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Abstract

In this paper, the phenomenon of natural frequencies shifting due to the nonlinear
stiffness effects from membrane stress is studied using a nonlinear reduced order model
based on backbone curves. The structure chosen for study in this paper is a rectangular
plate with a pinned constraint along all edges. To analytically explore the frequency
varying phenomenon, a four nonlinear-mode based reduced-order model that contains
both single-mode and coupled-mode nonlinear terms is derived. The process of deriving
the reduced order model is based on a normal form transformation, combined with a
Galerkin type decomposition of the governing partial differential equation of the plate.
This allows a low number of ordinary differential equations to be obtained, which
in turn can be used to derive backbone curves that relate directly to the nonlinear
normal modes (NNMs). The frequency shifting is then investigated relative to the
backbone curves. Modal interactions, caused by nonlinear terms are shown to cause
the frequency shifts. In the final part of the paper, an attempt is made to quantify
the frequency shifting due to different nonlinear effects.

Key words: Nonlinear reduced order model, Backbone curves, Nonlinear modal interaction,
Second-order normal form method, Thin plate

1 Introduction

The need for accurate prediction of the nonlinear response of plates and shells has rapidly
increased, especially for structures with low weight but under high environmental loads, such
as aircraft fuselage structures subjected to high aeroelastic and/or acoustic loading. How-
ever, linear analysis techniques fail to capture nonlinear effects, particularly at high levels
of dynamic excitation when, for example, the natural frequencies can vary with amplitude.
For plate structures, it is generally accepted that when the transverse deflection approaches
the thickness of the plate, the effect of the nonlinearity becomes significant. For a pinned



plate, this is primarily because the in-plane stress starts to make the response amplitude
dependent [1].

One approach to studying this problem is to perform full-order model simulations using
a finite element software. It is often desirable to augment this approach by comparing with
a reduced order modelling (ROM) or, more specifically, nonlinear reduced order modelling
(NROM) techniques [2]. NROMs consist a low number of modes that include linear and
nonlinear terms, typically in the form of a series of quadratic and cubic terms in the modal
coordinates. The underlying linear modes can be easily determined using the classic lin-
ear modal techniques, i.e. a linear Galerkin decomposition method and linear normal form
method [3]. The challenge in developing an accurate NROM is in the determination of the
nonlinear stiffness coefficients. The methods for computation of the nonlinear stiffness co-
efficients can mainly be divided to direct and indirect approaches. The direct approaches
apply the modal transformation on the full-order nonlinear stiffness matrices [4, 5] or de-
compose the nonlinear partial differential equations (PDE) [6]. Note this later approach
is only possible for simple geomerties where a PDE model exists. The indirect approaches
use static nonlinear solution of a full finite element model to determine stiffness coefficients
[7, 8, 9, 10].

Even with nonlinear reduced-order models, the forced responses can often be complex
and varied which still limits the amount of design insight that can be obtained. Instead,
researchers usually consider the response of the equivalent unforced and undamped sys-
tems. Many authors have studied undamped, unforced systems including beams, cables,
membranes, plates and shells, see for example [11, 12, 13]. The free response of nonlinear
systems has been studied using several different analytical approaches: nonlinear normal
modes (NNMs) [14, 15, 16] and backbone curves [17, 18, 19].

In this paper we demonstrate the effect of different kinds of nonlinear stiffness terms on
the natural frequency shifting behaviour by considering a rectangular plate with all edges
being simply supported. In Sec. 2, the full-order model is built in Abaqus R© and the linear
and nonlinear simulation results are compared to illustrate the nonlinear dynamic behaviour
of the plate under the high load excitation situation. The nonlinear reduced order model is
developed by decomposing the partial differential equations of motion of the plate based on
the Galerkin method in Sec. 3. In Sec. 4, the simulations results of two NROMS (uncoupled
and coupled models) are quantitatively compared with the FE results. Based on the NROM,
in Sec. 5, backbone curves of the plate obtained using the second-order normal form methods
are computed to present the effects of the different nonlinear terms. Conclusions are drawn
in Sec. 6.

