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In order better to understand the processes that lead to the generation of magnetic fields
of finite amplitude, we study dynamo action driven by turbulent Boussinesq convection in
a rapidly rotating system. In the limit of infinite Prandtl number (the ratio of viscous to
thermal diffusion) the inertia term drops out of the momentum equation, which becomes
linear in the velocity. This simplification allows a decomposition of the velocity into a
thermal part driven by buoyancy, and a magnetic part driven by the Lorentz force. While
the former velocity defines the kinematic dynamo problem responsible for the exponential
growth of the magnetic field, the latter encodes the magnetic back reaction that leads
to the eventual nonlinear saturation of the dynamo. We argue that two different types
of solution should exist: weak solutions in which the saturated velocity remains close
to the kinematic one, and strong solutions in which magnetic forces drive the system
into a new strongly magnetised state that is radically different from the kinematic one.
Indeed, we find both types of solutions numerically. Interestingly, we also find that, in
our inertialess system, both types of solutions exist on the same subcritical branch of
solutions bifurcating from the non-magnetic convective state, in contrast with the more
traditional situation for systems with finite inertia in which weak and strong solutions are
thought to exist on different branches. We find that for weak solutions, the force balance
is the same as in the non-magnetic case, with the horizontal size of the convection varying
as the one third power of the Ekman number (the ratio of viscous to Coriolis forces),
which gives rise to very small cells at small Ekman numbers (i.e. high rotation rates).
In the strong solutions, magnetic forces become important and the convection develops
on much larger horizontal scales. However, we note that even in the strong cases the
solutions never properly satisfy Taylor’s constraint, and that viscous stresses continue to
play a role. Finally, we discuss the relevance of our findings to the study of planetary
dynamos in rapidly rotating systems such as the Earth.

1. Introduction

Many astrophysical objects, from galaxies to planets, possess some sort of magnetic
field. Dynamo theory provides an elegant framework to discuss the origin and morphology
of these fields (Parker 1979). In a hydromagnetic dynamo, the inductive motions of an
electrically conducting fluid maintain a magnetic field against Ohmic dissipation. From a
mathematical point of view, it is helpful to distinguish two classes of dynamo: kinematic
and dynamic.
Kinematic dynamo theory addresses the question of which types of velocity can amplify

an initially weak magnetic field. The assumption here is that if the field is very weak,
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then it is dynamically unimportant, and the velocity is therefore independent of the
magnetic field. Thus it is meaningful to study the dynamo problem for a given velocity.
Mathematically, this amounts to solving the induction equation for a prescribed velocity
field. Because the induction equation is linear in the magnetic field, the fundamental
properties in kinematic dynamo theory are the growth rate of the magnetic field and
the corresponding eigenfunctions. In a realistic situation, however, the magnetic field
cannot grow forever; the Lorentz force will eventually become significant, modifying the
velocity and saturating the dynamo growth. This describes the dynamic dynamo problem.
Mathematically, this results in solving the coupled induction and momentum equations
self-consistently. The problem then becomes nonlinear, and the fundamental properties
of interest are the amplitude and geometrical structure of the magnetic field.

Solving the dynamic dynamo problem is a much tougher proposition than its kinematic
counterpart. The kinematic problem is linear and depends on only one equation with just
one parameter, the magnetic Reynolds number Rm, the ratio of diffusive to advective
timescales. The dynamic problem is not just nonlinear, but requires the solution of
an underlying hydrodynamic problem, even before any magnetic issue is addressed; as
such, it requires the specification of possibly many parameters as well as the external
forces acting on the fluid. The kinematic problem is well understood at low values of
Rm (Moffatt 1978); at high Rm some problems remain, but these are of a technical
nature (Childress & Gilbert 1995). By contrast, the dynamic problem is much less well
understood; the landscape of parameter space is vast and the range of physical systems
enormous. The ultimate aim must be to understand the dynamic problem over this entire
landscape. However, given the difficulty of the problem, it makes sense to seek out starting
points for one’s investigation that, although non-trivial, make one’s life a little easier.

In this paper we address the dynamic dynamo resulting from rotating Boussinesq
convection, one of the simplest non-trivial models of astrophysical dynamo action. In
keeping with the philosophy outlined above, we seek a pathway into the dynamical
problem by which some simplification is achieved; specifically, we do this through the
elimination of the nonlinear inertia term, thus exploring a very different regime to that in
which inertial terms are significant. This could be achieved, for instance, by considering a
very viscous fluid, i.e. restricting attention to low Reynolds number flows. This, however,
would preclude the possibility of the interesting case of turbulent velocities, i.e. flows
at high Reynolds number. A less restrictive prescription is to consider the case of
rapid rotation and infinite Prandtl number (the ratio of kinematic viscosity to thermal
diffusivity); in this case, the inertia terms vanish, but fluctuating velocities are still
permitted, driven by the nonlinearity in the temperature equation. This is the problem
we shall explore in this paper.

The problem of dynamo action in rotating Boussinesq convection at infinite Prandtl
number has received detailed attention only in the pioneering paper of Jones & Roberts
(2000) (see also Rotvig & Jones 2002). By contrast, there have been numerous investi-
gations of dynamos driven by rotating Boussinesq convection in the presence of inertial
terms, chiefly motivated by the problem of the generation of the magnetic field in the
Earth and other planets (see, for example, the reviews by Roberts & Glatzmaier 2000;
Jones 2011; Roberts & King 2013). In these models, even at the highest rotation rates
(lowest Ekman numbers) that can be tackled computationally, the influence of inertia is
always significant (King & Buffett 2013), and thus the dynamics is significantly different
to that which we shall explore here.
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2. Mathematical Formulation

We consider thermally driven convection in a three-dimensional, Cartesian layer of
incompressible (Boussinesq) fluid rotating about the vertical. The fluid layer has depth
d, angular velocity Ω, density ρ, kinematic viscosity ν, thermal diffusivity κ and magnetic
diffusivity η. Following standard practice, we adopt the layer depth d, the thermal
relaxation time d2/κ, and the temperature drop across the layer∆T as the units of length,
time, and temperature respectively. We scale magnetic field intensities with (2Ωκµ0ρ)

1/2,
where µ0 is the magnetic permeability of the medium. With these units, and in standard
notation, the evolution equations read

σ−1 (∂tu+ u ·∇u) + E−1ez × u = −∇p̃+ E−1
J ×B +Raθez +∇2

u, (2.1)

(∂t − q−1∇2)B + u ·∇B = B ·∇u, (2.2)

(∂t −∇2)θ + u ·∇θ = w, (2.3)

