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Abstract: A novel metric named Gamut Volume Index (GVI) is proposed for evaluating the
colour preference of lighting. This metric is based on the absolutet gaome of optimized
colour samplesThe optimal colour set of the proposed metric was obtained by optimizng th
weighted average correlation between the metric predictions and the subjectivefoathgs
psychophysical studies. The performance of 20 typical colour metricala@snvestigated,
which included colour difference based metrics, gamut based metrics, mieaseq metrics

as well as combined metrics. It was found that the proposed GVI outperftimecisting
counterparts, especially for the conditions where correlated colour temperatignesidif
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1. Introduction

Since 1965, the CIE Colour Rendering Index Ra (CRI) [1] has beed as the standard for
assessing the color rendering quality of a light source. Limitatiorssicdf a measure have
been extensively reportg¢d-6] and it is widely accepted that a full description of light quality
actually includes many different aspects, such as colour fidelity §lijrainess [7], vividness
[4], colour discrimination [8] and colour preference.[9]

Among the above aspects, colour preference is undoubtedly considenaeeramaportant
dimension, since for general conditions people always pay muchiaitdot the visual
appreciation of illuminated scenes.

To date, many psychophysical experiments have been conductetievithrt of finding a
metric to accurately predict colour preference [4-6, 9-13]. However, as sigtedany



researchers [3, 7, 14], it is very difficult to reach a strong concluston a single study
because of the lack of statistical robustness. That is, a metric derived fimgle experiment
with a limited number of light sources and test objects may previteind description for the
original work, but it should not be expected to have good applicabilitythier lighting
conditions. For instance, Khanh et al. recently conducted a series ofopkysital
experiments in this topic [4-6]. Their aim was to develop a lineeoiywbined metric of
existing measures which could better correspond to the visual appreciation bothie
observers. However, it was found that their fitted metrics always vaiiedhg accumulation
of their research data, which highlighted the fact that the conclusion of a sindie may
depend on the original data and thus have questionable external validity.a&safarbelieve,
that is a crucial reason why no single metric has been agreed to peefesitiate colour
preference.

In 2011, Smet et al. contributed an excellent work [3] which assessgubtformance of
several typical colour rendition metrics by a meta-analysis of the Spearoreglation
coefficients between the metric predictions and the subjective ratings of oatalition with
regard to several psychophysical studies. Since a meta-analysis could estenateeth
strength of association among several related works and simultaneousygt dor the
sampling error or within-study variance [15], the conclusicaweh by such an approach is
much more convincing.

However, in that work, Smet et al. mainly focused on scenariapmbximately the same
CCTs (metameric lighting scenarios) while ignoring the scenario#ffefetht CCTs (multi-
CCT scenarios). As we believe, unlike colour fidelity, colour preferencelghnot be
restricted by a certain CCT, since in many cases people actually want &e chdavorite
light in irrespective of this measure [9, 13, 16-21]. In other woadmetric that performs well
for metameric lighting scenarios may perform poorly for twQICT scenarios, since it
depends on a fixed reference light source and is only valid undeinc€CT values.

This study, therefore, is intended to develop a robust metric whidtl petform well in
predicting colour preference, not only in metameric lighting scendraslso in multi-CCT
scenarios. The meta-analysis method, which was adopted by Smefast edaluating the
performance of existing metrics, was followed here to develop such suraeaith a novel
optimizing protocal Following a brief summary of existing colour quality metrics and the
collected psychophysical studies, the details of the proposed GVI are described. The
performance of such a metric is comprehensively compared to ti2& existing measures
and the final results show that our proposed metric provides thedxstmance, both for
metameric lighting and multi-CCT conditions. Meanwhile, the rationale of thalatitm
procedures of the GVI is also discussed in detail

2. Colour quality metrics

In this study, twenty typical colour rendition metrics were involweldich included the CIE
Color Rendering Index (CRI) [1], Gamut Area Index (GAI) [22lIll Spectrum Colour Index
(FSCI) [23], Colour Quality Scale (CQS: Qa, Qf, Qp, Qg) [24], FeelinG@aftrast Index
(FCI) [25], Colour Discrimination Index (CDI) [26], Cone Surfakeea (CSA) [27], Color
Preference Index (CPI) [28], CRI-CAMO2UCS [29], CRI2012][3BS TM-30 (Rf and Rg)
[31], Memory Colour Rendering Index (MCRI) [32], mean cheoshift of CQS AC¥*)
advocated by Khanh et al. [4-6], fhe arithmgtic mean Jalue of GAICGRI[3, 33] as well as
two combined metrics named Colour Quality Index (respectively denot&@D#k [4] and
CQI2 [5)]).