2 Nonlinear dynamic behaviour of a thin plate

Fig. 1 shows a schematic representation of the example plate studied in this paper with
coordinate system (O; x, y, z) having the origin O at one corner. For an arbitrary point of
coordinates (x, y) on the middle surface of plate, its out-of-plate displacement is denoted
by w(x, y). All edges of the plate are simply supported and its geometric dimension and
material properties are listed in Table 1.

Firstly, the full-order simulations were performed by Abaqus R© finite element software to
illustrate the resonant frequencies shifting phenomenon. 1600 thick shell elements (S8R in
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Fig. 1: Plate and the coordinate system

Length [mm] Width [mm] Thickness [mm] Density
[

kg/m3
]

Young’s modulus [GPa] Poisson ratio

a = 500 b = 520 h = 5 ρ = 2700 E = 70 v = 0.31

Table 1: Properties of the plate

Abaqus) were used to discretize the plate and S8R is used as it includes membrane stretching
effects for large displacements. Here the integrator, Abaqus/Implicits, in Abaqus/Standard
solver was used. For ensuring a stable (physical) response, the value of the only parameter
αn specifying the integrator is chosen, αn = −1

6
to impose adequate numerical damping

during integration. Each set of simulations was performed for an identical load setting with
the different controls, i.e. Nlgeom ‘Off’ and ‘On’, for exclusion and inclusion of the nonlinear
effects of large displacements respectively.

As a forcing input, random data with the sample rate of 10 kHz for a period T = 50 s was
generated using Matlab R© function rand initially and then substituted into Abaqus R© as the
random input amplitude. The model was integrated over the input period at a minimum
sample time of 10−8 s. The displacement responses at the centre of top-right quadrant of
the plate (with coordinates [x, y] = 3

4
[a, b]) is used as a metric, which guarantees that the

contributions of the first four bending modes are included. Fig. 2 shows the configurations of
the modes considered whoses natural frequencies are ωn1 = 58.707 rad/s, ωn2 = 143.33 rad/s,
ωn3 = 150.24 rad/s and ωn4 = 234.83 rad/s.

Fig. 2: Mode shapes of the first four bending modes of the plate

Fig. 3 shows the response of the plate when a random uniform pressure is applied on
to the left-bottom quadrant of the plate. Two different forcing magnitudes, denoted as A,
were used: in Fig. 3 (a) the random force magnitude is low, A = 10−2, so that the maximum
displacement response amplitude of the plate is less than 20% of the thickness of the plate,
i.e. wmax < 0.2h. In Fig. 3 (b) the random force magnitude is relative high, A = 1, so that



the maximum displacement response amplitude is larger than the thickness of the plate,
i.e. wmax > h. From Fig. 3, it can be seen that for the low level excitation situation the
linear and nonlinear results are on top of each other and their resonant frequencies are close
to the corresponding linear modal frequencies. This implies that the plate behaves linearly
for this case. While when the excitation level increases, the difference between the linear
and nonlinear results is obvious. For this case, the resonant frequencies of linear results are
still close to the linear frequencies, but the nonlinear results have all shifted to the right
significantly.

Fig. 3: Power spectral density of the FE simulation displacement response at
the point with the coordinates (x, y) = 3

4
(a, b) when the plate is under randomly

excitation on left-bottom quarter area at two power level (a) A = 1−2 and (b)
A = 1. The blue and red lines represent the integration results excluding and
including the nonlinear effects respectively and the black dash lines denote the
linear modal frequencies.

Fig. 4 shows simulation results when the plate is under a hybrid excitation of random
and harmonic forces. The random component is identical to that used for case (b) in
Fig. (3) and the harmonic component is a point force applied at the centre of the plate. The
specific sinusoidal loading point is chosen for exciting Mode I only (among the four bending
modes under consideration) to increase the power (amplitude) of the first mode. Hence the
frequency of the sinusoidal force is accordingly chosen to be equal to the first linear modal
frequency, i.e. Ω = ωn1.

