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Ptychography is a form of phase imaging that uses iterative algorithms to reconstruct an image of a specimen from a
series of diffraction patterns. It is swiftly developing into a mainstream technique, with a growing list of applications
across a range of imaging modalities. As the field has advanced, numerous reconstruction algorithms have been proposed,
yet the early approaches have not seen major improvement and remain popular. In this paper, we revisit the first such
algorithm, the ptychographical iterative engine (PIE), and show how a simple revision and powerful extension can
deliver an order of magnitude speed increase and handle difficult data sets where the original version fails completely.
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1. INTRODUCTION

Coherent diffractive imaging (CDI)—imaging an object based on
the way it diffracts—is one of those appealing research areas that
combines important applications with opportunities for experi-
mental ingenuity, algorithmic innovation, and mathematical explo-
ration. A good example of this is ptychography [1], a recent
addition to the CDI family that has inherited these traits and is
now establishing a reputation for innovation in its own right.
The ptychographic concept is straightforward: illuminate a speci-
men (the “object”) with a small “probe” beam, measure the result-
ing diffraction pattern, move the specimen laterally by a fraction of
the probe diameter, and repeat. However, this simple idea has
proven to be a powerful way to better condition the inversion
algorithms that recover an image from diffraction data (by solving
for the missing phase) and to simultaneously extend the field of
view. Helped by ever-improving computing power and detector
technology, the applications for ptychography are diversifying, from
live cell tracking [2] to 3D x-ray imaging of microchips [3] and
mapping the electron phase signal [4]. On the experimental side,
innovations include Fourier ptychography, which adapts a standard
visible-light microscope platform to realize high contrast, super-
resolved gigapixel images of live cells [5], and Bragg ptychography,
where diffraction patterns are recorded from the Bragg reflections of
a crystal to determine structural properties [6].

Algorithms for ptychography have progressed apace, exploiting
the redundancy in ptychographic data to relax the initially re-
quired stringent experimental conditions. Originally, the probe
illumination was assumed to be well characterized and fully co-
herent, the specimen positions were assumed to be accurate, dif-
fraction data was assumed to be noise-free, and the specimen was

assumed to be thin; ptychographic algorithms can now routinely
handle partial coherence [7], solve for the probe [8–10], correct
positioning errors [11–13], remove noise [14,15], and deal with
multiple scattering [16,17].

Of all these advances, the ability to solve for the probe beam was
the first to emerge and remains the most important. Although a num-
ber of variants have been suggested [18–21], especially in the area of
Fourier ptychography (see Ref. [22] for a comprehensive review),
most often researchers rely on one of three iterative algorithms for
this purpose: the conjugate gradient (CG) [8], the difference map
(DM) [9], or the extended ptychographic iterative engine (ePIE)
[10]. (The relaxed averaged alternating reflections (RAAR) method
has also proven effective in the work of Marchesini and colleagues,
e.g., [23].) Among these algorithms, all but ePIE take a global ap-
proach to invert the ptychographic data set—that is, at each iteration
they use the entire collection of diffraction patterns to perform a batch
improvement to estimates of the probe and specimen, seeking to align
them with the measured data. ePIE takes a different tack, using dif-
fraction patterns one-by-one to iteratively revise the probe and object
estimates in what has been described as a stochastic or incremental
gradient approach [22].We focus here exclusively on this incremental
kind of algorithm, leaving a broader comparison between these and
the numerous global/batch alternatives as future work.

Although, in general, ePIE converges reasonably robustly and
at a reasonable rate, practical situations where it struggles to find a
solution are not too difficult to come across. For instance, in pty-
chographic experiments using a focused beam to form the probe,
the exact distance of the specimen from the beam focus is difficult
to measure accurately, leading to a poor initial probe model with
too much or too little curvature [24]. Ideally, a ptychographic
reconstruction algorithm should be able to cope with this poor
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first guess at the probe, but in this situation, ePIE often either fails
completely or takes many iterations to converge. A second exam-
ple arises from the common practice of using a diffuser in a pty-
chographic experiment to produce a randomly structured probe
[25,26]. The diffuser provides diversity to the diffraction mea-
surements, reduces the dynamic range, and can improve the res-
olution of the reconstructed specimen image, but guessing an
initial probe in this case is difficult, and, depending on the degree
of structure in the probe and the complexity of the object,
ePIE may again take hundreds of iterations to converge or fail
completely.

