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Abstract: A novel metric named Gamut Volume Index (GVI) is proposed for evaluating the 
colour preference of lighting. This metric is based on the absolute gamut volume of optimized 
colour samples. The optimal colour set of the proposed metric was obtained by optimizing the 
weighted average correlation between the metric predictions and the subjective ratings for 8 
psychophysical studies. The performance of 20 typical colour metrics was also investigated, 
which included colour difference based metrics, gamut based metrics, memory based metrics 
as well as combined metrics. It was found that the proposed GVI outperformed the existing 
counterparts, especially for the conditions where correlated colour temperatures differed.  
© 2017 Optical Society of America 
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1. Introduction 

Since 1965, the CIE Colour Rendering Index Ra (CRI) [1] has been used as the standard for 
assessing the color rendering quality of a light source. Limitations of such a measure have 
been extensively reported [2-6] and it is widely accepted that a full description of light quality 
actually includes many different aspects, such as colour fidelity [1], naturalness [7], vividness 
[4], colour discrimination [8] and colour preference [9].  

Among the above aspects, colour preference is undoubtedly considered as a very important 
dimension, since for general conditions people always pay much attention to the visual 
appreciation of illuminated scenes.  

To date, many psychophysical experiments have been conducted with the aim of finding a 
metric to accurately predict colour preference [4-6, 9-13]. However, as stated by many 



 

researchers [3, 7, 14], it is very difficult to reach a strong conclusion from a single study 
because of the lack of statistical robustness. That is, a metric derived from a single experiment 
with a limited number of light sources and test objects may provide a sound description for the 
original work, but it should not be expected to have good applicability to other lighting 
conditions. For instance, Khanh et al. recently conducted a series of psychophysical 
experiments in this topic [4-6]. Their aim was to develop a linearly combined metric of 
existing measures which could better correspond to the visual appreciation shown by the 
observers. However, it was found that their fitted metrics always varied with the accumulation 
of their research data, which highlighted the fact that the conclusion of a single study may 
depend on the original data and thus have questionable external validity. As far as we believe, 
that is a crucial reason why no single metric has been agreed to perfectly evaluate colour 
preference.  

In 2011, Smet et al. contributed an excellent work [3] which assessed the performance of 
several typical colour rendition metrics by a meta-analysis of the Spearman correlation 
coefficients between the metric predictions and the subjective ratings of colour rendition with 
regard to several psychophysical studies. Since a meta-analysis could estimate the true 
strength of association among several related works and simultaneously correct for the 
sampling error or within-study variance [15], the conclusion drawn by such an approach is 
much more convincing.  

However, in that work, Smet et al. mainly focused on scenarios of approximately the same 
CCTs (metameric lighting scenarios) while ignoring the scenarios of different CCTs (multi-
CCT scenarios). As we believe, unlike colour fidelity, colour preference should not be 
restricted by a certain CCT, since in many cases people actually want to choose a favorite 
light in irrespective of this measure [9, 13, 16-21]. In other words, a metric that performs well 
for metameric lighting scenarios may perform poorly for multi-CCT scenarios, since it 
depends on a fixed reference light source and is only valid under certain CCT values.  

This study, therefore, is intended to develop a robust metric which could perform well in 
predicting colour preference, not only in metameric lighting scenarios, but also in multi-CCT 
scenarios. The meta-analysis method, which was adopted by Smet et al. for evaluating the 
performance of existing metrics, was followed here to develop such a measure with a novel 
optimizing protocol. Following a brief summary of existing colour quality metrics and the 
collected psychophysical studies, the details of the proposed GVI are described. The 
performance of such a metric is comprehensively compared to that of 20 existing measures 
and the final results show that our proposed metric provides the best performance, both for 
metameric lighting and multi-CCT conditions. Meanwhile, the rationale of the calculation 
procedures of the GVI is also discussed in detail.  

2. Colour quality metrics 

In this study, twenty typical colour rendition metrics were involved, which included the CIE 
Color Rendering Index (CRI) [1], Gamut Area Index (GAI) [22], Full Spectrum Colour Index 
(FSCI) [23], Colour Quality Scale (CQS: Qa, Qf, Qp, Qg) [24], Feeling of Contrast Index 
(FCI) [25],  Colour Discrimination Index (CDI) [26], Cone Surface Area (CSA) [27], Color 
Preference Index (CPI) [28], CRI-CAM02UCS [29], CRI2012 [30], IES TM-30 (Rf and Rg) 
[31], Memory Colour Rendering Index (MCRI) [32], mean chroma shift of CQS (ᇞC*) 
advocated by Khanh et al. [4-6], the arithmetic mean value of GAI and CRI [3, 33] as well as 
two combined metrics named Colour Quality Index (respectively denoted as CQI1 [4] and 
CQI2 [5]).  