From Fig. 3, we know that under the low level random excitation, all four modes are
behaving linearly and no frequency-shifting is observed. For the linear result in Fig. 4, it can



be seen that there is no obvious difference for the resonant frequencies and power spectral
density (PSD) for Mode II, III and IV compared with Fig. 3 except for the PSD of Mode
I increasing due to the extra harmonic force. For the nonlinear results, there are now clear
double peaks around first modal frequency and furthermore the resonant frequencies are
shifting to the right for Modes II, III and IV.

Fig. 4: Power spectral density of the FE simulation displacement response at
the point with the coordinates (x, y) = 3

4
(a, b) when the plate is under the hybrid

excitation consisting of the random component identical to that used for (a) in
Fig. 3 and the harmonic component with the amplitude Fh = 5×10−3 at frequency
Ω = ωn1.

The results shown in Fig. 3 and Fig. 4, demonstrate how nonlinear effects can cause the
resonant frequencies to shift when the amplitudes of response become large.

3 Nonlinear reduced order model (NROM)

Now the nonlinear reduced order models are developed to study the nonlinear frequency
shifting of the plate. The nonlinear model described in terms of modal coordinates derived
by Wagg et al [6] is used for this purpose. The derivation process of the model development
is briefly introduced here and the full details can be found in [6].

Firstly, through the analysis based on the von Kármán nonlinear strain-displacement re-
lationships, the partial differential equation of motion for the plate behaving in the nonlinear



region is written as,

ρh
∂2w

∂t2
+D▽

2
▽

2w −

(

∂2Φ

∂y2
∂2w

∂x2
− 2

∂2Φ

∂x∂y

∂2w

∂x∂y
+

∂2Φ

∂x2

∂2w

∂y2

)

= Pf , (1a)

1

Eh
▽

2
▽

2Φ +
∂2w

∂x2

∂2w

∂y2
−

(

∂2w

∂x∂y

)2

= 0, (1b)

where ▽
2 = ∂2

∂x2 + ∂2

∂y2
, D = Eh3

12[1−v2]
and other parameters are defined in [6]. Substituting

the Galerkin variables,

w(x, y, t) =
M
∑

1

N
∑

1

Xm(x)Yn(y)qmn(t), (2)

and the Airy function

Φ(x, y, t) =
R
∑

1

S
∑

1

Θr(x)Ψs(y)Frs(t), (3)

into Eq. (1), where qmn(t) is a time-dependent modal coordinate and Xn(x) and Ym(y) are
the mode shapes, and then applying the orthogonality conditions gives a set of ordinary
differential equations of motion of vibration modes as

q̈ij + ω2
ijqij +

M,N,G,H,T,U,R,S
∑ Γ1ghtursΓ3mnrsij

Γ2rs

qghqtuqmn = fij. (4)

where,

ω2
ij = π2

(

i2

a2
+

j2

b2

)

√

D

ρh
, fij =

∫ a

0

∫ b

0

PfXiYjdydx, (5)

and,

Γ1ghturs =

∫ a

0

∫ b

0

(

d2Xg

dx2
YhXt

d2Yu

dy2
−

(

dXg

dx

dYh

dy

dXt

dx

dYu

dy

))

ΘrΨsdydx, (6a)

Γ2rs =
ab

4Eh
π4

(

r2

a2
+

s2

b2

)2

, (6b)

Γ3mnrsij =
4

ρhab

∫ a

0

∫ b

0

(

Θr
d2Ψs

dy2
d2Xm

dx2
Yn

− 2
dΘr

dx

dΨs

dy

dXn

dx

dYm

dy
+

d2Θr

dx2
ΨsXm

d2Yn

dy2

)

XiYjdydx. (6c)

For the plate with a simply supported boundary condition, the mode shapes and space
functions of the Airy functions are,

Xm(x) = sin
(mπ

a
x
)

, Yn(y) = sin
(nπ

b
y
)

, Θr(x) = sin
(rπ

a
x
)

, Ψs(y) = sin
(sπ

b
y
)

. (7)