Despite these potential difficulties, both ePIE and its progen-
itor, the original PIE algorithm [1], have been widely used in a
range of applications, including x-ray beam characterization [27],
Fourier ptychography [5], optical gating [28], and reflection im-
aging with extreme UV light sources [29]. This is, perhaps, thanks
to the benefits they offer in terms of easy coding, efficient memory
use, a small number of tuning parameters, and a good speed boost
from implementation using parallel computing resources such as
graphics cards.

In this paper, we reexamine the PIE family of algorithms and
show how two straightforward modifications can offer drastically
improved robustness and convergence rate, so that problems such
as those described above do not arise. Section 2 details the improve-
ments, the first of which is a revision of the update functions that
regulate changes to the probe and object estimates as the algorithms
iterate, and the second of which borrows from the machine learning
community the idea of momentum, a technique commonly used to
accelerate training of weights in a neural network [30]. [The reader
familiar with ptychography can skip forward to Eqs. (18)–(21) for a
summary of these key ideas.]

We demonstrate our modifications using simulated and real
data. For simulated data, we show in Section 3.C at least a
twenty-fold improvement in convergence rate over the original
ePIE scheme and a number of instances where ePIE fails but
our new scheme successfully and quickly converges. We consider
a real-world optical bench experiment in Section 3.D, where we
demonstrate similar improvements to those from our simulations
and obtain successful image reconstructions in cases where
existing algorithms stagnate.

2. ePIE, PIE, rPIE, AND mPIE

A. Overview of Operation

The experimental apparatus used for ptychography comprises a
specimen mounted on a linear x∕y translation stage and a coher-
ent illuminating beam of photons or electrons called the probe,
which is localized to a small area on the specimen surface by a
masking aperture or focusing optics. Completing the setup is a
detector placed some distance downstream from the specimen
to record diffraction patterns, which in some cases may first be
magnified or projected by intermediary optics [4]. In the experi-
ment itself, the translation stage is programmed to shift the speci-
men through a grid of positions, and at each position the detector
records a diffraction pattern. A grid spacing of around 20%–30%
of the probe diameter ensures sufficient redundancy in the data
for the image reconstruction process.

In this paper, we label the set of j � 1…J diffraction patterns
recorded in the experiment as I ju, and the corresponding set of
specimen x∕y positions as Rj � �xj; yj�. We index the M × N

pixels of the diffraction patterns using the pair of integers
u � �m1; n1�. The distance from the specimen to the detector
is z, the wavelength of the probe is λ and the pixel pitch of
the detector/camera is Δc .

The PIE-style procedure to reconstruct a specimen image from
ptychographic data is common to all the algorithms we discuss
below and is detailed in Fig. 1 (the shading indicates operations
where this paper improves over existing algorithms). The process
begins with initial estimates of the probe, P0r, and the object,
O0x. Here r � �m2; n2� indexes the M × N pixels of the probe,
which has the same pixel dimensions as the diffraction patterns,
and x � �k; l� indexes the K × L pixels of the object. (To accom-
modate the specimen shifts, K and L are chosen to be much larger
than N and M .) The diffraction patterns are employed in a ran-
domly shuffled order, sj, to update the object and probe estimates,
and a single PIE-type iteration comprises J passes through the
flowchart of Fig. 1, after which each diffraction pattern in the
shuffled “deck” will have been used to update the object
and probe.

To model the diffracted wavefront that exits the specimen—
the exit wave—the first step is to extract a box from the current
object estimate with the same number of pixels as the probe. The

Fig. 1. Flowchart showing the operation of the PIE family of algo-
rithms. One iteration of each algorithm consists of J loops through this
process, so that each diffraction pattern is used, in the sequence sj , to
update the object and probe estimates.
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jth object box, ojr, corresponds to the sjth specimen position, and
it is extracted from the full object estimate according to

ojr � Ojxj ; (1)

where the mapping from object to object box pixels is accom-
plished via Eq. (2):

xj �
Rs�j� − Rj�min�

Δr
� r: (2)

Here, fractional pixel values can be accommodated as in Ref.
[31], or the values of xj can be rounded to the nearest integer. The
pixel pitch in the object and probe estimates, Δr, depends on the
method used to model propagation of the exit wave to the detec-
tor, which may be a Fourier transform if the detector is in the far
field or a Fresnel or angular spectrum method for near-field pty-
chography. For far-field propagation via the Fourier transform,

Δr �
�

λz
MΔc

;
λz

NΔc

�
; (3)

and in the near-field, using the angular spectrum,

Δr � �Δc ;Δc�: (4)