Note that it is not the intent of this paper to describe the details of the above mentioned 
measures, readers are referred to the cited references as well as Houser’s review [2] for further 
information. It is also worth noting that some of these metrics were not deliberately proposed 
for assessing colour preference. However, the correlation analysis between these metrics and 
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colour preference can be found in the literature [3-7, 33], since a proper metric for colour 
preference is what is actually needed. 

In Houser’s review, these metrics were approximately divided into three groups according 
to their colour rendition intents: colour fidelity, colour preference and colour discrimination 
[2]. As pointed out by Houser, such classifications are not entirely independent. For instance, 
FCI is a colour preference metric while CDI is a colour discrimination metric. However, both 
of these indices are based on a gamut area calculation. In this study, therefore, we have 
grouped the 20 measures according to their calculation methods, since we supposed that such 
methods would have stronger correlation with the final prediction performance than that of 
their colour rendition intents. 

2.1 Colour difference based metrics 

The colour difference based metrics (CRI [1], CRI-CAM02UCS [29], Qa, Qp and Qf [24], 
CRI2012 [30], Rf [31], CPI [28] and ᇞC* [4-6]) are exclusively relative measures and most 
were intended for the characterization of colour fidelity. According to these metrics, the 
colour difference (or chroma shift) between a set of colour samples under the test source and a 
reference illuminant of the same CCT are calculated in a certain color space. Generally 
speaking, the later measures in this group are mainly updated versions of the CIE CRI, with an 
improved chromatic adaptation transform, a more uniform color space as well as using 
different colour samples. 

2.2 Relative gamut based metrics 

The relative gamut based metrics (Qg [24] and Rg [31]) compute the relative gamut area of a 
set of colour samples under a test light source in a defined colour space. The values of such 
metrics are normalized by the gamut area of the same colours illuminated by a reference 
illuminant of the same CCT.  

2.3 Absolute gamut based metrics 

Unlike relative gamut based metrics, the absolute gamut based metrics (GAI [22], CDI [26], 
CSA [27] and FCI [25]) do not rely on a reference illuminant but directly calculate the 
absolute gamut of the colour samples under a test light source. In this group, CSA is not 
reliant upon a reference illuminant while GAI, CDI and FCI are with constant reference 
illuminant.  

2.4 Memory based metric 

The memory based metric MCRI [32] uses colour memory as its reference. Based on 
empirically derived similarity functions, such a measure evaluates the colour rendition of a 
light source by comparing the rendered colours of certain familiar objects to their actual 
memory colours.  

2.5 Combined metrics 

The combined metrics are the linear combination of a set of current measures. The concept of 
combining GAI and CRI was firstly raised by Rea et al. [34] while the arithmetic mean value 
between the two measures were used by Smet [3] and Jost-Boissard [33]. The Colour Quality 
Indices (respectively denoted as CQI1 [4] and CQI2 [5]) were proposed by Khanh et al., the 
CQI1 is a linear combination of CCT and MCRI while CQI2 is a linear combination of CCT, 
MCRI and ᇞC*.  

2.6 Other metric 

In addition to the above metrics, there is another metric, FSCI [23], with a different 
calculation method. It is an absolute measure quantifying the difference between the Spectral 
Power Distributions (SPD) of a test source and that of an equal-energy spectrum.  
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As discussed above, the 20 metrics involved in this study employ different calculation 
methods. However, apart from FSCI, the calculation of the metrics exclusively relies on a 
defined set of colour samples. It is widely acknowledged that an appropriate set of samples is 
of great importance for metric performance [11] and it should cover the entire hue circle in a 
defined colour space [32, 35]. Meanwhile, there are also other works indicating that certain 
colours (a saturated red, for instance) seem to be more important than others [7, 13, 14]. 
Therefore, it may be concluded that the colour samples used in those measures should span 
the entire hue circle but with some weighting applied. What is more, as pointed out by 
previous researchers [3, 24], the use of highly-saturated colours may improve the metric 
performance. As we believe, such an assumption needs to be further investigated, since the 
colour samples adopted in existing measures are not saturated enough. To our knowledge, no 
past studies have comprehensively investigated these issues.  

In addition, it should be mentioned that there are several complicated methods such as 
multi-measure approaches and graphical metrics [14, 24, 31, 36]. Such methods may actually 
exhibit better performance in colour preference evaluation, since they provide much more 
useful information than a single measure. However, such measures are beyond the scope of 
this study due to the fact that they are complicated and overwhelming for most naive users in 
general applications. They are perhaps more suitable for industrial applications. 