∇ ·B = ∇ · u = 0, (2.4)

where J = ∇×B is the current density, θ denotes the temperature fluctuations relative
to a linear background profile, and the velocity u = (u, v, w). Four dimensionless numbers
appear explicitly: the Rayleigh number Ra, the Ekman number E, the Prandtl number
σ and the Roberts number q; these are defined by

Ra = gα∆Td3/κν, E = ν/2Ωd2, σ =
ν

κ
, q =

κ

η
, (2.5)

where g is the gravitational acceleration and α is the coefficient of thermal expansion.
The infinite Prandtl number limit of the momentum equation (2.1) results in the

equation

ez × u = −∇p+ J ×B +Rθez + E∇2
u, (2.6)

where R is the rotational Rayleigh number defined by

R = RaE =
gα∆Td

2Ωκ
. (2.7)

The new pressure p is given by p = Ep̃; its scaling though is immaterial, since for
Boussinesq convection, the role of the pressure is simply to keep the flow solenoidal.
It is worth pointing out that the limit of infinite Prandtl number is a delicate one,

and should not be thought of as being obtained either by letting ν → ∞ or κ → 0
with all the other parameters fixed. Indeed, ν and κ appear in R, E and q, all of which
must remain finite. The most glaring manifestation of taking this limit is the removal
of the inertia terms from the momentum equation. This is not a mere simplification of
the system: it has both mathematical and physical consequences. Mathematically, the
momentum equation has become a linear diagnostic equation that defines the velocity in
terms of the thermal and magnetic variables. Physically, the removal of the inertia terms
has profound implications for the interpretation of the behaviour of the system. In the
absence of buoyancy forces and dissipation, the original system (with inertia) supports
two families of linear waves. For moderate rotation rates and strong background magnetic
field, the two families correspond to rotationally modified Alfvén waves. On the other
hand, if rotation dominates, then one family consists of modified inertial waves, whereas
the other consists of hydromagnetic inertial waves; for these latter waves, both inertial
and magnetic effects come into play, with the wave frequency given by ω2 ≈ ω4

A/ω
2

I , where
ωA and ωI are the Alfvén and inertial frequencies respectively. In the new (inertialess)
system, with momentum equation (2.6), the inertial waves acquire an infinite propagation
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speed. Only the hydromagnetic inertial waves remain; for these, both ωA and ωI tend to
infinity, but such that ω4

A/ω
2

I is finite.
Thus the equations with infinite Prandtl number describe a rapidly rotating, strongly

magnetised system. It is for this reason that we chose to scale the magnetic field with
(2Ωκµ0ρ)

1/2; had we chosen the conventional scaling of magnetic field with (µ0ρ)
1/2κ/d

then the field can be brought into play as σ → ∞ only by a further scaling with σ1/2.
Although there is no ambiguity in determining u and B from the inertialess equations,
a difficulty arises in comparing |u|2 and |B|2. If we denote the dimensional quantities by

û and B̂ then

|B̂|2/µ0ρ

|û|2
=

2Ωd2

κ

|B|2

|u|2
=

σ

E

|B|2

|u|2
. (2.8)

Thus, in this system, with σ → ∞ and E finite, comparing kinetic and magnetic energies
is meaningless.
This raises an interesting issue about how to interpret magnetic field intensities.

Traditionally, one uses the equivalent Alfvén speed to compare the magnetic energy
with the kinetic energy of the moving fluid; here, however, the Alfvén speed is formally
infinite and so this is of no use. Instead, one way to proceed is to note that whereas
equation (2.1) expresses the conservation of momentum, equation (2.6) expresses a force
balance requirement. With this new system, momentum and energy are therefore not
that well defined; indeed, it is now velocity, not acceleration, that is related to forces.
Interpretation of the meaning of B must therefore be through comparison with the
Coriolis force. That said, and as we shall see, it is still helpful to use the average values
of |u|2 and |B|2 to measure the magnitudes of u and B relative to themselves, but not
to each other.
In the horizontal directions we assume that all fields are periodic with periodicity λ —

the aspect ratio. In the vertical we consider standard illustrative boundary conditions,
namely that the boundaries are perfectly conducting, both thermally and electrically,
impermeable and stress-free. Formally these correspond to

θ = w = ∂zu = ∂zv = Bz = ∂zBx = ∂zBy = 0 at z = 0, 1. (2.9)

We solve equations (2.2)–(2.4) numerically by standard pseudo-spectral methods.
Details concerning the numerical methods can be found in Cattaneo et al. (2003). The
numerical scheme requires at every time step a knowledge of the velocity u, which can
be computed from (2.6). The details of how this can be performed are contained in
the Appendix. The implementation of the momentum equation was checked against the
linear stability results of Roberts & Jones (2000). The numerical resolution and parameter
values for all the simulations presented in this paper are summarised in Table 1.

3. Hydrodynamic Convection

Before tackling the dynamo problem, it is useful to present some of the basic features
of rotating non-magnetic convection at infinite Prandtl number that may play a role in
the process of magnetic field generation.

Stability to infinitesimal perturbations that vary as

exp (st+ i (kH · xH))
sin

cos
πz (3.1)

is governed by the dispersion relation

s =
REk2Hk2

E2k6 + π2
− k2, (3.2)



Dynamo action in rotating convection at infinite Prandtl number 5

E R q λ Nx ×Ny ×Nz

10−3 5× 102 1∗, 2∗, 5, 10 5 256× 256× 97
10−3 103 1∗, 2, 5, 10 5 256× 256× 97
10−3 104 0.5, 1, 2 5 256× 256× 97
10−3 105 0.1 4 1024× 1024× 257
10−4 320− 490 10 5 256× 256× 97
10−4 5× 102 1∗, 2∗, 5∗, 10, 20 5 256× 256× 97
10−4 103 5, 10, 15 5 512× 512× 97
10−4 103 5, 10, 15 5 512× 512× 97
10−4 1.077× 103 0 5 512× 512× 257
10−4 104 0.5, 1, 2, 5, 10 2 512× 512× 257
10−4 2× 104 0.25, 0.5, 1, 2 2 512× 512× 257
10−5 2.321× 103 0 2 1024× 1024× 257
10−5 103 10 2 512× 512× 257
10−5 103 10 2 1024× 1024× 257

Table 1. Summary of the parameter values and numerical resolution for the simulations. An
asterisk in the q column indicates that the dynamo failed, starting from a weak seed field.

where kH is the horizontal wavenumber and k2 = k2H + π2 (cf. Roberts & Jones 2000).
Although the standard dispersion relation for rotating Boussinesq convection is cubic in
the growth rate s (see, for example, Chandrasekhar 1961), here the inertial modes are
filtered out, leading to the linear relation (3.2). It follows from (3.2) that convection sets
in as a steady bifurcation when

R = R0 =
E2k6 + π2

Ek2H
. (3.3)

Since the onset of convection is via a time-independent mode, it follows that the
marginal stability criteria for the inertialess system must be identical to those of the
system with inertia (which includes the ∂tu term and the nonlinear u · ∇u term; see
Chandrasekhar (1961)). In particular, for any Ekman number E, there is a unique value
of the horizontal wavenumber, kH = kcritH say, for which R0 takes its minimum value,
Rcrit

0
. As E → 0

kcritH ∼

(
π2

2

)1/6

E−1/3, Rcrit

0
∼ 3

(
π2

2

)2/3

E−1/3. (3.4)

Figure 1 plots kcritH and Rcrit

0
as functions of E, together with the asymptotic results (3.4).