The exit wave model for the sjth specimen position is then

ψ jr � Pjrojr; (5)

where multiplication is elementwise. This exit wave is revised in
the standard way to agree with the measured data—by replacing
its propagated modulus with the square-root of the sjth diffraction
pattern, then propagating back to the specimen plane—giving the
revised exit wave ψ 0

jr .
To this point, Fig. 1 follows the original PIE scheme. The first

of our modifications, which we detail in Section 2.C, adapts the
way the revised exit wave is used to update the object box and the
probe estimate to give o 0jr and P 0

jr. Having implemented these
updates, the revised object box is placed back in the full object
estimate according to

O 0
jxj � o 0jr: (6)

The second of our modifications, the momentum term, is
added to the updated probe and object estimates to complete
the journey through Fig. 1, after which the process repeats, with
a freshly shuffled diffraction pattern order each time, until a fixed
number of iterations are completed or a termination condition
is met.

B. ePIE Object Update Function

We begin our discussion of update functions with a review of the
object update function used by ePIE, which gives motivation to
the revisions we suggest in Section 2.C. ePIE updates the object
box according to Eq. (7):

o 0jr � ojr � α
P�
jr

jPjrj2max

�ψ 0
jr − ψ jr�; (7)

where P�
jr is the conjugate of Pjr and the other variables are

defined in Fig. 1.
We will explain this equation in three ways, each of which

gives some insight into its operation. First, a reasonable strategy
to update the current object box, ojr, from the revised exit wave,
ψ 0
jr, is simply to divide by the current estimate of the probe:

o 0jr �
ψ 0
jr

Pjr
� P�

jrψ
0
jr

jPjrj2
: (8)

However, it is clear that this update rule is poorly conditioned
where the probe has a low intensity. Instead, we could assume that
Eq. (8) gives a good update for the object in places where the
probe is bright; we should accept the update in these areas. In
areas where the probe is dim, Eq. (8) is likely to be inaccurate,
so here we should retain the previous object estimate. Together
these rules give

o 0jr � �1 − wjr�ojr � wjr
P�
jrψ

0
jr

jPjrj2

� ojr � wjr
P�
jr�ψ 0

jr − ψ jr�
jPjrj2

; (9)

where wjr is some spatially varying weight function that is close to
unity where the probe is bright, and close to zero where it is dim.
The ePIE update arises from a weighting equal to the normalized
intensity of the probe, wjr � αjPjrj2∕jPjrj2max

, but we will see that
this is far from the only sensible option.

For a second perspective on Eq. (7), consider the following
error metric:

E �obj�
j �

X
r

jPjrojr − ψ 0
jrj2: (10)

We would like to find a revision to the object box that reduces
this error and so brings the exit wave, Pjrojr, closer to the exit
wave resulting from the diffraction pattern update steps of the
algorithm (see Fig. 1). The gradient of this error with respect
to the object box is

∇E �obj�
jr � 2P�

jr�Pjrojr − ψ 0
jr�: (11)

Since the error increases in the direction of this gradient, it can
be reduced by moving the current object box by a small step, γ, in
the negative gradient direction:

o 0jr � ojr −
γ

2
∇E �obj�

jr � ojr � γP�
jr�ψ 0

jr − ψ jr�: (12)

Setting γ � α∕jPjrj2max
gives the ePIE object update. This step

size equates to a relatively well-known choice in other fields of
optimization, for example, it is the Lipschitz constant of the gra-
dient of E �obj�

j [18] and the spectral radius used in a Landweber
iteration [32]. Provided α ≤ 1, this choice of step is stable, and for
convex problems convergence is guaranteed, but it is well known
that gradient descent schemes converge slowly and stagnate at
local minima [33]. That ePIE avoids the first of these undesirable
properties is thanks to the incremental update steps, which greatly
speed convergence; that it avoids the second is attributable to the
structure of the probe, which causes each object pixel to move in a
different gradient direction with each application of the update
function. Nevertheless, the parallels with gradient descent are a
strong indicator that improvements to ePIE are possible.