3. Psychophysical studies 

In this work, the experimental data of eight psychophysical studies were collected, which 
totally contained 16 metameric lighting scenarios and 16 multi-CCT scenarios. The data 
included the SPDs of the light sources as well as the corresponding subjective ratings of the 
loosely-defined visual appreciation (Preference, Attractiveness and Pleasantness). For 
detailed information of these studies, the readers are referred to the cited articles. The 
following introduction provides an overview of the key points of each study.  

3.1 Wei et al. (metameric lighting, 2014) 

Eighty-seven participants compared the colour preference of two 3000 K light sources using a 
6-point rating method [12]. The paired comparison experiment was implemented within two 
side-by-side rooms which contained the same coloured objects and still life arrangements. The 
illumination level at the object location was approximately 250 lx.  

3.2 Royer et al. (metameric lighting, 2016) 

Twenty-eight observers were asked to rate the colour quality of twenty-six 3500 K light 
sources in a room filled with several coloured objects [14]. The illumination is approximately 
210 lx but not perfectly uniform. An 8-point rating method was used to quantify the 
observers’ judgments for the experimental light sources in terms of several quality descriptors: 
Normal-Shift, Saturated-Dull and Like-Dislike. In this study, the data for the Like-Dislike 
scale were used. 

3.3 Jost-Boissard et al. (metameric lighting, 2009) 

In 2009, Jost-Boissard et al. investigated the color rendering of fruit and vegetables in terms 
of Attractiveness, Naturalness and Suitability [7]. Six 3050 K light sources and six 3950 K 
light sources were used to illuminate four groups of fruit and vegetables (red, green, yellow 
and multicoloured). A 3050 K halogen light and a 3950 K fluorescent light were respectively 
adopted as references. The illumination level was approximately 230 lx. A panel of 40 
observers participated in the paired comparison experiment and they were asked to choose the 
appropriate lighting conditions according to their subjective judgment. In this study, the data 
regarding Attractiveness were used. We believe that the experimental objects to some extent 
influence the colour preference of lighting [11], so we discussed the colour preference of 
different groups of fruit and vegetables separately. Therefore, 8 lighting scenarios (3050 K: 



 

red, green, yellow, multicoloured; 3950 K: red, green, yellow, multicoloured) were obtained 
from this work.   

3.4 Jost-Boissard et al. (metameric lighting, 2014) 

The second work of Jost-Boissard et al. was quite similar [33]. Several aspects of perceived 
colour quality were investigated by a paired comparison approach (with no fixed reference) 
from the following aspects: Naturalness, Colourfulness, Visual Appreciation and Colour 
Difference. 45 observers assessed 9 light sources at 3000 K while 36 observers assessed 8 
light sources at 4000 K, with an illumination level approximately 220 lx. From this study, the 
data of 4 scenarios (3000 K: fruits and vegetables, Color Checker chart; 4000 K: fruits and 
vegetables, Color Checker chart) regarding to Visual Appreciation were obtained.  

3.5 Szabó et al. (metameric lighting, 2016) 

The work of Szabó et al. investigated the human preference of home lighting through real-
scene (kitchen and living room) experiments [21]. 97 observers, 69 young and 28 elderly, 
were involved. For the kitchen (CCT=4000 K) and living room (CCT=3000 K) scenarios, two 
groups of different light sources were used and the illumination of the two scenes were both 
set to 350 lx. For each group of lights, there were 5 SPDs with inconstant FCI values and 5 
SPDs with constant FCI values. The subjects were asked to evaluate the colour rendition of 
those testing lights in term of Pleasantness, Vividness and Naturalness. Since this work is 
intended to investigate the performance of different metrics in colour preference evaluation, 
only the SPDs with inconstant FCI values together with the corresponding visual ratings on 
Pleasantness were used. To be consistent with other studies, we only adopted the data of 
young observers, although the data of the elderly observers were quite similar. To sum up, 2 
lighting scenarios were obtained from this work: kitchen-inconstant-FCI-young and living 
room-inconstant-FCI-young.    

3.6 Liu et al. (multi-CCT, 2017) 

In previous studies, we had implemented a series of psychophysical experiments with 14 
different objects, which included 4 groups of fruit and vegetables similar with the work of 
Jost-Boissard et al., 5 Chinese traditional calligraphies written on papers with different 
colours, 4 pieces of artwork with different sizes and colour features and a bunch of 
multicoloured flowers [37]. Certain SPDs with uniformly sampled CCT values ranging from 
2500 K to 6500 K were generated using a colour tunable LED while the illumination level 
was exclusively set to 200 lx. The number of observers in each lighting scenario ranged from 
20 to 60 and they were asked to quantify the colour preference using a 7-point rating method 
or a 5-level ranking method. From these studies, we collected the data of 14 lighting scenarios 
in total.   

