could produce visual equiva-
lents of each and every t(A).

Step 2: generate a lattice of shape C

The atoms from step 1 are then used, in step 2, to construct a lat-
tice structure to represent C, where each atom and its complement
are nodes. Furthermore, the shape C is the supremum of this lat-
tice, and an empty shape its infimum. More importantly, all
matching t(A) and their complements C − t(A) are nodes in the

Fig. 2. Dividing shape C into relatively maximal parts and recombine them to form atoms.

150 H.H. Chau et al.

lattice. This lattice structure representation, in effect, converts the
shape grammar into a temporary set grammar for one shape rule
application. It is important to stress that all t(A) and their com-
plements C− t(A) are represented in their relatively maximal
parts but not in maximal representation.

Step 3: select a matching left-hand side t(A)

Using the set grammar, for any given rule in the shape grammar,
a shape difference operation is used to produce an intermediate
shape, C− t(A). This is achieved by navigating the lattice to
find all t(A) under Euclidean transformations. Consequently, a
shape addition operation is used to produce a visual equivalent
of a resulting shape, [C− t(A)] + t(B). All possible resulting
shapes are presented to a user who selects one.

Step 4: compute resulting shape [C− t(A)] + t(B)

Finally, the resulting shape [C− t(A)] + t(B), containing atoms of
the intermediate shape C− t(A) plus (by shape addition) the
right-hand side shape t(B), is computed. This can then be reorga-
nized using maximal representation (Krishnamurti, 1992) for
subsequent computations.

Implementation and results

The software prototype

A software prototype (https://github.com/hhchau/Using_lattice_
in_shape_grammars/) was implemented in Perl with PDL, Set::
Scalar and Tk modules for matrix operations, set operations,
and user interface, respectively. Implementation details and find-
ings are reported below. Two case studies were used to test this
implementation. They illustrate the four-step process described
in the previous section.

Parametric curves as basic elements
Two types of basic elements in algebra U13 are used: straight
lines and circular arcs in 3D space. Given two endpoints P0 and
P2, a straight line is represented by a parametric equation
C(u) = (1− u)P0 + uP2 and is defined when the parametric vari-
able u is between 0 and 1.

A circular arc (Fig. 3) is represented by a special case of
rational quadratic Bézier curve with control vertices P0,P1,P2,
and parametric variable u∈ [0, 1]. The weights of the vertices

are w0, w1, and w2, respectively, where w0 =w2 = 1 and
w1 = cos(p/2−/P0P1P2/2). An exact representation of a circu-
lar arc is given by,

C(u) = (1− u)2P0 + 2u(1− u)w1P1 + u2P2

(1− u)2 + 2u(1− u)w1 + u2
.

The convex hull property applies. Curvature κ is defined by
|C′ × C′′|/|C′|3 where C′ and C′′ are the first and second deriva-
tives with respect to u. Radius is the reciprocal of curvature and
both are constant for a circular arc. The central angle of an arc
could be close to π radians in theory but for numerical stability
in the computation, it is limited to about 2π/3. An arc with a
wider central angle could be represented by a spline with two
or three spans. Furthermore, a complete circle could be repre-
sented by a rational quadratic periodic Bézier spline with three
spans. Straight lines could also be represented as degenerate circu-
lar arcs. Straight lines in either representation work equally well in
this implementation.

Determination of curve–curve intersections
Point inversion and point projection (Piegl & Tiller, 1997,
pp. 229–232) are used recursively on two curves to determine
the minimum distance between them. If this distance is very
small, it indicates an intersection has been found. Multiple seed
values are used to ensure both intersections are found if there
are two. Virtual intersections beyond the interval 0≤ u≤ 1 are
rejected. Given two curves C(u) and D(t), and their seed values
P = D(t0) and Q = C(u0), the Newton–Raphson method is
applied to a pair of parametric equations.

ui+1 = ui − C′(ui) · (C(ui) − P)
C′′(ui) · (C(ui) − P) + |C′(ui)|2

,

ti+1 = ti − D′(ti) · (D(ti) −Q)
D′′(ti) · (D(ti) −Q) + |D′(ti)|2

.

Iteration continues until both point coincidence and zero
cosine are satisfied, unless it is determined that there are no inter-
sections. Two zero tolerances are used, a measure of Euclidean
distance ε1 = 10−8, and a zero cosine measure ε2 = 10−11. When
the base unit of length is a meter, ε1 denotes that any distance clo-
ser than 0.01 µm is considered as coincident. Angle tolerance ε2

Fig. 3. Circular arc type basic element represented
by a parametric curve C(u) with curvature κ(u).

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 151

https://github.com/hhchau/Using_lattice_in_shape_grammars/
https://github.com/hhchau/Using_lattice_in_shape_grammars/
https://github.com/hhchau/Using_lattice_in_shape_grammars/

implies that the modeling space is limited to a 1 km cube. No
further tolerance analysis is performed. A pragmatic view was
taken that there is sufficient precision to support processes like
seeing and doing with paper and pencil, product design, and
most architectural design purposes. These tolerances are taken
from a popular solid modeling kernel, Parasolid. There is no
need to differentiate curve–curve intersections from curve–line
or line–line intersections.

Transformation matrices
This paper considers an initial shape C and a shape rule A→ B.
Automatic shape recognition relies on finding a complete list of
transformations that satisfy t(A)≤ C. Each transformation t is
represented by a 4 × 4 homogeneous matrix which is defined by
two sets of triple registration points (Fig. 4).