Thibault and Menzel gave a third view of the ePIE object up-
date in the Supplement of their influential paper on ptychography
with mixed states [7]. Their description considers a slightly differ-
ent cost function that adds a regularization term to penalize large
adjustments of the object box:

E �reg�
j �

X
r

jPjro 0r − ψ 0
jrj2 �

X
r

urjo 0r − orj2: (13)

Research Article Vol. 4, No. 7 / July 2017 / Optica 738



The derivative of this cost function is

∇E �reg�
jr � 2P�

jr�Pjro 0jr − ψ 0
jr� � 2ujr�o 0jr − ojr�: (14)

Setting this gradient to zero and solving for the new object
gives

o 0jr � ojr �
P�
jr�ψ 0

jr − ψ jr�
jPjrj2 � ujr

: (15)

Cost functions similar to Eq. (13) appear in the literature in vari-
ous guises, for example within proximal algorithms [34], or as a
“disappearing Tikhanov regularization” [35]. However, the term
ujr is somewhat unusual here as it is not a constant, but a spatially
varying weighting of the degree of regularization, which, like the
weighting function wjr, depends on the intensity profile of the
probe. The rationale for selecting a suitable ujr is that a large penalty
should be added to the cost function for pixels in the object box
where the probe illumination is dim, since in these regions the re-
vised exit wave, ψ 0

jr is highly susceptible to noise. Where the object
box is strongly illuminated by the probe, the penalty term should be
small, reflecting our greater confidence in ψ 0

jr in these regions.
Looking back to Eqs. (9) and (12), it is clear that the weighting

function idea, the gradient descent interpretation, and the regu-
larized cost function can be linked by Eq. (16):

wjr � γjrjPjrj2 �
jPjrj2

jPjrj2 � ujr
: (16)

For ePIE, this dictates that the regularization weighting should be

ujr �
jPjrj2max

α
− jPjrj2: (17)

C. Alternative Object Update Functions

For Rodenburg’s original demonstrations of ptychography with
simulated, optical, and x-ray data [1,36,37], a different object up-
date function was used (at that time, the idea to solve for the probe
had not been conceived). This original PIE scheme added a small
regularization constant to the denominator of Eq. (9), and then
weighted the function according to the normalized probe modulus,
rather than the normalized intensity. Taken together, these two steps
can be expressed in terms either of a new weighting function, wjr, or
a new regularization weighting, ujr, as listed in Table 1. A number
of authors have noted that the PIE update converges more rapidly
than ePIE, which has been explained by casting PIE as a second-
order gradient descent [22], although we will discuss shortly an
alternative explanation based on the two weighting functions in
Table 1. Note that in its original form, the PIE update with a fixed
α value behaves differently for different maximum probe values; that
is, the weighting wjr cannot be expressed as a function of the nor-
malized probe modulus, jPjrj∕jPjrjmax

. This can be problematic,

since different experiments require retuning of the algorithm, so
we suggest multiplying α in the update function by the maximum
probe intensity, as shown in Table 1.

To complete our set of update functions, Eq. (18) gives a new
form, which we suggest is superior to both PIE and ePIE:

o 0jr � ojr �
P�
jr�ψ 0

jr − ψ jr�
�1 − α�jPjrj2 � αjPjrj2max

: (18)

We will refer to the reconstruction algorithm that uses Eq.
(18) as the regularized PIE (rPIE), because its regularization
weighting, ujr, appears as a particularly natural choice, although
the original motivation was a convex combination of the denom-
inator in Eq. (8) and the denominator in the ePIE update of Eq.
(7). Table 1 details the two weighting functions corresponding to
this new update function.

D. Comparing Update Functions

To give a better appreciation of the differences between the three
object updates, Fig. 2 graphs the two weighting functions listed in

Table 1. Three Different Interpretations of the Update Functions in PIE-Type Ptychographic Algorithms

Approach
ujr: Penalty Function Weighting of the
Regularized Cost Function in Eq. (13)

wjr: Weighting of Previous and
Revised Object Estimates in Eq. (9)

Update Function: Descent of the Gradient in
Eq. (11) with a Spatially Varying Step Size