3.7 Narendran et al. (multi-CCT, 2002) 

In the work of Narendran et al., the authors invited 30 observers to participate in a paired 
comparison experiment as well as a 7-point rating experiment [17]. Seven light sources with 
the same illuminance level (approximately 200 lx) but different CCTs (ranging from 2600 K 
to 5000 K) were employed to illuminate a combination of colour objects. The subjects were 
asked to respond with their visual preference. As the authors stated, the results of the two 
visual experiments are closely matched. Therefore, in this study only the data of the 7-point 
rating experiment were adopted.      

3.8 Xu et al. (multi-CCT, 2017) 

With a forced choice approach, twelve observers were asked to quantify their perceived colour 
quality for a printed photograph which was illuminated by several different light sources [9]. 
The independent variables of such a study were 12 CCTs (ranging from 2000 K to 100,000 
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K), 3 illuminance levels (350 lx, 500 lx and 1000 lx) and 2 assumed lighting scenarios 
(working and relaxing). The dependent variables were the scale values of the observers in 
terms of Preference and Comfortable. Since light sources with a CCT value higher than 
10,000 K are rare in everyday use, we omitted the data for 25,000 K and 100,000 K. In 
addition, since the working scenario was highly related to human working performance [38] 
rather that colour preference, the data regarding that issue was also ignored. Thus, ten SPDs 
together with the average preference ratings under 3 illuminance levels were adopted. Note 
that it would be more plausible to use the data of 350 lx to be consistent with other studies, but 
the average preference ratings of the 3 illuminance conditions were the only data available to 
us. Fortunately, as pointed out by those authors, the preference estimations of the 3 
illuminance levels were quite consistent.  

4. Gamut Volume Index 

The proposed Gamut Volume Index was developed based on the following assumptions. 
Firstly, as mentioned above, the colour samples used in a metric should span the entire hue 
circle but should not be distributed uniformly, since different colour regions may have a 
different influence on the observers’ judgments. Secondly, adopting highly-saturated samples 
would improve the metric performance. As pointed out in previous papers, a light source may 
exhibit good performance for non-saturated samples while perform poorly with saturated 
samples [3], especially for RGB (red-green-blue) white LEDs with strong peaks in their 
spectra [24]. However, the reverse was found not to be the case [32]. Thirdly, it seems that it 
is more plausible to quantify the colour gamut with a volume-based algorithm than an area-
based algorithm, since a 3D solid reveals much more information than a 2D plane in the same 
colour space. Fourthly, as discussed above, since colour preference should not be restricted by 
a certain CCT, an absolute measure independent of a reference is needed.  

In our previous work [39], a large scale spectral dataset has been built with 8560 
uniformly distributed colour samples. In this study, we uniformly divided this dataset into 18 
sub-groups according to the dominant wavelength [40] of each colour under the D50/2 
illuminant/observer condition, which resulted in 15 subgroups with positive dominant 
wavelengths (around 447 samples in each subgroup) and 3 subgroups with negative dominant 
wavelengths (around 614 samples in each subgroup). We then selected the most saturated 
colour sample from each group by excitation purity [40]. Since dominant wavelength and 
excitation purity respectively correspond to hue and saturation in CIE Colorimetry, we finally 
got 18 saturated colours which uniformly covered the entire hue circle.  

Figure 1 indicates the gamut comparison between the 18 saturated samples and other 
sample sets of several typical metrics in CIE 1931 xy chromaticity diagram (a) and the a*b* 
plane of CIELAB colour space (b). It is obvious that the gamut of this sample set is 
remarkably larger than that of the others, especially in the green and yellow regions. 

The newly-built sample set was then weighted by choosing 14 samples from the overall 18 
samples. Mathematically speaking, there were 14

18 3060C  combinations in total. For a certain 
combination of 14 samples and a certain lighting scenario, a Spearman correlation coefficient 
was calculated, from the subjective rating scores for the experimental light sources and the 
corresponding gamut volumes computed in CIELAB colour space with a convex hull 
algorithm [41]. Since there were 32 lighting scenarios as mentioned above, 32 Spearman 
correlation coefficients were obtained for each sample combination. Therefore, 3060 
combinations resulted in 3060*32 coefficients.  

Afterward, we calculated a weighted average Spearman correlation coefficient for each 
sample combination and obtained 3060 weighted average coefficients. Finally, the 14 samples 
which corresponded to the maximum value of the 3060 weighted average Spearman 
correlation coefficients were defined as the optimized colour samples.  
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Fig. 1. Gamut comparison of colour sample sets used by different metrics in (a) the xy 
chromaticity diagram and (b) the a*b* plane under the D50/2 illuminant/observer condition. The 
circles represent the samples adopted by GVI while the squares represent the omitted samples. 
The lines denote the gamut boundary derived from a convex hull algorithm. 