Clearly, for E . 10−3, the system is in the rapidly rotating asymptotic regime.
As R is increased above Rcrit

0
, the convection becomes nonlinear and time dependent,

with associated changes in the planform. Figure 2 shows density plots of the temperature
in vertical planes and horizontal planes near the surface, for three increasing values of
R at E = 10−4, for which Rcrit

0
≈ 187. Near onset, the convection assumes a columnar

structure with horizontal scale controlled by kcritH (figure 2(a), with R = 500). Within
each column, the fluid spins one way at the top and the other way at the bottom. As R is
increased, the convective pattern becomes asymmetric. Near the upper boundaries, the
cold downflowing fluid forms a network surrounding the hot isolated upflows. Typically,
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Figure 1. kcrit

H and Rcrit

0 as functions of E−1 (solid lines), together with the asymptotic
results (3.4) (dotted lines).

the upflow centres develop a shallow cold return flow in which the fluid spins in the
opposite direction to the hot fluid surrounding it (figure 2(b), with R = 103). Because
of the up-down symmetry of the Boussinesq equations, the reverse is true in the vicinity
of the lower boundary. At yet higher values of R, the convective cells are sheared out,
leading to a network of thin downflows, winding itself round the upflows (figure 2(c),
with R = 104). Although the plots in figure 2 are for the specific value of E = 10−4, we
have found the behaviour described to be generic, provided that the Ekman number is
sufficiently small.
For convection in rotating systems, we expect a correlation between flows and circula-

tion. This manifests itself in a lack of reflectional symmetry, which can be measured by
the kinetic helicity H = 〈u ·∇×u〉, where 〈·〉 denotes an average over the fluid volume.
In the Boussinesq approximation, the helicity density is antisymmetric with respect to
the midplane of the layer, and so it is the distribution of helicity density in each half-layer
that is of importance. Figure 3 shows the relative helicity, defined by

h(z) =
〈u ·∇× u〉H

〈u2〉
1/2
H 〈(∇× u)2〉

1/2
H

, (3.5)

where 〈·〉H denotes an average over horizontal planes, for the three cases of figure 2. It
can be seen that even for the case with the most vigorous convection, the influence of
rotation is still strong.
In general, as R increases at fixed E, the rotational constraint is weakened and hence

the characteristic horizontal scale of the convection increases. Nevertheless, since the
inertial term is absent, the characteristic scale of the convection still decreases as E−1/3

even in the nonlinear regime, as can be seen from simple considerations of force balance
in the vorticity equation. This is illustrated by figure 4, which shows the horizontal power
spectra of the velocity for three convective flows at different values of E with R chosen
so that they all have the same degree of supercriticality. For fixed E, the efficiency of the
convection increases with R. This is illustrated in figure 5, which shows the horizontally
averaged temperature as a function of depth, for the same parameter values as figure 2.
At the highest value of R, the convection is so efficient that the layer is isothermal except
in very thin boundary layers.
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Figure 2. Density plots of temperature fluctuations, in which light (dark) tones correspond to
hot (cold) fluid. The top row shows the xy-plane near the upper surface (z = 0.95); the bottom
row shows the xz-plane at the midpoint value of y (i.e. y = λ/2). In all cases, E = 10−4; (a)
R = 500, (b) R = 103, (c) R = 104. For (a) and (b), the aspect ratio λ = 5; for (c), λ = 2.

Figure 3. Snapshots of relative helicity h(z) versus z for the three cases of figure 2. E = 10−4;
R = 500 (solid line); R = 103 (dashed line); R = 104 (dot-dashed line). Exact antisymmetry
about the mid-plane (z = 0.5) would be recovered by time averaging.

4. Dynamo Action

In order to study the influence of the rotational constraint on convectively driven
dynamos, we have investigated three different values of E (10−3, 10−4, 10−5); for each
of these we have considered a range of values of R, from a few times supercritcial up to
vigorous convection. In each case, the convection is evolved from small random pertur-
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Figure 4. Horizontal power spectra of the kinetic energy for three cases of nonlinear convection
with the same degree of supercriticality. Solid line: E = 10−3, R = 500; dashed line: E = 10−4,
R = 1077; dot-dashed line: E = 10−5, R = 2321. In all cases, the wavenumber refers to the case
of λ = 5. The spectra were computed over the interior regions of the simulations (0.1 < z < 0.9)
and time averaged. The location of the spectral peaks is consistent with a scaling in which the
characteristic convective length scale decreases as E−1/3.

Figure 5. Horizontally-averaged temperature profiles for the three cases of figure 2. E = 10−4;
R = 500 (solid line); R = 103 (dashed line); R = 104 (dot-dashed line).
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bations of the basic state, to an eventual stationary state; these purely hydrodynamic
convective states are what we shall refer to as the kinematic flows. For each such flow, we
introduce a small magnetic perturbation, at t = 0, which is then evolved for a range of
values of q, effectively increasing Rm by increasing q. Each simulation is evolved either
until the field decays or until it grows and saturates, with the convection attaining a new,
magnetised, stationary state. In Table 1 we indicate which of the hydrodynamic flows
are able to maintain dynamo action.
It is natural to ask under what conditions dynamo action can take place. It is not

surprising to find that dynamo action is possible once the convection is sufficiently
vigorous and the magnetic Reynolds number is large enough. A more challenging question
is to ask what determines the saturation amplitude of the magnetic field and what are
the mechanisms that govern the saturation process. In general, this is a very difficult
question, not just to answer, but even to formulate precisely. Here, because of the absence
of inertia in the momentum equation, we can definitely provide a precise formulation
of the problem of dynamo saturation, and are also able, to some degree, to provide
an answer. The crucial property of the formulation of the convection problem here is
that the momentum equation is linear in the velocity. This allows us to decompose the
velocity into the sum of two components, which we choose to have meaningful physical
interpretations. Thus we write the total velocity u as

u = uT + uM , (4.1)

where uT and uM satisfy, respectively, the equations

ez × uT = −∇pT +Rθez + E∇2
uT , (4.2)

ez × uM = −∇pM + J ×B + E∇2
uM , (4.3)