Substituting Eqs. (7) with the parameters values of the plate in Table 1 into Eqs. (4)-(6)
with the imposed modal damping terms gives equations of motion in the modal coordinates
that can be written as

q̈+Cq+ΛΛΛq+Nq(q) = Fm, (8)



Mode No. ωn [rad/s] Coefficients (×109) Nonlinear term

I

i = 1, j = 1
58.9

αI

1 = 5.45 q31
αI

2 = 23.6 q1q
2
2

αI

3 = 22.7 q1q
2
3

αI

4 = 24.4 q1q
2
4

αI

5 = 74.3 q2q3q4

II

i = 1, j = 2
143.9

αII

1 = 23.6 q21q2
αII

2 = 31.4 q32
αII

3 = 65.1 q2q
2
3

αII

4 = 124.3 q2q
2
4

αII

5 = 74.3 q1q3q4

III

i = 2, j = 1
150.8

αIII

1 = 22.7 q21q3
αIII

2 = 65.1 q22q3
αIII

3 = 31.4 q33
αIII

4 = 132.4 q3q
2
4

αIII

5 = 74.3 q1q2q4

IV

i = 2, j = 2
235.8

αIV

1 = 24.4 q21q4
αIV

2 = 124.3 q22q4
αIV

3 = 132.4 q23q4
αIV

4 = 55.8 q34
αIV

5 = 74.3 q1q2q3

Table 2: Model coefficients for the lowest four nonlinear modes of the plate.

where C is a vector of damping coefficients, ΛΛΛ is a diagonal matrix of the squares of modal
natural frequencies,Nq is the column vector containing the nonlinear terms whose lth element
may be written

N (l)
q =

N
∑

r=1

N
∑

s=r

N
∑

t=s

α(l)
n qrqsqt, (9)

and Fm is a vector of modal forcing terms. Table 2 lists the values of the linear modal
natural frequencies and the non-zero coefficients of nonlinear terms for the first four modes
of the plate.

4 Simulation results of the NROM

From Eq. (9), we know that there exist two types of nonlinear terms, i.e. single-mode non-
linear terms, q3i , and coupled-mode nonlinear terms, qiqjqk (where i 6= j and i 6= k) in the

equation of motion of i
th

mode. In order to study the effect of the nonlinear terms on res-
onant frequency shift, two kinds of nonlinear four-mode truncation models for the example
structure are used, i.e. the coupled (with nonlinear coupled-mode terms) and uncoupled (no
coupled-mode terms) cases. Their respective equations of motion are stated as,

q̈+Cq̇+ Λq+Nq(q) = Fm(t) and ¨̃q+C˙̃q+Λq̃+ Ñq̃(q̃) = Pm(t), (10)



where the modal force vector Fm(t) may be written

Fm = Prr(t) +Ph cos(Ωt), (11)

where r(t) is the random input signal, Pr is the vector magnitude of the modal random
force component and Ph is the vector amplitude of the harmonic component. Nq and Ñq̃

are the nonlinear term vectors, written

Nq =









αI

1q
3
1 + αI

2q1q
2
2 + αI

3q1q
2
3 + αI

4q1q
2
4 + αI

5q2q3q4
αII

1 q21q2 + αII

2 q32 + αII

3 q2q
2
3 + αII

4 q2q
2
3 + αII

5 q1q3q4
αIII

1 q21q3 + αIII

2 q22q3 + αIII

3 q33 + αIII

4 q3q
2
4 + αIII

5 q1q2q4
αIV

1 q21q4 + αIV

2 q22q4 + αIV

3 q23q4 + αIV

4 q34 + αIV

5 q1q2q3









, and Ñq̃ =









αI

1q̃
3
1

αII

2 q̃32
αIII

3 q̃33
αIV

4 q̃34









. (12)

In both NROMs, the viscous damping is used and the damping ratio is ζ = 0.1% for all
modes. These two equations are integrated over the identical force time history defined at
discrete data points using the fourth order Runge-Kutta integration operator. The random
data used is identical to that used in the previous FE simulation. The discrete time period
between consecutive time history points is 10−4 s and the integration was performed over a
time period of 50 s. The displacement response at the identical point considered in the FE
simulation is here used again.
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Fig. 5: Power spectral density of the NROM simulation displacement response
x = q1 +