Shape A (and shape B) is defined within a local uvw-frame.
Three non-collinear points a1, a2, a3 from A are taken at each
time. The first point a1 is the local origin of shape A. Vector
a1a2
��� denotes the u-direction. Vector a1a3

��� is on the uv-plane.
Their normalized cross-products are used to derive the orthogo-
nal unit vectors û, v̂, ŵ of their uvw-frames. Each of them is
denoted in terms of unit vectors i, j, k from the global xyz-frame.

û = a1a2
���
|a1a2���|

ŵ = û× a1a3
���

|û× a1a3
���|

v̂ = ŵ× û

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

.

Likewise, shape C is defined in a local abc-frame. Its origin and
three orthogonal unit vectors, â, b̂, ĉ, are computed from three
non-collinear registration points c4, c5, c6 from C. Translation
from the local origin a1 of shapes A and B to the global origin

is given by T−1
A . Rotation from the local uvw-frame to align

with the global xyz-frame is given by T−1
uvw. If the mirror of a

rule is used, matrix

M =
1 0
0 1

0 0
0 0

0 0
0 0

−1 0
0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦;

otherwise matrix M is an identity matrix. The proportional
scaling factor s is used to define a scaling matrix S, where
s = |a1a2���|/|c4c5���|. Rotation from the global xyz-frame to align
with the local abc-frame is given by Aabc. Translation from the
global origin to the local origin of shape C is given by TC.
Hence, a transformation, t, is represented by the following 4 × 4
homogeneous matrix T (Faux & Pratt, 1979, pp. 70–78).

T = TCAabcSMA−1
uvwT

−1
A .

Computational geometry in steps 1 and 4

Step 1 divides an initial shape C into atoms according to matching
transformations that satisfy t(A)≤ C. The input to this step is
shape C, which is expected to be in maximal representation. If
this condition cannot be ascertained, it is necessary to test and
to combine elements if required to ensure all basic elements are
maximal to one another (Krishnamurti, 1980). By applying one
valid transformation at a time, each basic element is divided
into two or three relatively maximal parts or remains unchanged.
Each part has the same original carrier curve. The original curve is
defined with a parametric variable in the domain [0, 1]. Relatively
maximal parts partition this into two or three non-overlapping
domains joining end-to-end. Each atom consists of one or more

Fig. 4. A transformation t represented by a 4 × 4
homogeneous matrix T.

Fig. 5. Triangles grammar (Stiny, 1994).

152 H.H. Chau et al.

relatively maximal parts. Output to this step is a list of symbolic
references, each of which refers to an atom.

Step 4 applies a chosen shape rule under transformation t
(A)→ t(B). The input to this step is a set grammar with the
rule A→ B and a chosen transformation t. This results in an inter-
mediate shape C− t(A) in atoms and t(B) in one atom. The shape
sum is computed from these two shapes. The resulting shape
[C− t(A)] + t(B) is obtained after converting it into a maximal
representation using computational geometry techniques such
as joining multiple curve spans into a spline and knot insertion
(Piegl & Tiller, 1997, pp. 141–161). Hence, one shape rule appli-
cation (Figs. 5b, 9b) of a shape grammar is accomplished. Both
steps 1 and 4 are computational geometry operations.

Shape computation with set grammar in steps 2 and 3

Step 2 generates a lattice (Figs. 8, 12). The input to this step is a
set of atoms where each atom is referred to with a symbolic refer-
ence and only this symbolic reference is used in this step without
any reference to its actual geometry. In this step, shape C is
denoted by a set of all atoms, and is the supremum of the lattice.

In step 3, a human user selects one from all valid transforma-
tions. There are two possible ways to group and to present all
possible transformation to a user. It could be either a list of all
possible subshape matches (Figs. 6a, 10a) or a list of visual equiva-
lents of all possible resulting shapes (Figs. 6b, 10b). The output of
this step is a chosen transformation that applies to a shape rule.
However, the presented shapes are in atomic form and are only
visually equivalent to their maximally represented counterparts.

Two case studies
Two examples, the triangles grammar (Stiny, 1994) and the trefoil
grammar (Jowers & Earl, 2010), are used to show how steps 2 and
3 are performed in practice.

The triangles grammar. One possible shape rule application
(Fig. 5b) of a shape rule (Fig. 5a) is shown. Its U13 basic elements
are straight lines. Five matches (Fig. 6a) produce five different

resulting shapes [C− t(A)] + t(B) (Fig. 6b). In fact, each match
could be produced from 12 different transformations because of
symmetry but, in this grammar, all 12 produce the same resulting
shape. In step 2, shape C is decomposed into six atoms (Fig. 7)
and a complemented distributive lattice (Fig. 8) is generated
that enumerates all possible matches of t(A) and their comple-
ments, C− t(A). The triangles lattice (Fig. 8) has a height of 6
and 22 nodes in total.

Because of the symmetries of the left- and right-hand shapes
of rule 1, there are multiple transformations that produce the
same t(B) but, in general, this is not the case. Here we consider
all potential shape rule applications to the same equilateral
triangle in the initial shape. Consider rule 2, which has the
same left-hand shape as rule 1. Its right-hand shape does not
have any symmetry and it is a solid in U33 (Fig. 13a). The right-
hand side of Rule 2 is an extrusion of the right-hand equilateral
triangle of rule 1 plus an additional geometry to break the sym-
metries. Rule 2 could be applied to the initial shape with three dif-
ferent transformations from the front (Fig. 13b). Since the rule
operates in a 3D space, three more shape rule applications
could be made from the back (Fig. 13c). Since the mirror of a
rule is also a valid rule, there are six more potential shape rule
applications (Fig. 13d). There are altogether 12 valid transforma-
tions since the left-hand shape of rule 2 is identical to that of rule
1. With rule 1, all 12 resulting shapes t(B) are identical. However,
with rule 2, all 12 t(B) are different. Hence, all the 12 resulting
shapes [C− t(A)] + t(B) are different.