Note that it is not the intent of this paper to describe the details of the alsowi®med
measures, readers are referred to the cited references as well as Houser’s review [2] for further
information. It is also worth noting that some of these metrics wereefibechtely proposed
for assessing colour preference. However, the correlation analysis béhssermetrics and
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colour preference can be found in the literature [3-7, 33], sinc@mepmetric for colour
preference is what is actually needed.

In Houser’s review, these metrics were approximately divided into three groups according
to their colour rendition intents: colour fidelity, colour preference and calmarimination
[2]. As pointed out by Houser, such classifications are not entiregpémtient. For instance,
FCl is a colour preference metric while CDI is a colour discrimination métdeever, both
of these indices are based on a gamut area calculation. In this s$texbfpote, we have
grouped the 20 measures according to their calculation methods, sincppwsezlithat such
methods would have stronger correlation with the final prediction perfamenthan that of
their colour rendition intents.

2.1 Colour difference based metrics

The colour difference based metrics (CRI [1], CRI-CAM0O2UCS [29], Qaafip Qf [24],
CRI2012 [30], Rf [31], CPI [28] an& C* [4-6]) are exclusively relative measures and most
were intended for the characterization of colour fidelity. According to thesics, the
colour difference (or chroma shift) between a set of colour sampties the test source and a
reference illuminant of the same CCT are calculated in a certain color spaealiyen
speaking, the later measures in this group are mainly updated verbtbesCIE CRI, with an
improved chromatic adaptation transform, a more uniform color spaceelasasvusing
different colour samples.

2.2 Relative gamut based metrics

The relative gamut based metrics (Qg [24] and Rg [31]) compute the relatiug grea of a
set of colour samples under a test light source in a defined colour spaceallies of such
metrics are normalized by the gamut area of the same colours illuminateddierence
illuminant of the same CCT.

2.3 Absolute gamut based metrics

Unlike relative gamut based metrics, the absolute gamut based metrics (GAI [23R6LDI
CSA [27] and FCI [25]) do not rely on a reference illuminant Hirectly calculate the
absolute gamut of the colour samples under a test light source. Igralis, CSA is not
reliant upon a reference illuminant while GAI, CDI and FCI are with constfatence
illuminant.

2.4 Memory based metric

The memory based metric MCRI [32] uses colour memory as its referBased on
empirically derived similarity functions, such a measure evaluates the celudition of a
light source by comparing the rendered colours of certain familiar tsbjectheir actual
memory colours.

2.5 Combined metrics

The combined metrics are the linear combination of a set of current medweasancept of
combining GAI and CRI was firstly raised by Rea et al. [34ilevthe arithmetit mean vallie
between the two measures were used by Smet [3] and Jost-B3d&3jrmhe Colour Quality
Indices (respectively denoted as CQI1 [4] and CQI2 [5]) were propgs&thdnh et al., the
CQI1 is a linear combination of CCT and MCRI while CQI2 is a lineamnlgpation of CCT,
MCRI andaC*.

2.6 Other metric

In addition to the above metrics, there is another metric, FSCI [23], witiffexedt
calculation method. It is an absolute measure quantifying the differetwedn the Spectral
Power Distributions (SPD) of a test source and that of an equal-esprglyum.
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As discussed above, the 20 metrics involved in this study emplégratif calculation
methods. However, apart from FSCI, the calculation of the metrics aatiuselies on a
defined set of colour samples. It is widely acknowledged that an afgisopet of samples is
of great importance for metric performance [11] and it shoul@rcthe entire hue circle in a
defined colour space [32, 35]. Meanwhile, there are also other worikstind that certain
colours (a saturated red, for instance) seem to be more importandttiens [7, 13, 14].
Therefore, it may be concluded that the colour samples used in those medmsurel span
the entire hue circle but with some weighting applied. What is more, as poirtday ou
previous researchers [3, 24], the use of highly-saturated colowyrsimpaove the metric
performance. As we believe, such an assumption needs to be furtbstigated, since the
colour samples adopted in existing measures are not saturated enowgin.Khowledge, no
past studies have comprehensively investigated these issues.

In addition, it should be mentioned that there are several complicated methodsssuch
multi-measure approaches and graphical metrics [14, 24, 31, 36]n&tlcbds may actually
exhibit better performance in colour preference evaluation, since they @rowidh more
useful information than a single measure. However, such measuresyareltihe scope of
this study due to the fact that they are complicated and overwhelmingmaive users in
general applications. They are perhaps more suitable for industrial applications.