The method for computing the weighted average correlation coefficient r  was proposed 
by Hunter and Schmidt [15]: 

1 1
/

K K

i i ii i
r N r N

 
                                                        (1)  

where ir  and iN respectively represent the individual correlation coefficient and the 

number of observers for each lighting scenarios, K is the number of the scenarios (K=32 in 
this study).  

The circles and squares in Fig.1 denote the samples adopted and omitted in the optimized 
sample set respectively. As can be seen from the figure, three colour samples in blue and 
purple (including red-purple) regions were omitted, while in other regions only an orange 
colour was omitted.   

In light of the above, the final equation for the GVI could be summarized as: 

5* optsetGVI V                                                              (2) 

where optsetV is the gamut volume of the optimized 14 colour samples under the test light 

source in CIELAB colour space (calculated by a convex hull algorithm [41]) and the constant 
5 is used to rescale the metric to an approximate 0-100 range. 

5. Results of metric performance analysis 

Table 1 summarizes the performance of different measures in terms of the weighted average 
Spearman correlation coefficient between metric predictions and preference ratings of 
individual studies. The p-value, which denotes the statistical significance of 0 : 0H r  (no 

correlation), was computed following the equations in the work of Smet et al. [3]. The 
variance of the population correlation 2  indicates the difference among the correlation 
coefficients of the 32 scenarios with regard to a certain metric and it was calculated by 
subtracting the sampling error variance 2

e  from the variance of the sample correlation 2
r  

using the following equations as proposed by Hunter and Schmidt [15].  



 

2 2 2
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22 2(1 ) / ( 1)e r N                                                          (5) 

where ir  and 
iN respectively represent the individual correlation coefficient and the 

number of observers for each lighting scenarios, K is the number of the scenarios (K=32 in 
this study), r is the weighted average correlation coefficient described in Eq (1) and N
denotes the average value of 

iN .  

Table 1. The Weighted Average Spearman Correlation Coefficient between Metric Predictions and Preference 
Ratings of Individual Studies 

Colour quality 
metric 

metameric lighting  Multi-CCT   Overall performance 

r  p 
2
   

r  p 
2
   

r  p 
2
  

CRI -0.15 0.079 0.19   -0.30 0.000 0.07   -0.22 0.000 0.14  

CAM02UCS 0.03 0.389 0.16   -0.30 0.000 0.06   -0.12 0.037 0.14  

Qa (9.0.3) 0.02 0.416 0.19   -0.30 0.000 0.07   -0.13 0.038 0.16  

Qp (9.0.3) 0.60 0.000 0.35   -0.29 0.000 0.06   0.20 0.039 0.41  

Qf (9.0.3) 0.17 0.033 0.14   -0.30 0.000 0.06   -0.04 0.271 0.16  

CRI2012 0.24 0.018 0.21   -0.08 0.149 0.10   0.09 0.109 0.19  

Rf 0.02 0.440 0.17   -0.20 0.005 0.10   -0.08 0.111 0.14  

CPI 0.08 0.251 0.23   -0.30 0.000 0.07   -0.09 0.115 0.19  ᇞC* 0.67 0.000 0.06   -0.63 0.000 0.10   0.08 0.251 0.48  

Qg (7.4) 0.54 0.000 0.35   -0.30 0.000 0.06   0.16 0.073 0.39  

Rg 0.85 0.000 0.01   -0.28 0.000 0.07   0.34 0.000 0.34  

GAI 0.73 0.000 0.05   0.31 0.000 0.06   0.54 0.000 0.10  

CDI 0.73 0.000 0.05   0.31 0.000 0.06   0.54 0.000 0.10  

CSA 0.71 0.000 0.06   0.31 0.000 0.06   0.53 0.000 0.10  

FCI(CAM02) 0.79 0.000 0.04   -0.30 0.000 0.07   0.30 0.002 0.34  

FSCI 0.33 0.017 0.39   0.39 0.000 0.07   0.36 0.000 0.24  

MCRI 0.73 0.000 0.03   0.10 0.100 0.10   0.45 0.000 0.16  

GAI-CRI 0.65 0.000 0.06   0.45 0.000 0.07   0.56 0.000 0.07  

CQI1 0.72 0.000 0.03   0.31 0.000 0.06   0.54 0.000 0.08  

CQI2 0.67 0.000 0.06   -0.49 0.000 0.09   0.15 0.092 0.40  

GVI 0.85 0.000 0.01   0.81 0.000 0.04   0.83 0.000 0.03  

Figure 2 and Figure 3 further demonstrate the metric performance with regard to each 
lighting scenario. The values of the correlation coefficients are denoted by colour, for 
instance, red for very high correlation while blue for very low correlation.  