Decomposition of shape C (Fig. 7) in connection with rule 1 is
the basis for constructing the lattice (Fig. 8). The way in which
this decomposition is made is the same as for the trefoil grammar
and described in the next section. In the current implementation,
step 3 is carried out by a user who manually selects from the pos-
sible rule applications identified in step 2.

Trefoil grammar. A similar sequence is shown for the trefoil
grammar (Fig. 9). Its U13 basic elements are circular arcs. Three
matches (Fig. 10a) produce six different resulting shapes [C−
t(A)] + t(B) (Fig. 10b). In fact, each match could be produced
from eight different transformations. The shape C has six atoms
(Fig. 11). The complemented distributive lattice generated in
step 2 (Fig. 12) enumerates all possible matches of t(A) and
their complements C− t(A). The trefoil lattice (Fig. 12) has a
height of 4 and 20 nodes.

The lattice for this grammar differs from the previous one,
even though both have six atoms. This is because the left-hand

Fig. 7. Decomposition of the initial shape C of the shape grammar of triangles into six
atoms.

Fig. 6. Different shape computation of the shape grammar of triangles.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 153

side shapes A of the triangles grammar consist of two atoms in
some cases or three atoms in others, whereas, the left-hand side
shape A of the trefoil grammar consists of three atoms for each
matching t(A). This shows how the generated lattice structure var-
ies according to the initial shape, and the left-hand side of a shape
rule.

Similar to rules 1 and 2, the relationship between rules 3 and 4
are used demonstrate the effect of symmetries of the left- and
right-hand shapes, or the lack of them. Here we consider all
potential shape rule applications to the same leaf in the initial
shape. Rule 4 (Fig. 14a) could be applied twice from the front
(Fig. 14b) and twice from the back (Fig. 14c). With the mirrored
rule, there are four further valid transformations (Fig. 14d). With
rule 3, there are eight valid transformations for one leaf of the
initial shape and there are two different t(B). However, with
rule 4, there are eight different t(B) and, therefore, eight different
resulting shapes.

As with the triangles grammar, in the current implementation,
step 3 is carried out by a user who manually selects from the pos-
sible rule applications identified in step 2.

A note on 2D versus 3D shape rules
Both the triangles grammar and the trefoil grammar were origi-
nally defined in U12 algebra. By translating them into U13 algebra,
we are able to show the effect of symmetries of the left-hand shape
A and right-hand shape B. There are more matches in three
dimensions that do not exist in two dimensions. Figures 13, 14
show the effect of lack of symmetry of the right-hand shape B.
With Rule 1 (Fig. 5a), for every one of the five matched triangles,
there is one distinct right-hand shape (Fig. 6b) whereas with rule
2, there are 12 (Fig. 13b–d). With rule 3 (Fig. 9a), for each one of
the three matched leaves, there are two distinct right-hand shapes
(Fig. 10b) whereas with rule 4, there are eight (Fig. 14b–d).

Fig. 8. Lattice of the initial shape C of the triangles grammar decomposed by Rule 1.

Fig. 9. Trefoil grammar.

154 H.H. Chau et al.

From basic elements to relatively maximal parts to atoms
The process of set grammar computation with the triangles grammar
and that of the trefoil grammar are similar, but the basic elements used
in trefoil grammar are more complex. Details of the trefoil grammar
computation are described here as an example. The same general
principle of decomposition applies to both grammars.

The initial shape (Fig. 2a) of the trefoil grammar in maximal
representation has three basic elements C = {U, T, V} (Fig. 2b).
Superimposing each of the three matches of t(A) onto C in
turn, each basic element is divided into three relatively maximal
parts. Hence, C = {{u1, u2, u3}, {t4, t5, t6}, {v7, v8, v9}} has nine rel-
atively maximal parts (Fig. 2c). The parts of C are relatively max-
imal to one another but C is not in maximal representation
anymore. Each of the three subshape matches can be produced
from eight different transformations. Each set of eight transfor-
mations produces the same t(A). Some combinations of these rel-
atively maximal parts form partitions. All parts of a partition are
either all subshapes of t(A) or C− t(A), but not both and not par-
tially in or out. Each partition of relatively maximal parts is called
an atom. The analog of an atom is useful here. An atom could
consist of more than one relatively maximal part, but it is the
smallest indivisible unit in the context of a set grammar derived
from a shape grammar under all possible t(A) matches in an
initial shape C. Shape C of this set grammar has six atoms
(Fig. 2d), which constitute shape C = {u2, v8, t5, {t6, v9}, {u3, t4},
{u1, v7}}. We can rename these atoms as C = {a, b, c, d, e, f}
(Fig. 2d) which correspond to the previous partitions. There are
24 transformations, t1, t2, …, t24, that satisfy t(A)≤ C. We select
three (Fig. 2e–g) transformations that have three different t(A).
They are t3(A) = {b, c, d}, t7(A) = {a, b, f}, t11(A) = {a, c, e}.