3. Psychophysical studies

In this work, the experimental data of eight psychophysical sudi&re collected, which
totally contained 16 metameric lighting scenarios and 16 multi-CCT sosndithe data
included the SPDs of the light sources as well as the corresponding subjaiitigs of the
loosely-defined visual appreciation (Preferendgtractiveness and Pleasantness). For
detailed information of these studies, the readers are referred to the cited artieles. Th
following introduction provides an overview of the key points of estaly.

3.1 Wei et al. (metameric lighting, 2014)

Eighty-seven participants compared the colour preference of two 308btkSources using a
6-point rating method [12]. The paired comparison experiment wagnmgpted within two

sideby-side rooms which contained the same coloured objects and still life @mants. The
illumination level at the object location was approximately 250 Ix.

3.2 Royer et al. (metameric lighting, 2016)

Twenty-eight observers were asked to rate the colour quality of twenty500 K light
sources in a room filled with several coloured objects [14]. Theiitlation is approximately
210 Ix but not perfectly uniform. An 8-point rating method wagdu$o quantify the
observers’ judgments for the experimental light sources in terms of several quality descriptors:
Normal-Shiff Saturated-Dull and Like-Dislike. In this study, the data for the Likelikis
scale were used.

3.3 Jost-Boissard et al. (metameric lighting, 2009)

In 2009, Jost-Boissard et al. investigated the color renderingiibfahd vegetables in terms
of Attractiveness Naturalness and Suitability [7]. Six 3050 K light sources and sb039
light sources were used to illuminate four groups of fruit and vegetéglésgreen, yellow
and multicoloured). A 3050 K halogen light and a 3950 K fluorescentwght respectively
adopted as references. The illumination level was approximately 230 Ix. & parl0
observers participated in the paired comparison experiment and they were agkeas®the
appropriate lighting conditions according to their subjective judgmerthidrstudy, the data
regarding Attractiveness were used. We believe that the experimental objemset@xdent
influence the colour preference of lighting [11], so we discussedctour preference of
different groups of fruit and vegetables separately. Therefore, #ntighcenarios (3050 K:



red, green, yellow, multicoloured; 3950 K: red, green, yellow, multiceld) were obtained
from this work.

3.4 Jost-Boissard et al. (metameric lighting, 2014)

The second work of Jost-Boissard et al. was quite similar B3l]eral aspects of perceived
colour quality were investigated by a paired comparison approach riwittxed reference)
from the following aspects: NaturalnesSolourfulness Visual Appreciation and Colour
Difference. 45 observers assessed 9 light sources at 3000 K while &tevbsassessed 8
light sources at 4000 K, with an illumination level approximately 220 IxnRios study, the
data of 4 scenarios (3000 K: fruits and vegetables, Color Checker cHa®tK40ruits and
vegetables, Color Checker chart) regarding to Visual Appreciation wereeaxhtain

3.5 Szabd et al. (metameric lighting, 2016)

The work of Szab6 et al. investigated the human preference of hortiadigirough real-
scene (kitchen and living room) experiments [21]. 97 obser@&rsgjoung and 28 elderly,
were involved. For the kitchen (CCT=4000 K) and living room (CCT=3)8cenarios, two
groups of different light sources were used and the illuminatidheofwo scenes were both
set to 350 Ix. For each group of lights, there were 5 SPDs withstarunFClI values and 5
SPDs with constant FCI values. The subjects were asked to evaluate the coltianrend
those testing lights in term of Pleasantnddgidness and Naturalness. Since this work is
intended to investigate the performance of different metrics in colour prefezgaletion,
only the SPDs with inconstant FCI values together with the correspowidimg ratings on
Pleasantness were used. To be consistent with other studies, we only ddepdeta of
young observers, although the data of the elderly observers werssiquilee. To sum up, 2
lighting scenarios were obtained from this work: kitchen-inconstant-BQtg and living
room-inconstant-FCI-young.

3.6 Liu et al. (multi-CCT, 2017)

In previous studies, we had implemented a series of psychophysicalnepsriwith 14
different objects, which included 4 groups of fruit and vegetabfedas with the work of
Jost-Boissard et al., 5 Chinese traditional calligraphies written on papersdifférent
colours, 4 pieces of artwork with different sizes and colour featares a bunch of
multicoloured flowers [37]. Certain SPDs with uniformly sampled C@es ranging from
2500 K to 6500 K were generated using a colour tunable LED while therilition level
was exclusively set to 200 Ix. The number of observers in eadimfigfcenario ranged from
20 to 60 and they were asked to quantify the colour preference usipgiat fating method
or a 5-level ranking method. From these studies, we collected the datdigifiting scenarios
in total.