 

 

Fig.2. Weighted average Spearman correlation coefficient between metrics prediction and visual 
scaling of colour preference of each metameric lighting scenario. (‘F & V’ is short for ‘fruit and 
vegetables’) 

 

Fig.3. Weighted average Spearman correlation coefficient between metrics prediction and visual 
scaling of colour preference of each multi-CCT scenario. 

6. Discussion 
As can be seen from Table 1, the colour difference based metrics performed poorly in most of 
the lighting scenarios while CRI had the worst performance among all the measures. The only 
two exceptions were Qp and ᇞC* for metameric lighting scenarios, which exhibited relatively 
better correlations. It seems that updating the traditional CRI with stronger theories and 
models only has very limited effect in improving the metric performance of preference 
prediction. Such conditions should be attributed to the general intent of colour difference 
metrics, which is to evaluate colour fidelity, rather than characterize colour preference. 
According to such measures, only the light sources similar to certain standard references 
receive high scores. However, as pointed out by a previous study [3], there are many light 
sources that perform better than the standard references. Similarly, another reason for their 
poor performance in multi-CCT scenarios is that the values of such measures at different 
CCTs are not comparable, since they are correlated to different reference sources [17, 37].  



 

Compared to the colour difference based metrics, the gamut based metrics generally 
exhibited better performance. This finding corroborates the thought that colour preference is 
closely related to chroma (gamut) enhancement [12, 13, 21, 24, 33]. In fact, for metameric 
lighting scenarios, the sound performance of the above mentioned two colour difference based 
measures (Qp and ᇞC*) was also due to their rewarding of chroma enhancement. In addition, 
because of the limitation of the relative measures as mentioned above, the two relative gamut 
based measures, Qg and Rg performed poorly in multi-CCT scenarios. It is also worth 
mentioning that even for the absolute gamut measures, the metric performance for the multi-
CCT scenarios was not good enough. Such a drawback may possibly be attributed to the 
distributions of the colours samples, as well as to the methods of computing the gamut area.   

The memory based MCRI performed well in metameric lighting scenarios but poorly in 
multi-CCT scenarios. A possible explanation is that when CCTs differed, the larger deviations 
among the errors of chromatic adaption transforms impaired the metric performance. That is, 
for metameric lighting scenarios, the errors of chromatic adaption transforms had almost no 
impact on the metric computation, since they were approximately consistent. However, in 
multi-CCT scenarios where those errors significantly differed (especially in highly-saturated 
regions), their influence became much stronger and could not be ignored. Furthermore, note 
that in some related works [3, 33] the computation of MCRI was adjusted according to the 
colour distributions of the experimental objects (i.e., a blue or purple sample was omitted in 
the case where there was no blue and purple objects in the experiment). Such adjustment was 
refused in this study since it was intended to find a simple and universal measure for general 
applications.  

Compared to other metrics, the arithmetic mean of GAI and CRI (GAI-CRI) showed a 
balanced performance between metameric lighting scenarios (r =0.65) and multi-CCT (r
=0.45) scenarios, although it was still not good enough. Since CQI1 is a linear combination of 
CCT and MCRI, in metameric lighting scenarios this measure exhibited similar performance (
r =0.72) to that of MCRI (r =0.73), while for multi-CCT scenarios a better performance (r
=0.31) was achieved. Note that although such combined metrics actually improved the metric 
performance, their results were also not good enough. In addition, as shown in Table 1, the 
performance of CQI2 is obviously worse than that of CQI1, in spite of the fact that CQI2 is 
based on a larger experimental dataset [4, 5].  

It is clear from Table 1 that the proposed GVI exhibits significantly better performance, 
not only for metameric lighting scenarios (r =0.85, p<0.00001), but also for multi-CCT 
scenarios  (r =0.81, p<0.00001). In addition, the lowest value of variance of population 
correlation also validated this conclusion. 

Figure 2 and Figure 3 straightforwardly confirm the conclusion from Table 1 and reveal 
more detailed information about the metric performance in each individual lighting scenario. 
As can be seen from these two figures, the performance of the measures actually varies with 
the lighting scenarios, which was consistent with the work of Lin et al. [11] and highlighted 
the necessity of discussing each scenario separately. In addition, it is quite clear that these two 
figures could be considered as good evidence for the drawback of the existing metrics as well 
as the superiority of GVI, especially for the multi-CCT scenarios.  