Among the eight transformations that would produce a t(A)
that is the same as t3(A), four of them would have the same
t(B), and the other four have a different t(B). There are altogether
six possible t(B) as shown in Figure 10b, which are t3(B), t7(B),
t11(B), t15(B), t19(B), t23(B). Among all 24 valid transformations,
there are six distinct set grammar computations using symbolic
references to relatively maximal parts (Table 2). Three matches
of t(A)≤ C are shown in Figure 10a. The six resulting shapes
[C− t(A)] + t(B) are shown in Figure 10b.

Relatively maximal parts of C are recombined to form atoms
using all matching transformations. These are computed from
the algorithm shown below.

Fig. 10. Different shape computations of the trefoil grammar.

Fig. 11. Decomposition of the initial shape C of the trefoil grammar into six atoms.

ONE partition_of_C ← relatively_maximal_parts_of_C
FOR EACH transformation
basic_elements_of_t(A) ← transformation OF basic_elements_of_A
FOR EACH partition_of_C

set_intersect ← partition_of_C ∩ basic_elements_of_t(A)
set_difference ← partition_of_C \ basic_elements_of_t(A)
THIS partition_of_C ← set_intersect
NEW partition_of_C ← set_difference UNLESS EMPTY SET

END FOR EACH
END FOR EACH
EACH atom_of_C ← EACH partition_of_C
Then, each t(A) is rerepresented using the symbolic references of the atoms of C.
FOR EACH transformation
basic_elements_of_t(A) ← transformation OF basic_elements_of_A
FOR EACH atom_of_C

basic_elements_of_an_atom ← ELEMENTS OF atom_of_C
atoms_of_t(A) ← EMPTY SET
FOREACH basic_elements_of_atom

IF ALL basic_elements_of_an_atom IS IN basic_elements_of_t(A)
atoms_of_t(A) ← atoms_of_t(A) + atom_of_C

END IF
END FOR EACH

END FOR EACH
END FOR EACH

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 155

Discussion

Implementation details related to the representation of basic ele-
ments, their division into relatively maximal parts, and the use of
control vertices to describe circular arcs are considered in the first
three parts of this section. The final two sections compare this
implementation with that of the quad interpreter (QI) and con-
sider the benefits of using a generalized description of U13 basic
elements.

Representation of basic elements

Two different types of basic element (parametric curve) were used
in this implementation: straight line, and circular arc up to a sub-
tending angle of 2π/3. Both are represented by a parametric equa-
tion which is defined with its parametric variable for the interval
[0,1]. A straight line is a constant speed curve with respect to its
parametric variable. A circular arc type basic element is repre-
sented by a quadratic rational Bézier curve. If the maximum sub-
tending angle is limited to 2π/3, its speed deviates by 19% at the
most. A circular arc type basic element could be degenerated into

a straight line type if the middle control vertex is coincident with
the line adjoining the first and third vertices, and/or the weight of
the second vertex is set to zero. A circular arc with a wider
subtending angle is represented by a Bézier spline with two or
three spans. In terms of finding intersection(s) of any two basic
elements, the type of U13 basic element is immaterial. Exactly
the same routine is used since all of them are in maximal repre-
sentation and defined when their parametric value is within the
interval [0, 1].

Dividing a basic element into its relatively maximal parts

Under transformations and subshape matches, a basic element is
divided into a number of relatively maximal parts. With a sub-
shape match under a particular transformation, a breaking
point can be found on a basic element (and parametric curve).
With repeated application, multiple breaking points can be
made on a basic element. Figure 7 shows each of the three
outer straight line type basic elements divided into two relatively
maximal parts whereas the three inner straight lines remain
unchanged. The original straight line basic element is defined

Fig. 12. Lattice of the initial shape C of the trefoil grammar decomposed by rule 3.

156 H.H. Chau et al.

with a parametric variable in the interval [0, 1] whereas, the two
relatively maximal parts are defined in the intervals of [0, 0.5] and
[0.5, 1] using the same carrier curve/line. It is advantageous not to
change the carrier curve but simply specifying different ranges of
a parametric variable. This is significantly different from previous
implementations. It is similar to the use of collinear maximal lines
as a descriptor or a carrier line used by Krishnamurti and Earl
(1992). But instead of spelling out the coordinates of the end-
points of lines/curves, a single value of a parametric variable
used. In turn, by applying a parametric value onto curves, the
3D coordinates of the required point can be determined.

Figures 11, 2c shows each of the three circular arcs divided into
three relatively maximal parts. The use of parametric curves in this
work is essentially the same as that of Jowers and Earl (2010). The
main difference is that we do not require new control polygons for
any new relatively maximal parts; instead, we vary the ranges of the
parametric variable on the same carrier line, curve or spline.
Figure 2c shows each of the three circular arc type basic elements
divided into three relatively maximal parts. The ranges of their
parametric variables are [0, 0.41], [0.41, 0.59], and [0.59, 1].

Control vertices of a rational quadratic Bézier curve

A quadratic Bézier curve (Fig. 3) in general has three control ver-
tices, P0,P1,P2. In this paper, circular arcs are represented by a

special case of a rational quadratic Bézier curve. The middle con-
trol vertex lies on the perpendicular divider of the line P0P2

adjoining the first and last control vertices, where their weights
are set to unity, w0 =w2 = 1. The weight of the middle vertex is
set to a value such that this rational curve is an exact representa-
tion of a circular arc, that is, w1 = cos(p/2−/P0P1P2/2).
Degeneration of a circular arc to form a straight line is allowed
by positioning the middle vertex to lie on the midpoint of P0P2

and/or setting the weight of the middle vertex to zero, that is,
w1 = 0. This is effectively degree elevation (Piegl & Tiller, 1997,
pp. 188–212) that allows algorithms designed for rational quad-
ratic curves to operate correctly on non-rational linear curves.