with ∇ · uT = ∇ · uM = 0 and p = pT + pM .
The component uT is driven by Coriolis and buoyancy forces, whereas the component

uM is driven by Coriolis and magnetic forces. The velocity uT exists even in the absence
of magnetic fields, and defines the kinematic problem; uM , on the other hand, exists only
by virtue of the presence of the magnetic field. One can think of uM as the means by
which the system reacts to the presence of the magnetic field, leading eventually to the
saturation of magnetic field growth. If the buoyancy force were to be prescribed, then
uT would always be independent of the magnetic field. As things are, in the saturated
regime, the temperature distribution depends on both uT and uM , via equation (2.3),
and hence uT does not remain as the kinematic velocity.
It is not unreasonable to conceive of a situation in which the temperature distribution

is not strongly contaminated by uM . In this scenario, buoyancy drives the convection,
the convection generates a magnetic field by dynamo action, and the magnetic field
drives a velocity uM , which slightly modifies u so as to saturate the dynamo growth.
Here, u and uT are similar, with the magnetic field having a weak effect on the velocity
— we categorise such solutions as weak field solutions. That said, one can envisage a
different scenario in which, when saturation occurs, a substantial fraction of the total
velocity is driven magnetically. In this case, magnetic forces do not contribute just to the
saturation of the dynamo, but to its actual driving. Here, the velocity in the saturated
state is completely unrelated to that of the kinematic state; indeed, the kinematic state
may not even act as a dynamo. In this case, the magnetic field has a strong effect on the
velocity — we thus classify such solutions as strong field solutions. The justification for
the consideration of strong field solutions is that at small E the convection is strongly
rotationally constrained. There are circumstances in which the presence of the magnetic
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Figure 6. Time traces of 〈u2〉 and 〈B2〉 for the weak field dynamo with E = 10−4, R = 104,
q = 1. The amplitude of 〈B2〉 has been multiplied by 105 in order that the two can be represented
clearly on one plot.

field can alleviate this constraint, and possibly lead to more vigorous convection, which, in
turn, can support stronger fields. This is well known in the related, but simpler, problem
of rotating convection, in which the presence of an imposed magnetic field reduces
considerably the critical Rayleigh number for the onset of convection (Chandrasekhar
1961; Eltayeb & Roberts 1970; Eltayeb 1972). The dynamo problem is more complicated,
in that the magnetic field is self-generated; nonetheless, it is not unreasonable to expect
that a similar mechanism may be operating here. That being the case, one would expect
strong field solutions to be favoured for small values of E and moderate values of R. As
we shall see presently, these considerations are borne out by the results.

4.1. Weak Field Solutions

As an illustrative example of a weak field solution, we consider the case of E = 10−4,
R = 104, q = 1, whose convective pattern in the kinematic regime is shown in figure 2(c).
Figure 6 shows the evolution of 〈u2〉 and 〈B2〉, following the introduction of a small seed
field. There follows an exponential growth in 〈B2〉, accompanied by a decrease in 〈u2〉,
followed by a nonlinear saturation in which the system settles to a stationary state.
Figure 7 shows snapshots of the vertical velocity near the top of the domain, for the

kinematic and dynamic regimes. It can be seen that whereas the overall structure of the
convective patterns remains roughly the same, the characteristic scale of the convection
increases slightly in the dynamic regime. This increase in scale is a manifestation of
the magnetic field relaxing the rotational constraint; as R is increased, rendering the
convection more supercritical, the increase in the convective scale in the saturated regime
diminishes. This is confirmed by figure 8, which shows the velocity spectra for the two
regimes; except for a slight shift towards smaller wavenumbers, the two spectra are quite
similar.
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Figure 7. Density plots of vertical velocity close to the upper boundary (z = 0.95), for (a)
the kinematic and (b) the dynamic regime, for E = 10−4, R = 104, q = 1; light (dark) tones
correspond to upward (downward) moving fluid. The plots are scaled independently.

Figure 8. Horizontal power spectra of the kinetic energy for the kinematic regime (solid line)
and dynamic regime (dashed line) for the weak field dynamo: E = 10−4, R = 104, q = 1, λ = 2.
The spectra were computed over the interior regions (0.1 < z < 0.9) of the simulations and time
averaged.

The magnetic field structure can be gauged from figure 9, which shows the vertical
component of the electric current near the top of the layer, and the vertical component of
the magnetic field in the middle of the layer. The current has a filamentary structure, with
the filaments outlining the downflows of the convective patterns. The vertical magnetic
field is concentrated in sheets, by and large, with a characteristic scale comparable with
that of the convective flow. As can be seen from figure 6, the flow and field evolve on
essentially the same timescale.
One of the key ideas of mean field electrodynamics is that the generation of large-

scale (mean) magnetic fields, on scales much larger than that of the underlying flow, is
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Figure 9. Density plots of (a) the vertical current near the upper boundary (z = 0.95), and
(b) the vertical magnetic field at the midplane.

associated with a lack of reflectional symmetry in the flow. Although, from inspection of
figure 9, no large-scale structure in the field is immediately apparent, it is nonetheless
natural to look more closely into this issue, given that the flow is undeniably helical.
Given our geometry and boundary conditions, we can look for the presence of a mean
field that is horizontal, but whose strength and orientation may vary with height z (cf.
Childress & Soward 1972). Figure 10(a) shows the time average of 〈BH〉H , where BH

is the horizontal magnetic field and 〈·〉H denotes an average over the horizontal plane.
Figure 10(b) shows the quantity

Γ (z) =
|〈BH〉H |2

〈|BH |2〉H
, (4.4)

at several instances, roughly one turnover time apart, and as a time average. It can be
seen that Γ is a measure of the strength of the large-scale field relative to the total
strength (Cattaneo & Hughes 2006). Three things should be noted: Γ is very small, it
has no apparent organisation in z and its temporal coherence is no longer than a turnover
time. These points taken together suggest that BH is nothing more than the horizontal
projection of a random field; we find no evidence of any large-scale organisation of the
magnetic field.