3.7 Narendran et al. (multi-CCT, 2002)

In the work of Narendran et al., the authors invited 30 observerartizgipate in a paired
comparison experiment as well as @dit rating experiment [17]. Seven light sources with
the same illuminance level (approximately 200 Ix) but different CCTgjifrgrfrom 2600 K

to 5000 K) were employed to illuminate a combination of colour objetts.stibjects were
asked to respond with their visual preference. As the authors stagexgstiits of the two
visual experiments are closely matched. Therefore, in this studyttmmigata of the 7-point
rating experiment were adopted.

3.8 Xu et al. (multi-CCT, 2017)

With a forced choice approach, twelve observers were asked to quaritifyettoeived colour
quality for a printed photograph which was illuminated by severatreifit light sources [9].
Thel independefariablels of such a study were 12 CCTs (ranging from 2000 K0@000
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K), 3 illuminance levels (350 Ix, 500 Ix and 1000 Ix) and 2 assuhgiting scenarios
(working and relaxing). THe dependgnt varigbles were the scale vdlties observers in
terms of Preference and Comfortable. Since light sources with av@a{i€ higher than
10,000 K are rare in everyday use, we omitted the data for 25,000 KGfh@00 K. In

addition, since the working scenario was highly related to human mgogérformance [38]
rather that colour preference, the data regarding that issue was also ighugdef SPDs
together with the average preference ratings under 3 illuminance levelsadapted. Note
that it would be more plausible to use the data of 350 Ix to be consistentihér studies, but
the average preference ratings of the 3 illuminance conditions werelyhéaten available to
us. Fortunately, as pointed out by those authors, the preference estinwtions 3

illuminance levels were quite consistent.

4. Gamut Volume Index

The proposed Gamut Volume Index was developed based on the followingptieasm
Firstly, as mentioned above, the colour samples used in a metric should esgantirih hue
circle but should not be distributed uniformly, since different colegions may have a
different influence on the observers’ judgments. Secondly, adopting highly-saturated samples
would improve the metric performance. As pointed out in preyiagpers, a light source may
exhibit good performance for non-saturated samples while perfoorlypwith saturated
samples [3], especially for RGB (red-green-blue) white LEDs withngtnoeaks in their
spectra [24]. However, the reverse was found not to be the casdf@2lly, it seems that it
is more plausible to quantify the colour gamut with a volume-based algatidmman area-
based algorithm, since a 3D solid reveals much more information tharpka2®in the same
colour space. Fourthly, as discussed above, since colour prefehende 5ot be restricted by
a certain CCT, an absolute measure independent of a reference is needed.

In our previous work [39], a large scale spectral dataset has béenwith 8560
uniformly distributed colour samples. In this study, we unifgrdivided this dataset into 18
sub-groups according to the dominant wavelength [40] of eachurcoloder the D50/2
illuminant/observer condition, which resulted in 15 subgroups withitip@sdominant
wavelengths (around 447 samples in each subgroup) and ®spbgrith negative dominant
wavelengths (around 614 samples in each subgroup). We thetedelee most saturated
colour sample from each group by excitation purity [40]. Since danti wavelength and
excitation purity respectively correspond to hue and saturation in CIEiGetoy, we finally
got 18 saturated colours which uniformly covered the entire hue circle.

Figure 1 indicates the gamut comparison between the 18 saturated samplabesnd
sample sets of several typical metrics in CIE 1931 xy chromati@tyram (a) and the a*b*
plane of CIELAB colour space (b). It is obvious that the gamuth& sample set is
remarkably larger than that of the others, especially in the greeyeliod regions.

The newly-built sample set was then weighted by choosing 14 sampleth&awerall 18
samples. Mathematically speaking, there w&fe=3060combinations in total. For a certain
combination of 14 samples and a certain lighting scenario, a Speaomalation coefficient
was calculatedfrom the subjective rating scores for the experimental light soamdshe
corresponding gamut volumes computed in CIELAB colour space with aexohull
algorithm [41]. Since there were 32 lighting scenarios as mentionece,aBavSpearman
correlation coefficients were obtained for each sample combination. Ther&f066€),
combinations resulted in 3060*32 coefficients.

Afterward, we calculated a weighted average Spearman correlation coefficient for each
sample combination and obtained 3060 weighted average coefficients. Fheallyl samples
which corresponded to the maximum value of the 3060 weightedage/eBpearman
correlation coefficients were defined as the optimized colour samples.
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Fig. 1. Gamut comparison of colour sample sets used bgreliff metrics in (a) the xy

chromaticity diagram and (b) the a*b* plane under B50/2 illuminant/observer condition. The
circles represent the samples adopted by GVI while thareg represent the omitted samples
The lines denote the gamut boundary derived fa@onvex hull algorithm.