Comparison between QI and the proposed approach

QI (Jowers & Earl, 2010) is the most advanced shape grammar
implementation that uses curves as basic elements. In this section,
we compare and contrast QI and the proposed approach
(Table 3), especially by considering the calculation of the inter-
mediate shape C− t(A) and its implications on the ease of imple-
mentation. When the subshape relation t(A)≤ C is satisfied, two
ways of embedding could occur between a basic element of t(A)
and a corresponding basic element in C. Firstly, if a basic element
of t(A) is co-equal to an element of C, it remains unchanged.
Secondly, if a basic element of t(A) is a proper subshape of C,

Fig. 13. Twelve matching transformations t and 12 corresponding resulting shapes t(B) for shape rule 2: A→ B.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 157

it is divided into two or three relatively maximal parts depending
exactly how the two basic elements are embedded.

When QI divides a basic element into two or three relatively
maximal parts, each part is defined by a new control polygon. De
Castejljau’s algorithm is used to compute the new control ver-
tices. Each relatively maximal part is defined when the para-
metric variable is within the interval [0, 1]. In this paper,
when a basic element is divided into its relatively maximal
parts, all parts are represented by the same parametric curve

of the original basic element, but they are defined by discrete
and complementary intervals, for example, [0, a], [a, b], and
[b, 1], where a, b are the parametric values where the basic ele-
ment splits. There are several implications of these two
approaches.

Firstly, in QI a quadratic Bézier curve is represented by a para-
metric equation, B2(t) = t2a+ tb+ c, where a, b, c are defined in
terms of the control vertices b0, b1, b2, to represent a curve of a
conic section. In this paper, we used the rational form of another

Fig. 14. Eight matching transformations t and eight corre-
sponding resulting shapes t(B) for shape rule 4: A→ B.

Table 2. Shape computation in a set grammar using symbolic references

C t(A) C− t(A) [C− t(A)] + t(B)

C = {a, b, c, d, e, f} t3(A) = t15(A) = {b, c, d} {a, e, f} {a, e, f} + t3(B)

{a, e, f} + t15(B)

C = {a, b, c, d, e, f} t7(A) = t19(A) = {a, b, f} {c, d, e} {c, d, e} + t7(B)

{c, d, e} + t19(B)

C = {a, b, c, d, e, f} t11(A) = t23(A) = {a, c, e} {b, d, f} {b, d, f} + t11(B)

{b, d, f} + t23(B)

158 H.H. Chau et al.

parametric equation C(u) = (1− u)2P0 + 2u(1− u)P1 + u2P2,
where P0,P1,P2 are the control vertices, as an exact representation
of a circular arc.

Secondly, in QI, the embedding relation of two basic ele-
ments, one from t(A) and the other from C, is determined by
intrinsic comparison of curvatures. The curvature of each basic
element is represented by an explicit function with four coeffi-
cients A, B, C, D for each curve. In turn, these coefficients are
defined by non-linear equations in terms of a, b and ultimately

b0, b1, b2. Two curvature functions are related by parameters λ,
μ, ν which are defined in terms of coefficients A1, B1, C1, D1,
A2, B2, C2, D2. In contrast to the proposed approach, the embed-
ding relation is determined by projecting three points from the
element of t(A) onto the element of C. If the minimum distances
between all three point projections are less than a zero measure
ε1 = 10−8, the embedding relation is deemed to be satisfied With
one or both ends of the element from t(A) acting as the splitting
points for the element from C. This could result in one, two, or

Table 3. Comparison between QI and the proposed approach

Name Quad Interpreter (Jowers & Earl, 2010) The proposed implementation

A basic element in C B2(t) where t∈ [0, 1] C(u) where u∈ [0, 1]

A basic element in t(A) B1(u) where u∈ [0, 1] D(t) where t∈ [0, 1]

Control vertices of the
basic element in C

b0,b1,b2 P0,P1,P2

Parametric equation of the
basic element

B2(t) = [t2, t, 1][a,b, c]T C(u) = (1− u)2P0 + 2u(1− u)w1P1 + u2P2

(1− u)2 + 2u(1− u)w1 + u2

where a = b0 − 2b1 + b2 = [ax , ay , 0]
T,

b = 2(b1 − b0) = [bx , by , 0]
T, c = b0 = [cx , cy , 0]

T
where w1 = cos(p/2−/P0P1P2/2) and P0 = [x0, y0, z0]

T,
P1 = [x1, y1, z1]

T, P2 = [x2, y2, z2]
T

Curve type Quadratic Bézier curve (could be one of any conic
sections)

A special case of quadratic rational Bézier curve as an exact
representation of a circular arc

Degenerated straight line Require to identify if a curve has been degenerated
into a straight, different algorithms are for each case

Same algorithm operates on circular arc and degenerated
straight line (i.e., κ = 0) when P1 coincides with the straight line
P0P2 and/or w1 = 0

Curvature Variable along t Constant for all u
curvature κ = 1/r where r is radius

Torsion Zero for planar Zero for planar

Underlying mechanism to
determine subshape
relationship

Explicit comparison of two curvature functions κ1(t),
κ2[u(t)] which are related by parameters λ, μ, ν

Implicit comparison using point projection using three points
from D(t) onto curve C(u)