ePIE 1
α jPjrj2max

− jPjrj2 α
jPjrj2
jPjrj2max

o 0jr � ojr � α
P�
jr

jPjrj2max

�ψ 0
jr − ψ jr�

PIE jPjrjmax
�jPjrj � αjPjrj2max

∕jPjrj� − jPjrj2 jPjrj3
jPjrjmax

�jPjrj2�αjPjrj2max
� o 0jr � ojr �

jPjrjP�
jr�ψ 0

jr−ψ jr�
jPjrjmax

�jPjrj2�αjPjrj2max
�

rPIE α�jPjrj2max
− jPjrj2� jPjrj2

�1−α�jPjrj2�αjPjrj2max

o 0jr � ojr �
P�
jr�ψ 0

jr−ψ jr�
�1−α�jPjrj2�αjPjrj2max

Fig. 2. Operation of the various object update functions. (a) Shows how
the different algorithms weight the previous and new object estimates as a
function of probe modulus [cf. Eq. (9)]. (b) Shows how they penalize
changes to the object as a function of probe modulus [cf. Eq. (13)].
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Table 1 as a function of the probe modulus for indicative values
of α. Clear from Fig. 2(a) is the heavy drop-off of the ePIE weight-
ing compared to the alternatives, which means a slow update rate
for all but the most brightly illuminated pixels of the object.
Adjusting the α of ePIE to values >1 increases the steps for less
well-illuminated object pixels, but it also results in over-weighting
of the well-illuminated regions—we will see in Section 2.F how
momentum provides a much more reliable way to accelerate con-
vergence than taking these large steps. Small α values for ePIE
simply slow down convergence without noticeably improving
stability.

Although the wjr plot of PIE is a sensible, linear increase with
probe modulus, the regularization weighting takes on a somewhat
strange profile for small values of α [Fig. 2(b)], where it applies a
stronger adjustment penalty to moderately illuminated object pix-
els than to those illuminated weakly. As α increases, the weighting
then begins to flatten, and at α � 1∕27 ≈ 0.04, the gradient no
longer changes sign. It is therefore not suprizing that α values
around this level give a good trade-off between convergence rate
and stability in our tests (see Section 3). (Note that the plots of
Fig. 2 show the normalized weightings for PIE as discussed above
and shown in Table 1.)

Regardless of the value of α, the PIE weighting function, wjr, is
confined to the bottom righthand half of Fig. 2(a). This could be
addressed with an extra multiplicative step-size parameter, but like
ePIE, the result is over stepping for brightly illuminated pixels, and
besides, introducing extra parameters into the algorithm com-
promises the simplicity we would like to retain. In contrast, our
revised rPIE update can be tuned to occupy any region of Fig.
2(a). For α � 1 it reverts to the conventional ePIE update (also
with α � 1), while smaller values give a much higher weighting
to moderately well-illuminated object pixels than do PIE or
ePIE. In terms of the regularization weighting, where different
ePIE α values translate the quadratic curve up and down the y-axis,
rPIE scales it in this direction instead, which from examination of
the penalty term in Eq. (13), appears to be a more sensible way to
control the step size in the update. Our tests show that rPIE re-
mains stable even for α values as low as 0.05, and the curves
for this α value shown in Fig. 2 give a good indication of the sub-
stantial improvement in convergence rate that this can provide.

Beyond the three methods discussed, a host of update func-
tions can be derived by using the framework presented above to
select sensible alternative weighting functions. Examples that we
have used to successfully reconstruct ptychographic data include
threshold weightings, power law or logarithmic functions, and
piecewise linear functions. Some of these give good results in
some cases, but none has proven more reliable or quicker than
rPIE for the general case.

E. Probe Update Functions

The object update functions listed in Table 1 are adopted by the
respective algorithms to update the probe simply by switching the
roles of ojr and Pjr in all the equations and replacing α with a
second tuning parameter, β. Of course, this opens the possibility
of using one kind of update for the probe and one for the object,
for example, mixing the PIE probe update with the rPIE object
update, etc., but this complication does not give any noticeable
benefits. In fact, the form of the probe update function has far less
influence on the success and convergence rate of the algorithms
than does the object update. This can be explained by the depend-

ence of the probe update functions on the normalized object
modulus, which for weak phase objects varies only by a small
amount from unity, and even for strong objects in our optical
experiments, it is mostly above 0.5. The regions of the curves
in Fig. 2 that are used in the probe update are therefore confined
to the far righthand side, where they are broadly similar. The ex-
ception to this is Fourier ptychography, where the “object” exists
in the Fourier domain and so has an extremely high dynamic
range. Although we have not yet tested the different update func-
tions on Fourier ptychographic data, Fig. 2 suggests adopting
rPIE for the probe update in this case would be beneficial.

Our conclusion from the study we have undertaken for this
work is that the ePIE probe update (or rPIE with β � 1) performs
extremely well, and it is far better to introduce momentum, as
detailed in the next section, than to spend time tuning the update
function. There are also two minor extensions to the probe update
that prove more useful than varying β: one controls the probe
power and the other keeps the probe central to the reconstruction
window. Both extensions are explained in Supplement 1.