We can obtain some insight into the mechanism of field saturation by exploiting the
velocity decomposition (4.1). Figure 11 shows the vertical components of u, uT and uM

near the upper boundary, at the same time as for the plots in figure 9. The most striking
feature is the remarkable similarity between w and wT . Taken at face value, one might
expect uM to be miniscule. However, that is not entirely correct; for instance, at this
particular time, 〈u2

M
〉/〈u2

T
〉 ≈ 0.3. It is though difficult to detect the features of uM that

are ultimately responsible for the dynamo saturation. For instance, the two marked boxes
in figure 11 outline features in uM . In the black box, the component of wT is stronger
than that in the full velocity w; the effect of the Lorentz force is thus to slow down
the vertical velocity. By contrast, in the green box, the opposite is true, with the total
velocity being stronger then the thermally driven flow; the effect of the Lorentz force is
thus to speed up the velocity. The conclusion is that the changes required in the velocity
to saturate the dynamo are tremendously subtle.
A better approach comes by noting that from the induction equation, magnetic field is
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Figure 10. (a) Snapshot of the mean horizontal field as a function of depth for the weak field
dynamo. (b) Snapshots of Γ (z) versus z at three times (the dashed, dotted and dot-dashed lines),
together with the time average of Γ (z) calculated over ten snapshots (solid line). The plot in
(a) corresponds to the case shown as a dot-dashed line.

generated by field line stretching (the B ·∇u term); hence it is velocity gradients, not the
velocity per se, that are of interest. This motivates looking at the vorticity field. Figure 12
shows the vertical vorticity corresponding to u, uT and uM at the same time and location
as in figure 9. Unlike their velocity counterparts, the difference between ω and ωT is now
more striking; indeed, ωT looks like a blurred version of ω. The difference ωm therefore
consists mainly of these missing sharp vorticity features. The mechanism of saturation
therefore clearly requires highly localised changes in the velocity gradients. Unlike for the
magnetically driven velocity, changes in the magnetically driven vorticity are reflected
in the overall vorticity. Nevertheless, the action of the magnetic torques is not simply to
remove or decrease regions of high vorticity, but, somewhat counterintuitively, instead
acts to sharpen the vorticity distribution of the thermally driven component. It is easy
to verify that the sharpening of the vorticity field is a magnetic phenomenon by noting
that the vorticity distribution for the kinematic velocity (figure 12(d)) exhibits the same
degree of smoothness as the thermally driven velocity in the saturated regime.

4.2. Strong Field Solutions

As an illustrative example of a strong field solution, we first consider the case of
E = 10−4, R = 500, q = 20, whose convective pattern in the kinematic regime is
shown in figure 2(a). Figure 13 shows the evolution of 〈u2〉 and 〈B2〉, following the
introduction of a weak seed magnetic field. As in the weak field case, the magnetic
energy grows exponentially and then saturates. However, the effect of this field growth
on the kinetic energy is radically different. Following the saturation of the field, the
timescale of variation of the kinetic energy changes dramatically; it is clear that a much
shorter timescale has been introduced. We note also that the growth and saturation of
the magnetic field actually causes an abrupt increase in the kinetic energy. This second
feature is found in most, but not all, of our simulations of strong field solutions; the
marked change in temporal variations is, however, common to all such solutions.
Figure 14 shows snapshots of the vertical velocity near the top of the domain, for the

kinematic and dynamic regimes. Whereas for the weak field solutions, except for a slight
change in scale, the nature of the convection is the same, here not only the scale, but the
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Figure 11. Density plots, scaled consistently, of the vertical components of (a) the full velocity,
(b) the thermal velocity, and (c) the magnetic velocity. The time and location (z = 0.95) are
identical to those of the plot of the vertical component of the current in figure 9.

very organisation of the convection has been changed. These changes are made apparent
by inspection of the velocity spectra in the two regimes, as shown in figure 15. In the
kinematic regime, there is a sharp peak at the convective scale, with steep fall-offs to
both larger and smaller scales. By contrast, in the dynamical regime, there is a flattening
in the spectrum, with more energy at both smaller and larger scales than in the original
convective flow.
The structure of the magnetic field in the middle of the layer and that of the vertical

current near the top of the domain are shown in Figure 16. The thing to note is its
remarkable similarity to the corresponding image for the weak field, shown in figure 9.
Even though one is a strong field solution and the other a weak field solution, from a
magnetic point of view they look the same. We shall return to this point in the following
subsection. We note here that in order to make the comparison easier, we are showing
only a part of the horizontal plane for the strong field solution with the same aspect ratio
(λ = 2) as the weak field solution of figure 9.
Figure 17 shows the velocity decomposition (4.1), analogous to figure 11 for the weak
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Figure 12. Density plots of the vertical components of (a) the full vorticity, (b) the thermal
vorticity, and (c) the magnetic vorticity, corresponding to the velocities shown in figure 11. For
comparison, a representative plot of the vertical component of the vorticity in the kinematic
regime is shown in (d). Plots (a), (b) and (c) are scaled consistently; plot (d) is scaled
independently.

field solution. As seen in the velocity spectra, this figure gives a visual confirmation
that in the strong field solutions the kinematic and saturated velocities are dramatically
different. Any prominent feature in u can be seen to originate either from uT or uM .
Therefore, whereas in the weak field case, u and uT are nearly equal, here uT and
uM both contribute significantly to the full velocity. In fact, for smaller values of E, it
is possible to find strong field solutions in which the contribution to the full velocity
from uM becomes the dominant one. This is illustrated in figure 18, which shows the
velocity decomposition for a strong field solution with E = 10−5, R = 103, q = 10. It is
striking that here u and uM are virtually identical, the very opposite of the weak field
case. The reason for this is that strong field solutions require both a strong rotational
constraint and also sufficiently vigorous convection in order to generate a magnetic field
that can break that constraint. As E becomes smaller, we anticipate therefore that the
magnetically-driven component of the velocity will become more and more dominant.
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Figure 13. Time traces of 〈u2〉 and 〈B2〉 for the strong field dynamo with E = 10−4, R = 500,
q = 20. The amplitude of 〈B2〉 has been multiplied by 5 × 103 in order that the two can be
represented clearly on one plot.

Figure 14. Density plots of vertical velocity close to the upper boundary (z = 0.95), for (a)
the kinematic and (b) the dynamic regime, for E = 10−4, R = 500, q = 20; light (dark) tones
correspond to upward (downward) moving fluid. The plots are scaled independently.

4.3. Hysteresis and Solution Branches

In the previous subsections we have identified two types of solutions: weak and strong.
Two issues naturally arise. One is the relation between these two types of solution as
parameters are varied. The other, given the fact that the strong field solutions are clearly
of finite amplitude, is whether these solutions exhibit hysteretical behaviour. We shall
address these points by considering how the nature of the solutions changes for a fixed
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Figure 15. Horizontal power spectra of the kinetic energy for the kinematic regime (solid line)
and dynamic regime (dashed line) for the strong field dynamo: E = 10−4, R = 500; q = 20,
λ = 5. The spectra were computed over the interior regions (0.1 < z < 0.9) of the simulations
and time averaged.