The method for computing the weighted average correlation coeffiEiemas proposed

by Hunter and Schmidt [15]:

= YN YN

where I, and N, respectively represent the individual correlation coefficient and the
number of observers for each lighting scenarios, K is the nunfltbe scenarios (K=32 in

this study).

1)

The circles and squares in Fig.1 denote the samples adopted and omittedpitmtiz=d
sample set respectively. As can be seen from the figure, three cahoptes in blue and
purple (including red-purple) regions were omitted, while in other regimfg an orange

colour was omitted.

In light of the above, the final equation for the GVI could be summarized as:

GM =5*V

optset

&)

WhereVoptsetis the gamut volume of the optimized 14 colour samples under the test light

source in CIELAB colour space (calculatedégonvex hull algorithm [41]) and the constant
5 is used to rescale the metric to an approximate 0-100 range.

5. Results of metric performance analysis

Table 1 summarizes the performance of different measures in terims weighted average
Spearman correlation coefficient between metric predictions and preference rdtings o

individual studies. The p-value, which denotes the statistical significanté, n_f=0(no
correlation), was computed following the equations in the work of Smetl. 8]. The
variance of the population correlatimf indicaes the difference among the correlation
coefficients of the 32 scenarios with regardat@ertain metric and it was calculated by
subtracting the sampling error variane@ from the variance of the sample correlatigh
using the following equations as proposed by Hunter and Schraidt [1
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where I, and N, respectively represent the individual correlation coefficient and the

number of observers for each lighting scenarios, K is the nunflibe scenarios (K=32 in
this study), r is the weighted average correlation coefficient describeBqgr(1) and N
denotes the average value Nf.

Table 1. The Weighted Average Spear man Correlation Coefficient between Metric Predictionsand Preference
Ratings of Individual Studies

Colour quality metameric lighting Multi-CCT Overall performance
metric T p o—i N p 0-;27 N p 0-;27
CRI -0.15 0.079 0.19 -0.30  0.000 0.07 -0.22 0.000 0.14
CAMO02UCS 0.03 0389 0.16 -0.30 0.000 0.06 -0.12  0.037 0.14
Qa (9.0.3) 0.02 0416 0.19 -0.30 0.000 0.07 -0.13  0.038 0.16
Qp (9.0.3) 0.60 0.000 0.35 -0.29 0.000 0.06 0.20 0.039 041
Qf (9.0.3) 0.17 0.033 0.14 -0.30 0.000 0.06 -0.04 0.271 0.16
CRI2012 0.24 0.018 0.21 -0.08 0.149 0.10 0.09 0.109 0.19
Rf 0.02 0.440 0.17 -0.20 0.005 0.10 -0.08 0.111 0.14
CPI 0.08 0251 0.23 -0.30  0.000 0.07 -0.09 0.115 0.19
AC* 0.67 0.000 0.06 -0.63 0.000 0.10 0.08 0.251 048
Qg (7.4) 0.54 0.000 0.35 -0.30 0.000 0.06 0.16 0.073 0.39
Rg 0.85 0.000 0.01 -0.28  0.000 0.07 0.34 0.000 0.34
GAl 0.73  0.000 0.05 0.31 0.000 0.06 0.54 0.000 0.10
CDI 0.73  0.000 0.05 0.31 0.000 0.06 0.54 0.000 0.10
CSA 0.71 0.000 0.06 0.31 0.000 0.06 0.53 0.000 0.10
FCI(CAMO2) 0.79  0.000 0.04 -0.30 0.000 0.07 0.30 0.002 0.34
FSCI 0.33 0.017 0.39 0.39 0.000 0.07 0.36 0.000 0.24
MCRI 0.73  0.000 0.03 0.10 0.100 0.10 045 0.000 0.16
GAI-CRI 0.65 0.000 0.06 045 0.000 0.07 0.56 0.000 0.07
CQl1 0.72  0.000 0.03 0.31 0.000 0.06 0.54 0.000 0.08
CQI2 0.67 0.000 0.06 -0.49 0.000 0.09 0.15 0.092 0.40
GVI 0.85 0.000 0.01 0.81 0.000 0.04 0.83 0.000 0.03

Figure 2 and Figure 3 further demonstrate the metric performance with riegaath
lighting scenario. The values of the correlation coefficients are denoted by ,c@our
instance, red for very high correlation while blue for very low correlation
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Fig.2. Weighted average Spearman correlation coeffiddetween metrics prediction and visual
scaling of colour preference of each metameric lighting scenario. (‘F & V’ is short for ‘fruit and
vegetables’)
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Fig.3. Weighted average Spearman correlation coeffiddetween metrics prediction and visual
scaling of colour preference of each multi-CCT scenario.