√
2
2
q2 +

√
2
2
q3 +

1
2
q4 which is equivalent to that of the point with the coordi-

nates (x, y) = 3
4
(a, b) at the plate when all four modes are randomly excited at

two different power levels: (a) Pr =
4×10−2

π2ρh
[1, 1, 1, 1]T (b) Pr =

4
π2ρh

[10, 10, 10, 10]T.
The blue and red lines represent the results of the uncoupled and coupled models
respectively and the black lines denote the linear modal frequencies.

Fig. 5 shows the simulation results of Eq. (10) when Pr =
4×10−2

π2ρh
[1, 1, 1, 1]T and Pr =

4
π2ρh

[1, 1, 1, 1]T with Ph = [0, 0, 0, 0]T which is equivalent to the excitation situation used



for FE results in Fig. 3, i.e. Pf (x, y) = r(t) and Pf (x, y) = 10r(t) for 0 ≤ x ≤ 1
2
a, 0 ≤ y ≤ 1

2
b.

From the results when Pr =
4×10−2

π2ρh
[1, 1, 1, 1]T, it can be seen that the results of uncoupled

and coupled models are nearly identical and their resonant frequencies are close to the linear
modal frequencies. As expected, this confirms that the effect of the modal coupling terms is
insignificant for the low response amplitude situation. For the high-level excitation situation,
the resonant frequencies for both models have shifted to higher frequencies. However the
frequency shift level of the coupled model is more obvious than that of the uncoupled model.
This implies that both single-mode terms and coupled-terms can cause frequency shifting
in the nonlinear region. For this case, both models are regarded to be qualitatively correct
compared with the full-order simulation results.
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Fig. 6: Power spectral density of the NROM simulation displacement response
x = q1 +

√
2
2
q2 +

√
2
2
q3 +

1
2
q4 which is equivalent to that of the point with the coordi-

nates (x, y) = 3
4
(a, b) when all four modes are randomly excited and Mode I is

sinusoidal forced simultaneously: Pr =
4×10−1

π2ρh
[1, 1, 1, 1]T, Ph = 4×10−3

ρhab
[5, 0, 0, 0]T

and Ω = ωn1.

Furthermore, the NROM is used to simulate the plate under excitation situation consid-
ered in Fig. 4, so the force amplitude Pr =

4×10−1

π2ρh
[1, 1, 1, 1]T and Ph = 4×10−3

ρhab
[5, 0, 0, 0]T

was used and the results are presented in Fig. 6. We can see that for Modes II, III and IV ,
the resonant frequencies of the coupled model have a frequency shift, while the uncoupled
model results do not compared with the linear modal frequencies. For this case, it is the
coupled model that can more accurately represent the nonlinear behaviour of the full-order
FE model.



5 Effect of the nonlinear coupled-mode terms expla-

nation

In this section, we use the backbone curves to illustrate the effect of the nonlinear terms
on the frequency shifting. The backbone curves describe the loci of dynamic responses
of a system unforced and undamped and can be used to represent the global dynamic
characteristics of the system. In order to compute backbone curves, the second-order normal
form technique is applied to solve the nonlinear equation of motion of the plate. This
technique consists of a series of transformations which result in approximated expressions for
the resonant modal equation of motion describing the dynamics of the fundamental response
components of the nonlinear system. These expressions can be solved to find the relationship
between the fundamental responses amplitude and frequency of the underlying linear modes
which can then be used, along with the inverse of the aforementioned transformation, to
find the harmonic components and the responses in the physical coordinates.

Here, only the outcome of the application of this technique to the example system is
given and the complete description related to the second-order normal form method can be
found in [6].