Figure 16. Density plots of (a) the vertical current near the upper boundary (z = 0.95), and
(b) the vertical magnetic field at the midplane for the strong field case of E = 10−4, R = 500,
q = 20. Note that in order to make a comparison with figure 9, only a 2×2 section of the domain
is shown; the simulation has aspect ratio λ = 5.

value of E (E = 10−4) as R is varied; physically this corresponds to fixing the rotation
rate and varying the intensity of the convective driving.
As a starting point, we know that at R = 500 there is a strong field solution. By

changing R in small steps, and keeping q fixed at q = 10, we are able to examine how
the strong field solution changes as R is both increased and decreased. The results are
summarised in figure 19, which plots the r.m.s. value of the magnetic field strength
versus R; each asterisk corresponds to an actual simulation that used a neighbouring
simulation as initial condition. Solutions of finite amplitude can be traced back until
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Figure 17. Density plots, scaled consistently, of the vertical components of (a) the full velocity,
(b) the thermal velocity, and (c) the magnetic velocity for the strong field case of E = 10−4,
R = 500, q = 20. The time and location (z = 0.95) are identical to those of the plot of the
vertical component of the current in figure 16.

Figure 18. Density plots at z = 0.95, scaled consistently, of the vertical components of (a) the
full velocity, (b) the thermal velocity, and (c) the magnetic velocity for the ‘super strong’ field
case of E = 10−5, R = 103, q = 10.

R ≈ 330; for smaller values of R the field decays to zero and no dynamo solutions can be
found. Furthermore, we have investigated the onset of dynamo action from infinitesimal
magnetic field perturbations; for this value of q, we find instability for R & 420. Taken
together, these results suggest a bifurcation diagram of the form sketched in figure 20(a).
For R < R0 there is no dynamo solution; for R0 < R < R3, dynamo solutions can be
found only if the amplitude of the initial perturbation is sufficiently large; and for R > R3

all initial conditions are unstable to dynamo action. We anticipate that the trivial solution
is connected to the stable finite amplitude branch via a subcritical branch of unstable
solutions. This picture should be contrasted with another possible bifurcation diagram
often discussed in the dynamo literature (see Roberts 1978; Fautrelle & Childress 1982;
Roberts & Soward 1992; St-Pierre 1994), in which there is a supercritical branch of stable
solutions that intersects the unstable subcritical branch, as sketched in figure 20(b). In
this case, there is a range of R (R1 < R < R2) in which there exist two non-trivial stable
solutions. This leads naturally to the classification of solutions in terms of weak and
strong field branches. In our system, interpreted as in figure 20(a), there is only one non-
trivial stable branch. The distinction we make between weak and strong field solutions
is in terms of how the saturated velocity relates to the kinematic velocity. Recently, the
scenario described in figure 20(b) has been verified by the numerical investigation by
Dormy (2016) of dynamo action in a rapidly rotating spherical shell with finite inertia.
This leads us to conjecture that the absence of the stable supercritical branch in our
system is related to the absence of inertia. That being the case, it is reasonable to expect
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Figure 19. Time-averaged values of 〈B2〉1/2 versus R, with E = 10−4, q = 10. The dynamo
fails for R . 330; the zero field solution is unstable for R & 420.
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Figure 20. Sketches of the amplitude of the magnetic field versus R; stable (unstable) solutions
are denoted by solid (dashed) lines. In (a), infinitesimal magnetic fields are stable for R < R3.
All stable dynamo solutions are of the strong field type, at finite amplitude, and these can persist
down to R = R0. In (b), strong field solutions again exist for R > R0. Now though, infinitesimal
magnetic fields are stable only for R < R1; for R1 < R < R2 there is also a stable branch of
weak field solutions.

that the extent of the supercritical weak branch, or, equivalently, the distance between
R1 and R2, decreases with decreasing E.
Given that in our system there appears to be only one branch of non-trivial solutions

up to moderate values of R, it is natural to ask what is the relation between our strong
and weak field solutions. In particular, is there a gradual transformation from one to the
other as R is increased? The evidence suggests that this is indeed the case. As R increases,
the velocity changes gradually between the strong field and weak field solutions. However,
as noted already, the magnetic field remains essentially unchanged. Thus, in some sense,
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the system produces only one type of dynamo, namely that in which the influence of
rotation is minimised. At high values of R, the influence of rotation is small, and so
this is achieved by a slight increase in spatial scale in the velocity and where u ≈ uT .
By contrast, at smaller values of R, the influence of rotation is strong; dynamo action
succeeds by a dramatic increase in spatial scale in the velocity, driven almost totally by
the magnetic component uM .
In order to gain more physical insight into the nature of this system it is instructive

to consider the simpler problem of rotating convection in the presence of an imposed
magnetic field. It is well known that the effect of rotation is always to stabilise the system,
in the sense that the critical value of the Rayleigh number for the onset of convection
increases with increasing rotation. The same is true for a magnetic field, in the absence
of rotation. However, as noted originally by Chandrasekhar (1961), in the presence of
rotation, a magnetic field can actually be destabilising, in the sense that the critical value
of Ra decreases with increasing field strength, up to some point. Similar results apply
to rotating convection in the non-linear regime; for a fixed value of Ra the convective
efficiency can increase with imposed field strength, again, up to some point (Stellmach
& Hansen 2004). These considerations motivate us to conceive of a gedankenexperiment

in which, for fixed rotation, and for each Rayleigh number, the strength of the imposed
magnetic field is tuned such that the convection is as efficient as possible, as measured
by the Nusselt number, say. If one were then to plot these maximised Nusselt numbers
as a function of Ra, we would envisage a plot reminiscent of figure 19, with a monotonic
increase of Nusselt number with Ra. There will be a value of Ra below which convection
is impossible, no matter what the strength of the magnetic field; above that, there will be
a range of Ra for which convection will be possible only if a magnetic field is present; and
above that, there will be a range of Ra for which convection would have occurred anyway,
but for which the efficiency is enhanced by the magnetic field. Eventually, of course, at
very high Ra, the magnetic field will cease to be a beneficial effect. The important thing
to note is that at moderate values of Ra, the effect of the optimal magnetic field is
always to make the system more supercritical. In our dynamo model, the effect is the
same except that the magnetic field is not externally imposed, but is self-determined.
Thus the dynamo seems to operate by removing as much of the rotational constraint as
possible; at high R there is little constraint to remove, whereas at low values of R the
constraint to be removed is significant.
The computations leading to figure 19 are all performed at the fixed value of q = 10.

However, the weak and strong field solutions exhibited in §§ 4.1, 4.2 have different values
of q (q = 1 and q = 20 respectively). These choices were motivated chiefly by numerical
considerations, since dynamos driven by very vigorous convection and with high values
of q becomes prohibitively expensive. Hence it is natural to decrease the value of q as
R increases. However, such variations will not influence the fundamental nature of the
solutions; for example, if we had run the case of § 4.1, but with q = 20, the solution
would still be a weak field solution, but with magnetic boundary layers that would be
extremely expensive to compute.