Determine if t(A)≤ C is
satisfied

Parameters λ, μ, ν are defined by non-linear equations
in terms of A1, B1, C1, D1, A2, B2, C2, D2, which are in turn
defined by non-linear equations involving a1,b1, a2,b2

Check if distance between points from two curves are less than
a zero measure ε1 = 10

−8, thus identifying coincidence of three
points from D(t) against curve C(u)
|C(a) − D(0)| , 11
|C(u) − D(0.5)| , 11
|C(b) − D(1)| , 11
where a, b are constants

Accuracy Require further analysis |C(u) − D(t)| , 11 is guaranteed for all u∈ [a, b] and t∈ [0, 1]
when
C(a),D(0) and
C(b),D(1) coincide

Uniqueness of
representation of basic
element

Intervals [t0, t1] and [t1, t0] are required to consider as
two different cases

No need to differentiate arcs ̂P0P1P2 and ̂P2P1P0 as the order of
three-point projections is immaterial

Total number of cases to
consider for embedding
relationship between t(A)
and C

8 1

Number of cases to
consider for intersections

3 1

Splitting C into two/three
relatively maximal parts

Produce two relatively parts by splitting at t = 0.33 Produce three relatively parts by splitting at u = 0.41, 0.59

New Bézier curve x1 defined by b0,b
1
0,b

2
0 Original C(u) where u∈ [0, 0.41]

New Bézier curve x2 defined by b2
0,b

1
1,b2 Same C(u) where u∈ [0.41, 0.59]

New control vertices b1
0,b

2
0,b

1
1 are calculated using the

de Castejljau algorithm. Another iteration will produce
a third relatively maximal parts of C

Same C(u) where u∈ [0.59, 1]

All three relatively maximal parts are specified by the same
curve but with different ranges of parametric variable U

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 159

three relatively maximal parts of C. The proposed approach is
simpler in terms of dividing a basic element into its part for
later use. The original basic elements and its relatively maximal
parts share the same carrier curves but with different parameter
ranges.

Thirdly, QI considers Bézier curves as distinct from straight
lines, so degeneration of a Bézier curve into a straight is not per-
mitted. For this reason, curve–curve, curve–line, and line–line
intersections are considered as three different cases. Numerical
stability when a curvature is close to zero was not investigated
but it is likely to be necessary to impose a minimum curvature
limit to avoid division by numbers close to zero. As a result,
two different algorithms are required: one for Bézier curves and
the other one for straight lines. In this paper, a degenerate straight
line can be represented as a Bézier curve (as outlined in the sub-
section “Control vertices of a rational quadratic Bézier curve”).
With the proposed approach, whether a basic element is a true
curve or a straight line is immaterial. They can be dealt with by
the same algorithm equally well and, whatever the actual geome-
try, only one algorithm is necessary for intersections between any
two basic elements of any type. Fourthly, for a particular embed-
ding relation, QI is required to determine, which one among all
eight possible ways, one basic element is embedded within
another one. The ordering of the parametric variables of each
curve is important. In this paper, a coincidence test of three points
on a curve is needed for testing the embedding relation. The order
of testing each of the three points is immaterial. The direction of
the parametric variable is immaterial too.

Finally, the most important aspect of the proposed imple-
mentation is the use of atoms. QI repeats the above operation
for each matching transformation while in this work, a set of
atoms and shapes derived from them form a lattice. Each match-
ing t(A), among other shapes, is already a node in this lattice.

Benefits of a generalized description of U13 basic elements

In concluding the discussion of implementations for general
(Bézier) curves and circular arcs, we note that the example of the
trefoil grammar is a special case for the application of the general
curve grammar. However, the circular arc implementation concen-
trates on addressing the specific geometrical elements arising in the
trefoil configurations. In design applications of shape grammars,
there is a tension between creating tools specific to geometrical ele-
ments of interest and more general tools applicable across a wider
range of geometric elements. This paper has demonstrated that
limiting geometrical elements can focus attention on the details
of where and how emergence occurs as well as the necessary
shape computations to implement it in a design context. In par-
ticular, the paper indicates that a separation between geometric cal-
culation and shape computation assists the development of usable
and extensible tools for shape grammar implementation.

Conclusions and future work

The ideas presented in this paper came from research on the use of
hypercube lattices to support the configuration of bills of materials
(BOMs) in engineering product development processes (Kodama
et al., 2016). Important benefits of using lattices for the configura-
tion of BOMs are that they provide: (i) a self-consistent computa-
tional space within which BoMs can be manipulated and (ii)
connectivity to the source design description that allows users to
move back and forth between BOMs and other forms of design

description. The type of relationship between parts in a BOM
(part–whole relationships) is the same as that between shapes
and sub-shapes in shape grammars. This led to us exploring a
potential application to shape grammar implementation.

The significance of the proposed approach for software imple-
mentation of shape grammars is that computational geometry and
shape computation are decoupled. A temporary set grammar is gen-
erated using an initial shape and a shape rule and represented as a
complemented distributive lattice. All occurrences of the left-hand
side of the rule in the initial shape are nodes in the lattice. For this rea-
son, shape computation can be performed without considering the
actual geometries of the shapes involved. Decoupling the geometry
and grammar has resulted in two desirable outcomes. Firstly, shape
algebra operations – shape difference and shape sum – are equivalent
to complements and joins of nodes in the lattice. This allows the
results of shape algebra operations to be derived from the lattice rather
than calculated. Secondly, an extension to include more types of
shape element will not change the shape computational aspect of a
shape grammar implementation. A new set grammar is generated
for each rule application in a given shape computation process.