From Eq. (8), the equation of motion for the equivalent conservative system is written

q̈+Λq+Nq(q) = 0, (13)

which, after the application of the second-order normal form method, results in the time-
invariant equations, such that

[

(

ω2
n1 − ω2

r1

)

+
1

4

(

3αI

1U
2
1 + 2αI

2U
2
2 + 2αI

3U
2
3 + 2αI

4U
2
4

)

]

U1 = 0, (14a)

[

(

ω2
n2 − ω2

r2

)

+
1

4

(

2αII

1 U2
1 + 3αII

2 U2
2 + (2 + p)αII

3 U2
3 + 2αII

4 U2
4

)

]

U2 = 0, (14b)

[

(

ω2
n3 − ω2

r3

)

+
1

4

(

2αIII

1 U2
1 + (2 + p)αIII

2 U2
2 + 3αIII

3 U2
3 + 2αIV

4

)

]

U3 = 0, (14c)

[

(

ω2
n4 − ω2

r4

)

+
1

4

(

2αIV

1 U2
1 + 2αIV

2 U2
2 + 2αIV

3 U2
3 + 3αIV

4 U2
4

)

]

U4 = 0, (14d)

where p = ej2|φ2−φ3| and Ui, ωri and φi are the fundamental response amplitude, frequency
and phase of qi respectively. Through successively setting U2 = U3 = U4 = 0, U1 = U3 =
U4 = 0, U1 = U2 = U4 = 0 and U1 = U2 = U3 = 0 in Eq. (14) we obtain the expressions of
four single-mode backbones, as

S1 : ω2
r1 = ω2

n1 +
3

4
αI

1U
2
1 , (15a)

S2 : ω2
r2 = ω2

n2 +
3

4
αII

2 U2
2 , (15b)

S3 : ω2
r3 = ω2

n3 +
3

4
αIII

3 U2
3 . (15c)

S4 : ω2
r4 = ω2

n4 +
3

4
αIV

4 U2
4 . (15d)



In addition, there exist two in-unison double-mode backbone curves D+
23(i) and D−

23(i) com-
posed of contributions of Mode II and III which can be calculated by using an identical
expression,

D±
23(i) :







U2
3 = U2

(i) + η(i)U
2
2 ,

Ω2 = ω2
(i) +

3
4
γ(i)U

2
2 .

(16)

where, U(i), ω(i), η(i) and γ(i) are time-invariant that

U2
(i) =

4

3

ω2
n3 − ω2

n2

αII

3 − αIII

3

, ω(i) =
αII

3 ω2
n3 − αIII

3 ω2
n2

αII

3 − αIII

3

, η(i) =
αIII

2 − αII

2

αII

3 − αIII

3

, γ(i) =
αII

3 αIII

2 − αII

2 αIII

3

αII

3 − αIII

3

.

(17)
For backbone curves D+

23(i), the modal coordinates are in-phase while for D−
23(i) the modes

are anti-phase, i.e.

D+
23(i) : |φ2 − φ3| = 0, D−

23(i) : |φ2 − φ3| = π. (18)

As for the above backbone curves, their expressions are based on the assumption that any
other non-resonant coupled mode, is not activated.

Now, if the Mode I and IV are assumed to be activated and respond sinusoidally at any
frequencies except for those that may potentially cause resonant interaction with Mode II
or III, such as ωr1(4) = 1

3
ωr2(3) or ωr1(4) = ωr2(3), the expressions of backbone curves for

Mode II and III are modified. For the single-mode backbone curves which are noted as Ŝ2

and Ŝ3 for distinction, they can be calculated using,

Ŝ2 : ω2
r2 = ω̂2

n2 +
3

4
αII

2 U2
2 , (19)

Ŝ3 : ω2
r3 = ω̂2

n3 +
3

4
αIII

3 U2
3 , (20)

where

ω̂n2 = ω2
n2 +

1

2

(

αII

1 U2
1 + αII

4 U2
4

)

and ω̂n3 = ω2
n3 +

1

2

(

αIII

1 U2
1 + αIII

4 U2
4

)

. (21)

For the double-mode backbone curves, D̂±
23(i), their expressions are changed to be

D̂±
23(i) :







U2
3 = Û2

s3(i)
+ ηs3(i)U

2
2 ,

Ω2 = ω̂2
s3(i)

+ 3
4
γs3(i)U

2
2 .