5. Force Balance Considerations

Having identified two different mechanisms of saturation, leading to weak and strong
solutions, it is important to determine the nature of the force balance in each case. There
are four dynamical ingredients: buoyancy, the Coriolis force, viscous stresses and magnetic
forces. Following common practice, we shall refer to these by A (for Archimidean),
C, V and M. For purely hydrodynamic convection, the balance is between buoyancy,
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Coriolis and viscous forces (VAC); simple considerations of vorticity production lead
to the estimate that the critical scale of convection ℓ scales as ℓ ∼ E−1/3. When the
dynamo operates, there are more possibilities: the key question is whether the resulting
force balance remains as VAC, or whether the magnetic field is important, in which case
the balance can be either MAC or VMAC. In general, it is not straightforward to classify
the solution in terms of these categories. However, here, because we are dealing with an
inertialess system, we can make progress by again exploiting the decomposition (4.1).
By definition, our weak field solutions are ones for which the kinematic and dynamic

velocities are similar. As such, since the hydrodynamic balance is VAC, then so must
be the balance in the MHD regime. We have already argued in § 4 that the magnetic
field enters only in a very subtle way in order to saturate the dynamo growth. The
more complicated issue is to determine what happens in the case of the strong field
solutions. Clearly magnetic forces enter the picture in a significant manner. We have
already noted that for small E the magnetic velocity uM is almost identical to the full
velocity, and the latter has a characteristic horizontal scale that is much larger than
that in the corresponding hydrodynamic regime. Inspection of equation (4.3) suggests
that to a first approximation, magnetic forces almost balance the Coriolis force, so that
the rotational constraints are greatly reduced. However, it is rather difficult to have
convection without some buoyancy and so equation (4.2) must come into play. Indeed it
does, but with larger effective values of R and E for the given rotation rate, leading to
solutions similar to the weak field cases obtained at much lower rotation rates. One could
therefore argue that the strong field solutions could be classified as MC–VAC; in other
words, the strong field solutions organise themselves to resemble weak field solutions by
doing whatever it takes to reduce the influence of the Coriolis force.
We have made progress through the introduction of the velocities uT and uM , neces-

sitating the solution of an auxiliary equation, either (4.2) or (4.3). More typically, the
approach is to solve the governing MHD equations (2.1)–(2.4), and, for those cases in
which there is reason to believe that inertia is negligible, to address the issue of force
balance by the application of what is known as Taylor’s constraint (Taylor 1963). If
inertia can be neglected, then the momentum equation reduces to equation (2.6). Taking
the z-component of the curl of (2.6) then gives

∂w

∂z
= (∇× (J ×B)) · ez + E

(
∇2

ω
)
· ez, (5.1)

where the vorticity ω = ∇ × u. On integrating from z = 0 to z = 1 the Coriolis term
(i.e. the left hand side) vanishes as a result of the impermeable boundary; this leads to
the exact result

∫
1

0

(∇× (J ×B)) · ez dz = −E

∫
1

0

(
∇2

ω
)
· ez dz. (5.2)

In the limit of vanishing E, assuming that the vorticity remains sufficiently regular, the
integral on the right hand side vanishes. This gives Taylor’s constraint in the form

∫
1

0

(∇× (J ×B)) · ez dz = 0, (5.3)

which has to be satisfied pointwise for each value of x and y (Jones & Roberts 2000).
A dynamo system that generates a solution with strong magnetic field, no inertia and
negligible viscous stresses (i.e. MAC balance) must satisfy the constraint (5.3). Thus
it can be used to test whether a solution with these properties has been found. It is
important to realise that the vanishing of the integral is due to cancellation and not
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Figure 21. Density plots of the Taylorisation function T (x, y) for the case of E = 10−5,
R = 103, q = 10, λ = 2. The panels correspond to two different times.

simply to vanishing of the integrand. This is typically addressed by normalising the
integral through consideration of the ‘Taylorisation’ function

T (x, y) =

∫
1

0
(∇× (J ×B)) · ez dz∫

1

0
|(∇× (J ×B)) · ez| dz

. (5.4)

Note, given the exact result (5.2), one might consider the alternative normalisation
defined by

T̂ =

∫
1

0
∇2ωz dz∫

1

0
|∇2ωz| dz

. (5.5)

If |T (x, y)| ≪ 1 for all values of x and y then the solution should have the properties
listed above. In our case, we know that the solutions are not affected by inertia and that
the magnetic field plays a significant role in our strong field solutions. We could thus
use (5.4) as a measure of the importance of viscous stresses in determining the solution.
Figure 21 shows the results of calculating T (x, y), at two different times, for the strong
field solution with E = 10−5, R = 103, q = 10, for which u, uT and uM are shown in
figure 18. Clearly T (x, y) fluctuates very rapidly on small scales and attains O(1) values
over much of the domain. What therefore should one make of this?
Taken at face value, this result suggests that our strong field solution is not in MAC

balance, and hence that viscous stresses must play a role; a similar conclusion was reached
by Jones & Roberts (2000). Indeed, this is not inconsistent with our idea that the strong
field solution is MC-VAC. Having said that, it is perhaps useful to introduce a cautionary
note. The calculation of T or T̂ is tricky and prone to the introduction of high frequency
errors. The evaluation of T involves a product and two derivatives; the former introduces
aliasing errors and the latter amplifies numerical errors. Alternatively, the evaluation of
T̂ does not involve a product, but does introduce a further derivative of the primitive
variable u. To give a measure of the problems involved, we note that the three derivatives
acting on the highest frequencies give rise to an amplification factor of O(107) for the
run shown in figure 18. Bearing this in mind, it natural to ask if the fine structure and
rapid oscillations present in figure 21 might not simply be a numerical artefact. Partly to
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address this issue we have increased the resolution of the solution to 1024×1024×257 prior
to the calculation of T (x, y). This was achieved by interpolating the solution to a finer grid
and integrating the evolution equations for 106 steps at the higher resolution. The results
have remained largely the same, which leads us to conclude that the lack of Taylorisation
as evidenced in figure 21 is physical and not a numerical artefact. However, for simulations
that are only marginally resolved, the possibility of numerical contamination should be
taken into consideration before drawing any conclusion.