A medium-term objective of the presented approach is to allow
shape grammar to be used in domains that require freeform geo-
metries, for example, consumer products. In a wider context,
shape emergence and calculation with shapes have been studied
by scholars from different disciplines (Wittgenstein, 1956; Stiny,
1982; Tversky, 2013). Minsky’s (1986, p. 209) enquiry on visual
ambiguity and Stiny’s (2006; p. 136) different views on the Apple
Macintosh logo examples are examples of multiple interpretations.
This research brings closer software tools that realize the potential
of calculation with shapes for theoretical studies as well as laying a
foundation for practical tools in various spatial design contexts.

Acknowledgments. This research is supported by the UK Engineering and
Physical Sciences Research Council (EPSRC), under grant number EP/
N005694/1, “Embedding design structures in engineering information”. We
are also grateful to the anonymous reviewers for their constructive comments.

References

Ben Yahia S and Konecny J (eds) (2015) The Twelfth International
Conference on Concept Lattices and Their Applications (CLA 2015),
Clermont-Ferrand, France, 13–16 October 2015.

Berge C (1973) Graphs and Hypergraphs. Amsterdam: North-Holland.
Chase SC (1989) Shape and shape grammars: from mathematical model to

computer implementation. Environment and Planning B: Planning and
Design 16(2), 215–242.

Chase SC (2010) Shape grammar implementations: the last 36 years. Shape
grammar implementation: from theory to useable software. In Design
Computing and Cognition (DCC’10) Workshop, Stuttgart, 11 July 2010.

Chau HH, Chen X, McKay A and de Pennington A (2004) Evaluation of a
3D shape grammar implementation. In Gero JS (ed.). Design Computing
and Cognition ’04. Dordrecht, The Netherlands: Kluwer, pp. 357–376.

Faux ID and Pratt MJ (1979) Computational Geometry for Design and
Manufacture. Chichester, UK: Ellis Horwood.

Ganter B and Wille R (1999) Formal Concept Analysis: Mathematical
Foundations. Berlin: Springer.

Gips J (1999) Computer implementations of shape grammars. In NSF/MIT
Workshop on Shape Computation, Cambridge, MA, April 1999.

Grasl T (2012) Transformational palladians. Environment and Planning B:
Planning and Design 39(1), 83–95.

Grasl T and Economou A (2013) From topologies to shapes: parametric shape
grammars implemented by graphs. Environment and Planning B: Planning
and Design 40(5), 905–922.

Grätzer G (1971) Lattice Theory: First Concepts and Distributive Lattices.
San Francisco: W. H. Freeman and Company.

160 H.H. Chau et al.

Huchard M and Kuznetsov SO (eds) (2016) The Thirteen International
Conference on Concept Lattices and Their Applications (CLA 2016),
Moscow, Russia, 18–22 July 2016.

Jowers I and Earl CF (2010) The construction of curved shapes. Environment
and Planning B: Planning and Design 37(1), 42–58.

Jowers I and Earl CF (2011) Implementation of curved shape grammars.
Environment and Planning B: Planning and Design 38(4), 616–635.

Jowers I, Hogg DC, McKay A, Chau HH and de Pennington A (2010) Shape
detection with vision: implementing shape grammars in conceptual design.
Research in Engineering Design 21(4), 235–247.

Kodama T, Kunii TL and Seki Y (2016) A case study of homotopic BOM
information management using the cellular data system. In IEEE Congress
on Evolutionary Computation (CEC), 24–29 July 2016. pp. 4501–4507.

Krishnamurti R (1980) The arithmetic of shapes. Environment and Planning
B: Planning and Design 7(4), 463–484.

Krishnamurti R (1981) The construction of shapes. Environment and
Planning B: Planning and Design 8(1), 5–40.

Krishnamurti R (1992) The maximal representation of shapes. Environment
and Planning B: Planning and Design 19(3), 267–288.

Krishnamurti R and Earl CF (1992) Shape recognition in three dimensions.
Environment and Planning B: Planning and Design 19(5), 585–603.

Krstic D (2010) Approximating shapes with hierarchies and topologies.
Artificial Intelligence for Engineering Design, Analysis & Manufacturing,
24(2), 259–276.

Krstic D (2016). From shape computations to shape decompositions. In
Gero JS (ed.). Design Computing and Cognition ‘16. Switzerland: Springer,
pp. 263–281.

Li AI-K, Chau HH, Chen L and Wang Y (2009) A prototype system for devel-
oping two- and three-dimensional shape grammars. In Chang T-W,
Champion E, Chien S-F and Chiou S-C (eds). CAADRIA 2009: Proceedings
of the 14th International Conference on Computer-Aided Architecture
Design Research in Asia, Touliu, Taiwan. Taiwan: Department of Digital
Media Design, National Yunlin University of Science & Technology, pp.
717–726.

March L (1983) Design in a universe of chance. Environment and Planning B:
Planning and Design 10(4), 471–484.

March L (1996) The smallest interesting world? Environment and Planning B:
Planning and Design 23(2), 133–142.

McKay A, Chase S, Shea K and Chau HH (2012) Spatial grammar implemen-
tation: from theory to useable software. Artificial Intelligence for Engineering
Design, Analysis & Manufacturing 26(2), 143–159.

Minsky M (1986) The Society of Mind. New York: Simon & Schuster.
Piegl L and Tiller W (1997) The NURBS Book, 2nd edn, Berlin: Springer.
Rovetto RJ (2011) The shape of shapes: an ontological exploration. In Kutz O,

Hastings J, Bhatt M and Borgo S (eds). SHAPE 1.0: The Shape of Things,
Paper 9, Karlsruhe, Germany, 27 September 2011. CEUR-WS Volume 812.