6. Discussion

As can be seen from Table 1, the colour difference based metrics perfovorgdin most of
the lighting scenarios while CRI had the worst performance among allehsunes. The only
two exceptions were Qp adC* for metameric lighting scenarios, which exhibited relatively
better correlations. It seems that updating the traditional CRI with strohgerigs and
models only has very limited effect in improving the metric perforoe of preference
prediction. Such conditions should be attributed to the general intent of cdffewerte
metrics, which is to evaluate colour fidelity, rather than characterize colour preference
According to such measures, only the light sources similar to cestaimlard references
receive high scores. However, as pointed out by a previous studydB], ahe many light
sources that perform better than the standard references. Simitetlieareason for their
poor performance in multi-CCT scenarios is that the values df sweasures at different
CCTs are not comparable, since they are correlated to different referermesgaidr 37].



Compared to the colour difference based metrics, the gamut based metricalygener
exhibited better performance. This finding corroborates the thought thatrquieference is
closely related to chroma (gamut) enhancement [12, 13, 21,3P4In3fact, for metameric
lighting scenarios, the sound performance of the above mentionemblwe difference based
measures (Qp andC*) was also due to their rewarding of chroma enhancement. In addition,
because of the limitation of the relative measures as mentioned above, the twe galatiu
based measures, Qg and Rg performed poorly in multi-CCT scenHrigsalso worth
mentioning that even for the absolute gamut measures, the metoonpente for the multi-
CCT scenarios was not good enough. Such a drawback maiplpdss attributed to the
distributions of the colours samples, as well as to the methods of camtheéigamut area.

The memory based MCRI performed well in metameric lighting scenatippdorly in
multi-CCT scenarios. A possible explanation is that when CCTs diffdredarger deviations
among the errors of chromatic adaption transforms impaired the mefiocnpance. That is,
for metameric lighting scenarios, the errors of chromatic adaption trensfond almost no
impact on the metric computation, since they were approximately consisi@never, in
multi-CCT scendos where those errors significantly differed (especially in highlyratad
regions), their influence became much stronger and could not bedgriewrthermore, note
that in some related works [3, 33] the computation of MCRI was adjasteatding to tk
colour distributions of the experimental objects (i.e., a blue or purplplsamas omitted in
the case where there was no blue and purple objects in the experimemtdfiistment was
refused in this study since it was intended to find a simple aivérsal measure for general
applications.

Compared to other metrics, the arithmptic mean of GAI and CRI-@) showed a
balanced performance between metameric lighting scenafie®.65) and multi-CCT {
=0.45) scenarios, although it was still not good enough. Since CQlllnisar combination of
CCT and MCRI, in metameric lighting scenarios this measure exhilitédrsperformance (
r =0.72) to that of MCRI § =0.73), while for multi-CCT scenarios a better performance (
=0.31) was achieved. Note that although such combined metrics actuallyétpghe metric
performance, their results were also not good enough. In additiohpas $n Table 1, the
performance of CQI2 is obviously worse than that of CQI1pitesof the fact that CQI2 is
based on a larger experimental dataset [4, 5].

It is clear from Table 1 that the proposed GVI exhibits significantly bettdorpgance,
not only for metameric lighting scenariog €0.85, p<0.00001), but also for multi-CCT
scenarios f =0.81, p<0.00001). In additiprihe lowest value of variance of population
correlation also validated this conclusion.

Figure 2 and Figure3 straightforwardly confirm the conclusion from Table 1 and reveal
more detailed information about the metric performance in each individughggbcenario.
As can be seen from these two figures, the performance of theregastually varies with
the lighting scenarios, which was consistent with the work ofettial. [11] and highlighted
the necessity of discussing each scenario separately. In adilitboquite clear that these two
figures could be considered as good evidence for the drawback of thegexistrics as well
as the superiority of GVI, especially for the multi-CCT scenarios.