6. Concluding Remarks

We have considered dynamo action in thermally driven convection under the influence
of rotation but with no inertia. Our primary motivation for considering an inertialess
system is that it allows a useful decomposition of the velocity into thermal and magnetic
components, which can be used to gain valuable insights into the processes that lead to
dynamo saturation. We have identified two types of dynamo solution — weak and strong
— based on how close the saturated velocity remains to the kinematic one. For the weak
field solutions, the saturated velocity remains close to the kinematic velocity, with just
a slight increase in scale and a slight decrease in convective efficiency. The velocity u

in the saturated regime bears a remarkable similarity to the thermal velocity uT ; the
role of uM is to introduce very subtle changes, sufficient to halt the dynamo growth.
By contrast, for the strong field solutions, the saturated velocity bears no resemblance
to the kinematic flow. There is a marked increase in scale and the convective efficiency
increases substantially (the heat flux increases by 50% for the case shown in figure 14).
As E decreases, the velocity u becomes closer to the magnetic component uM .

Remarkably, the magnetic field for the weak and strong field solutions look very similar.
In other words, although the method by which dynamo action is achieved is very different,
the final product is essentially the same. This has led us to speculate that weak and
strong field solutions lie on the same dynamo branch. This is a finite amplitude branch of
solutions, presumably connected to the non-dynamo solution by an unstable, subcritical
branch, as sketched in figure 20(a). We have found no evidence for a finite amplitude,
supercritical branch of solutions. This should be contrasted with the traditional picture
in which both branches coexist, as shown in figure 20(b). We conjecture therefore that the
nature of the bifurcation diagram is related to the importance of inertia. In the absence
of rotation, for which inertia is important, we believe that only the lower branch exists;
by contrast, in our system, when rotation is dominant and inertia is negligible, there is
no lower branch of solutions. It is only in cases in which rotation is important but inertia
still plays a role that the upper and lower branches can coexist. This would go some
way towards explaining why it has been difficult to find the upper branch of solutions by
simulating the full system and reducing the effect of inertia simply by reducing E (see,
for example, Soderlund et al. 2012; King & Buffett 2013). The problem is that, in the
full system, E probably has to be extremely small before the upper branch manifests
itself. This can, to some extent, be circumvented by considering the case of high Prandtl
number; in the current study, Pr is formally infinite, inertia drops out of the equation,
and the upper branch comes shining through. It is though of interest to note that in
the plane layer dynamo simulations of Stellmach & Hansen (2004), a transition to large-
scale convection occurs at low Ekman number. Indeed, the horizontal convection scale
increases until it is comparable with the size of the domain, which for computational
reasons was constrained to be fairly small. Possibly because of this restriction, the large-
scale convective flow is not capable of maintaining the strong field indefinitely; the field
decays and the flow reverts to being small scale. Field amplification can then restart,
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leading eventually to another transition to large-scale convection. Thus the amplitude of
the generated magnetic field fluctuates strongly in time.
It is important to make the distinction between weak and strong field branches and

what we refer to as weak and strong field solutions. It is slightly ironic that our weak and
strong field solutions lie on the one branch that is traditionally called the strong field
branch. Our nomenclature addresses the issue of the force balance that leads to dynamo
saturation rather than the branch on which the solutions lie. As such, we found that our
weak solutions may be characterised as VAC, and our strong field solution as MC-VAC,
in which the principal role of the magnetic field is to remove rotational constraints.
The fact that both our weak and strong solutions have viscous stresses playing a role

raises the interesting question of what happens to these inertialess solutions as E is
decreased to yet smaller values. This is not only of intrinsic mathematical interest, but
is pertinent to the application of some of these ideas to planetary dynamos, which are
believed to operate at very small values of E (see, for example, Dormy 2016; Hughes
& Cattaneo 2016). This might be usefully addressed through consideration of how the
bifurcation diagram in figure 20(a) might change as E is decreased. We recall that the
solutions in R0 < R < R3 are definitely strong, whereas those with R ≫ R3 are weak. As
E is decreased, the value of R3, denoting the onset of dynamo action from infinitesimal
perturbations, will increase. This implies that by decreasing E, a weak field solution would
be transformed into a strong field solution. A more fundamental issue is to address what
happens to R0 as E is decreased. Here there are two physically interesting possibilities.
One is that the location of R0 remains unchanged. This would imply that the range
of values of R for which strong field solutions exist continues to increase, and that any
finite amplitude strong field solution cannot be stabilised by increasing the rotation.
Presumably, this would be the case if the solutions were in MAC balance; the value of
E is irrelevant and the solution continues to operate for arbitrarily small values of E.
The other possibility is that R0 increases as E decreases, but at a rate no faster than
that of R3. Then the domain of existence of strong field solutions increases, but any
strong field solution will ultimately be stabilised at sufficiently high rotation. It would
be of tremendous interest to distinguish between these possibilities. However, we admit
that this would be computationally extremely challenging. To give an idea of the scale
of the problem, decreasing E from 10−4 to 10−5 in our simulations led to over an order
of magnitude increase in computational requirements.
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Appendix A

Here we provide the formulation for the solution of the velocity u from the diagnos-
tic equation (2.6) together with the solenoidal constraint on the velocity. To simplify
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notation, let us write (2.6) as

ez × u = −∇p+R+ E∇2
u, (A 1)

where R = J ×B +Rθez. Taking the divergence of (A 1), using ∇ · u = 0, gives

∇ · (ez × u) = −∇2p+ iQ, (A 2)

where iQ = ∇ ·R. In terms of the components of the velocity u = (u, v, w), this becomes

−
∂v

∂x
+

∂u

∂y
= −∇2p+ iQ. (A 3)

The aim is to solve equation (A 3) for p and then to substitute for p into (A 1) in order
to solve for u and v.
As discussed in § 2, for computational purposes the variables are represented spectrally

in all three directions. Thus we may write, for example,

u(x, y, z, t) =
∑

kx,ky,kz

û(kx, ky, kz, t) exp (i(kxx+ kyy + kzz)) , (A 4)

where the kz summation is chosen to respect the boundary conditions at z = ±1. It is
therefore convenient to solve for the individual Fourier components. On dropping the
hats, equation (A 3) can be written as

p =
i(−kxv + kyu−Q)

k2
, (A 5)

where k2 = k2x + k2y + k2z . On substitution into (A 1), the x- and y-components lead to
two linear equations for u and v, which may be solved to give

u =
−Q(Ekxk

2 + ky) + (Ek4 + kxky)Rx + (k2y + k2z)Ry

k2z + E2k6
, (A 6)

v =
−Q(Ekyk

2 − kx)− (k2x + k2z)Rx + (Ek4 − kxky)Ry

k2z + E2k6
, (A 7)

where we have written R = (Rx, Ry, Rz). (As required, equations (A 6) and (A 7) are
symmetric under the transformation u → −v, v → u, kx → −ky, ky → kx, Rx → −Ry,
Ry → Rx.) Finally, we use ∇ · u = 0 to solve for w, giving

w =
EQk2(k2x + k2y)− (Ekxk

4 − kyk
2

z)Rx − (Ekyk
4 + kxk

2

z)Ry

kz(k2z + E2k6)
. (A 8)
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