Rudolph S (2006) A semantic validation scheme for graph-based engineering
design grammars. In Gero JS (ed.). Design Computing and Cogntion ’06.
Dordrecht, The Netherlands: Springer, pp. 541–560.

Ruiz-Montiel M, Mandow L, Pérez-de-la-Cruz J-P and Gavilanes J (2011).
Shapes, grammars, constraints and policies. In Kutz O, Hastings J,
Bhatt M and Borgo S (eds). SHAPE 1.0: The Shape of Things, Paper 4,
Karlsruhe, Germany, 27 September 2011. CEUR-WS Volume 812.

Simons P (1987) Part: A Study in Ontology. Oxford, UK: Oxford University
Press.

Stiny G (1982) Spatial relations and grammars. Environment and Planning B:
Planning and Design 9(1), 113–114.

Stiny G (1991) The algebras of design. Research in Engineering Design 2(3),
171–181.

Stiny G (1994) Shape rules: closure, continuity, and emergence. Environment
and Planning B: Planning and Design 21, s49–s78.

Stiny G (2006) Shape: Talking about Seeing and Doing. Cambridge, MA: MIT
Press.

Strobbe T, Pauwels P, Verstraeten R, De Meyer R and Van Campenhout J
(2015) Toward a visual approach in the exploration of shape grammars.
Artificial Intelligence for Engineering Design, Analysis & Manufacturing,
29(4), 503–512.

Szász G (1963) Introduction to Lattice Theory. Budapest: The Publishing
House of the Hungarian Academy of Sciences.

Tapia MA (1999) A visual implementation of a shape grammar system.
Environment and Planning B: Planning and Design 26(1), 59–73.

Tversky B (2013) Lines, shapes, and meaning. In Kutz O, Bhatt M, Borgo S
and Santos P (eds). SHAPE 2.0: The Shape of Things. pp. 41–45.
Workshop held at the World Congress and School on Universal Logic,
Rio de Janerio, Brazil, April 3–4, 2013. CEUR-WS Volume 1007.

Wittgenstein L (1956) Remarks on the Foundations of Mathematics. Oxford,
UK: Basil Blackwell.

Yue K and Krishnamurti R (2013) Tractable shape grammars. Environment
and Planning B: Planning and Design 40(4), 576–594.

Hau Hing Chau is a teaching fellow in the School of Mechanical Engineering
at the University of Leeds. He obtained his PhD in 2002 from the University
of Leeds on the preservation of brand identity in engineering design using a
grammatical approach. Since then, his research has focused on shape com-
putation and the implementation of 3D shape grammar-based design sys-
tems for use in the consumer product development processes.

Alison McKay is a Professor of Design Systems in the School of Mechanical
Engineering at the University of Leeds. Her research focus on three kinds
of design system: shape computation and information systems used to create
designs and develop products, and the socio-technical systems within which
designers work and in which their designs are used. Her research is posi-
tioned within the context of stage-gate processes that typify current industry
practice and aims to facilitate improved modes of working through the
exploitation of digital technology and to establish design methods, and
tools to support systematic evaluation of design alternatives at decision gates.

Christopher Earl has been a Professor of Engineering Design at the Open
University since 2000. He obtained his PhD in design from the Open
University and works closely with a wide range of research groups in design
and shape computation worldwide. Prior to 2000, he held positions at
Newcastle University, affiliated with the Engineering Design Centre in the
Faculty of Engineering, where his research concentrated on the design andman-
ufacture processes for large, complex, engineering to order products, particu-
larly their planning and scheduling under uncertainty. Dr Earl’s main
research interests are in generative design, models of design processes, and com-
parisons across design domains.

Amar Kumar Behera holds BTech, MTech, and minor degrees from Indian
Institute of Technology, Kharagpur; MS from the University of Illinois,
Urbana-Champaign; and PhD from the Katholieke Universiteit Leuven. He
joined Mphasis an HP company in 2008 and later worked as an Assistant
Professor at Birla Institute of Technology and Science, Pilani, and a research
fellow at the University of Nottingham. Since 2015, he has been with the
University of Leeds, where he is a research fellow. His main areas of research
interest are digital manufacturing and design informatics. Dr Behera is an
associate fellow of the UK Higher Education Academy and has published 35
peer-reviewed articles.

Alan de PenningtonOBE PhD held the Chair of Computer Aided Engineering
at the University of Leeds from 1984 to 2005. When he retired, an Emeritus
Professorship was conferred on him. His research interests include modeling
in the design process, product data engineering, shape grammars and shape
computation, engineering enterprise integration, and business processes. He
was the Director of the Keyworth Institute from 1994 to 2004, which was a
multidisciplinary research institute which enabled collaboration between the
Business School and Engineering. This led to ongoing research in supply
chain innovation.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 161

	Exploiting lattice structures in shape grammar implementations
	Introduction
	Background and related works
	Outline placeholder
	Terminology
	Lattice theory

	Proposed method
	Implementation and results
	Outline placeholder
	Parametric curves as basic elements
	Determination of curve--curve intersections
	Transformation matrices
	Two case studies
	The triangles grammar
	Trefoil grammar
	A note on 2D versus 3D shape rules
	From basic elements to relatively maximal parts to atoms

	Discussion
	Conclusions and future work
	Acknowledgments
	References