Note that although the proposed GVI exhibited excellent performance in preference
predictions, it is however clear from Fig. 2 and Fig. 3 that there weréngtilbxceptions: the
orange calligraphy scenario of Liu et al. and the experiment of Xal. gftor the orange
calligraphy scenario, the very low correlation (r=0.15) was attributed to thehfaicthe
average ratings of three of the experimental lights (4500 K, B5®@d 6500 K) were almost
the same. In that condition, it is very likely that the true correlation betweemetric
prediction and preference scaling was masked by the system erroisstémce, the intra-
observer variability) of the experiment. As for the scenario of Xu etta. relatively low
correlation (r=0.45) was due to theemsgaturation effect of two lights (8100 K and 9700 K).
As stated by current researchers, excessive saturated colours also impairedcpréf®ien
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Among the studies described in Section 3, the GVI values of most of ite Were located in
the range o¥0-100, while the values for the 8100 K and 9700 K lights of Xu eteméwabove
110.

As shown in Fig. 3, several measures exhibited the same correlati@cdoiain scenario
(e.g., for the ‘Liu red F & V’ scenario, the 5 colour difference based metrics, CRI, CRI-
CAMO2UCS, Qa, Qp and Qf shared the same correlation coefficient). Such aocditiol be
ascribed to the dominant influence of light on colour preference undér@@&I scenarios
[37]. Since those measures employed very similar calculation metirodsulti-CCT
scenarios they may result in a consistent result in terms of rank @vtien calculating the
rank-order based Spearman correlation coefficient, therefore, a similar result would be
obtained.

To further validate the sample selection method of GVI, the performarmtbesfforms of
GVI with different colour sample set was investigated. In Table 2, GRIHL4, GVI-MCRI-
10, GVI-CQS-15, GVI-FCI-4, GVI-CRI2012-17, GVI-GAI-8, GVMES-99, GVI-MUN-1269
respectively denotes the GVI values which were computed with the colour sarh@es,
MCRI, CQS, FCI, CRI2021, GAIl, IES method, as well as the Quittegaphical metric
(Munsell samples) [36], where the number indicates the amount efrcgdmples in each set.
GVI-MUN-14 represents the GVI values with the 14 optimized samples defrivedthe
1269 Munsell dataset by the methods described in Section 4. Similarlyp@\4, GVI-
p07-14, GVIp06-14 and GVIp0514 respectively refer to the GVI values with the 14
optimized samples obtained from the purity-restricted subset of the abenvigoned large
scale dataset with the same optimizing approach. For instance, p08 repitesesbset in
which the excitation purities of the colour samples were no larger than O0&8lyF@&VI-
uniform-18 denotes the performance of our 18 saturated colour samples withoolldiaéniy
weighting implementation and GVI-proposed-14 is our final propossakure.

From Table 2, several conclusions could be drawteast in the conditions of this study
Firstly, the absolute gamut-volume based metrics indeed have advantagescakfipared to
Table 1, it is clear to see that such measures outperform the 20gexigirics. Secondly,
adopting highly-saturated samples may actually improve the metric parfoem For
instance, GVI-MUN-14 and GVI-proposed-14 were computed accotdiagsimilar approach
but with a different original dataset and it is quite clear that GVI-proposenuth4a larger
sample gamut performed better. Sacstatement was further validated by the case of GVI-
p0814, GVIp07-14, GVI-p06-14 and GVp05-14, where a measure corresponding to a more
saturated dataset also exhibited better performance. In our opiniomsthitsmnay possibly be
due to the fact that when saturated samples were used, the divertlily sblid shapes
regarding to different sample combinations (under different lights¢asedd correspondingly
which raised the possibilityf obtaining a better GVI. Besides, the MCCT scenarios seem
to be more sensitive to the gamut of the test colour samples. Forrexeasth large sample
gamut (i.e., GVI-proposed-14 and GVI-CRI2012-17), the perfoomais good while for
measures with small gamut (i.e., GVI-GAI-8 and GVI-MCRI-10), the perémce is poor.
Thirdly, a weighted distribution of colour samples may also benefit #teiarperformance.
The comparison between GVI-uniform-18 and GVI-proposed-14 @md gxample. Although
the samples of GVI-uniform-18 were distributed more unifornthe GVI-proposed-4
performed better, which proved the former assumption that the cadowles used in a
metric should span the entire hue circle but should not necessarilytideutisl uniformly. In
addition, as for the two measures with medium-sized gamut, GVI-CQS-1&hECI-4,
their good performance may be partially attributed to the reasonable distribfittmen colour
samples. Fourthly, the increase of the number of colour samples proadsmnefit to the
metric performance, as shown in the cases of (E&99 and GVI-MUN41269.