Note that although the proposed GVI exhibited excellent performance in preference 
predictions, it is however clear from Fig. 2 and Fig. 3 that there were still two exceptions: the 
orange calligraphy scenario of Liu et al. and the experiment of Xu et al. For the orange 
calligraphy scenario, the very low correlation (r=0.15) was attributed to the fact that the 
average ratings of three of the experimental lights (4500 K, 5500 K and 6500 K) were almost 
the same. In that condition, it is very likely that the true correlation between the metric 
prediction and preference scaling was masked by the system errors (for instance, the intra-
observer variability) of the experiment. As for the scenario of Xu et al., the relatively low 
correlation (r=0.45) was due to the over-saturation effect of two lights (8100 K and 9700 K). 
As stated by current researchers, excessive saturated colours also impaired preference [10]. 
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Among the studies described in Section 3, the GVI values of most of the lights were located in 
the range of 70-100, while the values for the 8100 K and 9700 K lights of Xu et al were above 
110.  

As shown in Fig. 3, several measures exhibited the same correlation for a certain scenario 
(e.g., for the ‘Liu red F & V’ scenario, the 5 colour difference based metrics, CRI, CRI-
CAM02UCS, Qa, Qp and Qf shared the same correlation coefficient). Such condition could be 
ascribed to the dominant influence of light on colour preference under multi-CCT scenarios 
[37]. Since those measures employed very similar calculation methods, in multi-CCT 
scenarios they may result in a consistent result in terms of rank order. When calculating the 
rank-order based Spearman correlation coefficient, therefore, a similar result would be 
obtained.  

To further validate the sample selection method of GVI, the performance of other forms of 
GVI with different colour sample set was investigated. In Table 2, GVI-CRI-14, GVI-MCRI-
10, GVI-CQS-15, GVI-FCI-4, GVI-CRI2012-17, GVI-GAI-8, GVI-IES-99, GVI-MUN-1269 
respectively denotes the GVI values which were computed with the colour samples of CRI, 
MCRI, CQS, FCI, CRI2021, GAI, IES method, as well as the Quintero’s graphical metric 
(Munsell samples) [36], where the number indicates the amount of colour samples in each set. 
GVI-MUN-14 represents the GVI values with the 14 optimized samples derived from the 
1269 Munsell dataset by the methods described in Section 4. Similarly, GVI-p08-14, GVI-
p07-14, GVI-p06-14 and GVI-p05-14 respectively refer to the GVI values with the 14 
optimized samples obtained from the purity-restricted subset of the above mentioned large 
scale dataset with the same optimizing approach. For instance, p08 represents the subset in 
which the excitation purities of the colour samples were no larger than 0.8. Finally, GVI-
uniform-18 denotes the performance of our 18 saturated colour samples without the following 
weighting implementation and GVI-proposed-14 is our final proposed measure.    

From Table 2, several conclusions could be drawn, at least in the conditions of this study. 
Firstly, the absolute gamut-volume based metrics indeed have advantages. When compared to 
Table 1, it is clear to see that such measures outperform the 20 existing metrics. Secondly, 
adopting highly-saturated samples may actually improve the metric performance. For 
instance, GVI-MUN-14 and GVI-proposed-14 were computed according to a similar approach 
but with a different original dataset and it is quite clear that GVI-proposed-14 with a larger 
sample gamut performed better. Such a statement was further validated by the case of GVI-
p08-14, GVI-p07-14, GVI-p06-14 and GVI-p05-14, where a measure corresponding to a more 
saturated dataset also exhibited better performance. In our opinion, this result may possibly be 
due to the fact that when saturated samples were used, the diversity of the solid shapes 
regarding to different sample combinations (under different lights) increased correspondingly, 
which raised the possibility of obtaining a better GVI. Besides, the Multi-CCT scenarios seem 
to be more sensitive to the gamut of the test colour samples. For measures with large sample 
gamut (i.e., GVI-proposed-14 and GVI-CRI2012-17), the performance is good while for 
measures with small gamut (i.e., GVI-GAI-8 and GVI-MCRI-10), the performance is poor. 
Thirdly, a weighted distribution of colour samples may also benefit the metric performance. 
The comparison between GVI-uniform-18 and GVI-proposed-14 is a good example. Although 
the samples of GVI-uniform-18 were distributed more uniformly, the GVI-proposed-14 
performed better, which proved the former assumption that the colour samples used in a 
metric should span the entire hue circle but should not necessarily be distributed uniformly. In 
addition, as for the two measures with medium-sized gamut, GVI-CQS-15 and GVI-FCI-4, 
their good performance may be partially attributed to the reasonable distribution of the colour 
samples. Fourthly, the increase of the number of colour samples provides no benefit to the 
metric performance, as shown in the cases of GVI-IES-99 and GVI-MUN-1269.  