(22)

where,

Û2
(i) = U2

(i) + µ1(i)U
2
1 + µ4(i)U

2
4 and ω̂2

(i) = ω2
(i) +

1

2

(

ν1(i)U
2
1 + ν4(i)U

2
4

)

. (23)

Here the constants µ1(i), µ4(i), ν1(i) and ν4(i) are computed using

µ1(i) =
2

3

αIII

1 − αII

1

αII

3 − αIII

3

, µ4(i) =
2

3

αIII

4 − αII

4

αII

3 − αIII

3

, ν1(i) =
αII

3 αIII

1 − αII

1 αIII

3

αII

3 − αIII

3

, ν4(i) =
αII

3 αIII

4 − αII

4 αIII

3

αII

3 − αIII

3

.

(24)



Comparing Eqs. (15b), (15c) and (16) with Eqs. (19), (20) and (22), the general computation
expressions of backbone curves are identical for the situation with and without the effect of
Mode I and IV . While, considering Eqs. (21) and(23), it can be seen that by considering the
non-resonant modes the resonant frequencies of both single- and double-backbone curves of
Mode II and III increase or decrease depending on the sign of the corresponding coefficients
and the frequency varying level depends on the values of the response amplitude of Mode I
and IV .

(a) (b)

Fig. 7: Backbone curves of nonlinear normal modes II and III of the example
plate with varying response amplitude of mode I. Single-mode backbone curves
Ŝ2 and Ŝ3 are shaded in blue and red respectively and double-mode backbone
curves, D̂±

23(i) are in green. The black dash lines indicate the effective linear

natural frequencies described by Eq. (21) and magenta lines indicate the effective
bifurcation points described by Eq. (23). Blue, red and green lines represent
the backbone curves S2, S3 and D±

23(i) respectively.

Fig. 7 shows backbone curves results of Mode II and III of the example plate. Note
that the coordinates are nondimentionalised using Ūi = Ui/h and Ω̄ = Ω/ωn2 and U4 = 0
is used otherwise the results cannot be presented visually. In Fig. 7, the backbone curves
have been projected onto a three-dimensional space of the modal response amplitude against
frequency with varying response amplitude of Mode I. From the results, it can be seen that
the resonant response frequencies of all backbone curves for Mode II and III have shifted
to higher frequency-increasing as Ū1 increases.

6 Conclusions

In this paper, the nonlinear dynamic behaviour of a rectangular plate with an ideal edge-
pinned constrain has been considered. In particular, the effects of different nonlinear terms,
i.e. single-mode and coupled-mode terms, on the natural frequency shifting have been anal-
ysed. This is an important topic because it may be helpful for selection of nonlinear terms
included in nonlinear reduced order models for different excitation situations.

First, we modelled the plate in the finite element software, Abaqus R©, and the implicit
integrator in Abaqus/Standard was used for integrating the response for two cases of force



configuration, i.e. random and hybrid excitation. The results including and excluding the
effect of geometrical nonlinearity were compared to show the nonlinear effect on the natural
frequency. Then the partial differential equation of motion of the plate was used to directly
compute the nonlinear reduced order model. Based on the ‘full’ nonlinear reduced order
model, two kinds of four-mode truncation models, i.e. coupled and uncoupled models, for
the example plate were used for response simulation. The results were compared with the
nonlinear behaviour predicted by the full FE model.

Finally, the second-order normal form method was used to estimate the backbone curves
including the nonlinear modal interactions. From the results, we can see that for the low
response situation, the effect of all nonlinear terms is insignificant which is consistent to
the finding in the existing literature. When the nonlinear systems under a high loading,
nonlinear cross-coupling terms are the main mechanism that cause frequency shifting for the
multi-mode excitation situations. This findings in this paper may be useful for the nonlinear
terms selection in nonlinear reduced order models that are significant for nonlinear system
response prediction and identification.
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