Table 2. The Weighted Average Spear man Correlation Coefficient between Metric Predictionsand Preference
Ratings of Individual Studies Regarding to Other Forms of GVI with Different Sample Set

GVI with different metameric lighting Multi-CCT Overall performance
colour samples F p O—i F p 0'5 F p O-i
GVI-CRI-14 0.81 0.000 0.04 0.26 0.000 0.04 0.56 0.000 0.09
GVI-MCRI-10 0.81 0.000 0.02 -0.06 0.233 0.02 0.41 0.000 0.08
GVI-CQS-15 0.73 0.000 0.03 0.64 0.000 0.05 0.69 0.000 0.04
GVI-FCI-4 0.79 0.000 0.02 0.66 0.000 0.04 0.73  0.000 0.04
GVI-CRI201247  0.79 0.000 0.01 0.67 0.000 0.08 0.73  0.000 0.05
GVI-GAI-8 0.79 0.000 0.03 -0.27 0.131 0.03 0.30 0.017 0.08
GVI-IES-99 0.78 0.000 0.01 0.26 0.000 0.04 0.54 0.000 0.07
GVI-MUN-1269 0.79 0.000 0.01 0.26 0.000 0.04 0.55 0.000 0.08
GVI-MUN-14 0.75 0.000 0.04 0.65 0.000 0.04 0.71  0.000 0.04
GVI-p0814 0.79 0.000 0.03 0.76  0.000 0.02 0.78  0.000 0.02
GVI-p07-14 0.81 0.000 0.03 0.75 0.000 0.02 0.77  0.000 0.03
GVI-p06-14 0.81 0.000 0.01 0.53 0.000 0.06 0.68  0.000 0.06
GVI-p0514 0.79 0.000 0.03 0.35 0.000 0.04 0.59  0.000 0.08
GVI-uniform-18 0.67 0.000 0.02 0.74 0.000 0.08 0.71  0.000 0.05
GVl-proposedi4  0.85 0.000 0.01 0.81 0.000 0.04 0.83  0.000 0.03

Meanwhile, it should be noted that when we built the GVI metric, apart flam t
optimized 14 colour samples, there are many other sample combinations traomnbole
3060 combinations which could achieve good metric performance. freffunvestigate the
colour distributions of those optimal combinations, the best 100 samplgrations with the
largest 100 values of weighted average Spearman correlation coefficient were selected.
Among those combinations, the worst overall average correlatisn0.77. Fig. 4 indicates
the colour sample distributions of the best 100 sample combinatimsinstance, the
ordinate of the #1 colour (dark blue) is 60, which means such arools selected 60 times
among the besit00combinations.
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Fig.4. The colour distributions of the best 100 samplakinations. The Y-axis represents the
frequency of a sample (denoted by the colour of #rgdelected in those combinations.

It can be seen from Fig. 4 that the colours in the pure blue, red-panglelue-purple
regions (i.e., #1, #16, #18) were less important. Such a findiates well with the recent
work of Royer et al. [14], which highlighted the importance of mdnge and green regions
while de-emphasized the influence of blue and purple. As we believea suctdition may be



due to the fact that the blue and purple objects do not commonly appaar daily lives,
especially in natural scenes.

7. Conclusions

In this study, an absolute gamut volume based metric (GVI) was devdbaged on meta-
analysis and optimized colour samples. The performance of sucheasura was
comprehensively compared to 20 typical colour quality metrics, especialig iform of the
weighted average correlation between metric predictions and preference ratirg)s
psychophysical studies (32 scenarios). The final results showed hthgiroposed GVI
exhibited the best performance for characterizing colour preference, nofoomhetameric
lighting scenarios, but also for multi-CCT scenarios. It was foilwad employing certain
highly-saturated but non-uniformly distributed samples could actuaprove the metric
performance while the concept of an absolute gamut-volume metric alsadvastage in
colour preference prediction.

There should be no doubt that the proposed GVI, which was dervadafmeta-analysis
based on several existing studies, is much more convincing compared riedsares of
single studies. However, such a measure should not be expected tanpedt in all
situations, since the collected data is still a limiting factor. To further weptbe metric
performance, a larger set of experimental data should be accumulatedatédyiuas stated
above, there are many other colour sample combinations providing excalknic
performance, which highlights the potential of further optimization. Bes#iless this study
simultaneously optimized the metric performance of both metameric lightianarios and
multi-CCT scenarios, certdin compron]ises had to be made. If, hovieseme applications
only one kind of these scenarios needs to be discussed, a new nitbthetter performance
could be easily obtained by a similar procedure.

Another suggestion for future work concerns setting a limit forarding the chroma
enhancement in the proposed measure. As mentioned above, excessivedyed samples
also impair colour preference. Therefore, such an over-saturated &ffetd be penalized in
an update version of this measure. To investigate such a topic, psysicapistudies with
over-saturated light sources should be implemented.

The experimental data of this current research are available upontreques
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