 



 

Table 2. The Weighted Average Spearman Correlation Coefficient between Metric Predictions and Preference 
Ratings of Individual Studies Regarding to Other Forms of GVI with Different Sample Set  

GVI with different 
colour samples 

metameric lighting  Multi-CCT   Overall performance 

r  p 
2
   

r  p 
2
   

r  p 
2
  

GVI-CRI-14 0.81 0.000 0.04   0.26 0.000 0.04   0.56 0.000 0.09  

GVI-MCRI-10 0.81 0.000 0.02   -0.06 0.233 0.02   0.41 0.000 0.08  

GVI-CQS-15 0.73 0.000 0.03   0.64 0.000 0.05   0.69 0.000 0.04  

GVI-FCI-4 0.79 0.000 0.02   0.66 0.000 0.04   0.73 0.000 0.04  

GVI-CRI2012-17 0.79 0.000 0.01   0.67 0.000 0.08   0.73 0.000 0.05  

GVI-GAI-8 0.79 0.000 0.03   -0.27 0.131 0.03   0.30 0.017 0.08  

GVI-IES-99 0.78 0.000 0.01   0.26 0.000 0.04   0.54 0.000 0.07  

GVI-MUN-1269 0.79 0.000 0.01   0.26 0.000 0.04   0.55 0.000 0.08  

GVI-MUN-14 0.75 0.000 0.04   0.65 0.000 0.04   0.71 0.000 0.04  

GVI-p08-14 0.79  0.000 0.03   0.76  0.000 0.02   0.78  0.000 0.02  

GVI-p07-14 0.81  0.000 0.03   0.75  0.000 0.02   0.77  0.000 0.03  

GVI-p06-14 0.81  0.000 0.01   0.53  0.000 0.06   0.68  0.000 0.06  

GVI-p05-14 0.79  0.000 0.03   0.35  0.000 0.04   0.59  0.000 0.08  

GVI-uniform-18 0.67 0.000 0.02   0.74 0.000 0.08   0.71 0.000 0.05  

GVI-proposed-14 0.85 0.000 0.01   0.81 0.000 0.04   0.83 0.000 0.03  

 
Meanwhile, it should be noted that when we built the GVI metric, apart from the 

optimized 14 colour samples, there are many other sample combinations among the whole 
3060 combinations which could achieve good metric performance. To further investigate the 
colour distributions of those optimal combinations, the best 100 sample combinations with the 
largest 100 values of weighted average Spearman correlation coefficient were selected. 
Among those combinations, the worst overall average correlation r  is 0.77. Fig. 4 indicates 
the colour sample distributions of the best 100 sample combinations. For instance, the 
ordinate of the #1 colour (dark blue) is 60, which means such a colour was selected 60 times 
among the best 100 combinations.  
 

 

Fig.4. The colour distributions of the best 100 sample combinations. The Y-axis represents the 
frequency of a sample (denoted by the colour of the bar) selected in those combinations.  

It can be seen from Fig. 4 that the colours in the pure blue, red-purple, and blue-purple 
regions (i.e., #1, #16, #18) were less important. Such a finding relates well with the recent 
work of Royer et al. [14], which highlighted the importance of red, orange and green regions 
while de-emphasized the influence of blue and purple. As we believe, such a condition may be 



 

due to the fact that the blue and purple objects do not commonly appear in our daily lives, 
especially in natural scenes.  

 

7. Conclusions 
In this study, an absolute gamut volume based metric (GVI) was developed based on meta-
analysis and optimized colour samples. The performance of such a measure was 
comprehensively compared to 20 typical colour quality metrics, especially in the form of the 
weighted average correlation between metric predictions and preference ratings of 8 
psychophysical studies (32 scenarios). The final results showed that the proposed GVI 
exhibited the best performance for characterizing colour preference, not only for metameric 
lighting scenarios, but also for multi-CCT scenarios. It was found that employing certain 
highly-saturated but non-uniformly distributed samples could actually improve the metric 
performance while the concept of an absolute gamut-volume metric also has advantage in 
colour preference prediction.  

There should be no doubt that the proposed GVI, which was derived from a meta-analysis 
based on several existing studies, is much more convincing compared to the measures of 
single studies. However, such a measure should not be expected to perform well in all 
situations, since the collected data is still a limiting factor. To further improve the metric 
performance, a larger set of experimental data should be accumulated. Fortunately, as stated 
above, there are many other colour sample combinations providing excellent metric 
performance, which highlights the potential of further optimization. Besides, since this study 
simultaneously optimized the metric performance of both metameric lighting scenarios and 
multi-CCT scenarios, certain compromises had to be made. If, however, in some applications 
only one kind of these scenarios needs to be discussed, a new metric with better performance 
could be easily obtained by a similar procedure.   

Another suggestion for future work concerns setting a limit for rewarding the chroma 
enhancement in the proposed measure. As mentioned above, excessively saturated samples 
also impair colour preference. Therefore, such an over-saturated effect should be penalized in 
an update version of this measure. To investigate such a topic, psychophysical studies with 
over-saturated light sources should be implemented.  

The experimental data of this current research are available upon request. 
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