F. Adding Momentum

Any of the object and probe updates described above can be en-
hanced by the powerful idea of momentum, which finds its prin-
ciple use speeding up the training of neural network weights [30].
For problematic ptychographic datasets, such as those detailed in
Section 3, adding momentum can realize an order of magnitude
improvement in convergence speed—the price paid is an increase
in the number of tuning parameters that control the new algo-
rithm. The concept of momentum-based optimization is analo-
gous to a cannon ball rolling down a hill, which becomes more
and more difficult to divert from its course as it picks up speed.
This translates into an ability to escape local minima (once the
ball reaches the bottom of the hill it can climb up the other side)
and to accelerate toward a minimum (the ball picks up speed even
down a shallow slope); evidently, both properties are attractive
features of optimization algorithms, and the overview by
Ruder explains momentum in this context very nicely [38].

We implement ptychographic momentum in a slightly differ-
ent way to that used for neural nets, as summarized by Fig. 3. Our
approach allows the object (and probe) updates to progress with-
out the addition of momentum for a fixed number of cycles, T ,
through the flowchart of Fig. 1. [In the diagram of Fig. 3(b),
T � 5, so the first momentum update does not happen until
the object and probe have been updated 5 times, by the first
5 diffraction patterns in the sequence sj.] When momentum is
to be applied, the first step is to update a velocity map, vjx, based
on the current object estimate and the object estimate stored
immediately after the �j − T �th update:

vjx � ηobjv�j−T �x � �O 0
jx − O�j�1−T �x�; (19)

where v0x � 0, and 0 ≤ ηobj < 1 is a constant that can be inter-
preted as the “friction” of the ptychographic error landscape.
Velocity will accumulate in the direction of any general trend
in the object updates, while object pixels that oscillate will have
a corresponding velocity map value that averages to zero.

To add momentum (or velocity) to the object, we have tested
the two methods depicted by the diagram in Fig. 3(b). The first
simply adds the velocity onto the previously stored object
estimate:
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O�j�1�x � O�j�1−T �x � vjx: (20)

The second, inspired by the implementation of momentum
suggested by Nesterov [38], we have found to be more stable
and have used in all the results presented in Section 3. It adds
a damped momentum term to the jth updated object estimate:

O�j�1�x � O 0
jx � ηobjvjx: (21)

To best use this addition to the algorithm, it is necessary to
reduce the step size in the update functions listed in Table 1. For
ePIE, this is already included via the α parameter; for PIE and
rPIE it means a further tuning parameter, γobj, in the update,
which in the case of rPIE becomes

o 0jr � ojr � γobj
P�
jr�ψ 0

jr − ψ jr�
�1 − α�jPjrj2 � αjPjrj2max

: (22)

Although momentum can be applied to any of the update
styles, we will refer specifically to this enhancement of rPIE with
momentum as the “momentum-accelerated PIE” (mPIE).

Momentum works exactly the same way for the probe update,
which therefore requires two further parameters, ηprb and γprb.
This set of new parameters are a somewhat unfortunate addition,
violating as they do one of the benefits of incremental ptychog-
raphy algorithms we listed in the introduction. In all of our trials
to date, however, there has been a wide range of parameter values
that produce excellent performance improvements; in Section 3,

we suggest a strategy to choose them and show that these extra
complications can be worth the effort.

3. RESULTS

A. Description of Simulations and Optical Experiment

To investigate the performance of the four algorithms discussed in
Section 2, we conducted two simulations and one optical bench
experiment using the parameters shown in Table 2. The first sim-
ulation modeled an optical setup and tested the ability of the
algorithms to converge successfully when both the probe and
specimen are highly structured and have strong phase profiles.
The second modeled a soft x-ray experiment with a weak phase
specimen and a convergent beam probe, testing the ability to con-
verge when the curvature of the initial probe estimate is inaccu-
rate. Figures 4(a) and 4(b) show the amplitude and phase of the
specimen used in both simulations, where the scalings were as
listed in Table 2. A grid of 20 × 20 positions was used in each
simulation, which gave the field of view indicated by the box
in these figures; the circle indicates the approximate extent of
the probes. Figure 4(c) shows the probe for the optical simulation.
It was generated by modeling the wavefront from an aperture
covered by a random phase mask, brought to focus by a 3 cm
focal length lens, with the specimen plane positioned 100 μm
beyond that focal point. The probe for the x-ray simulation
[Fig. 4(d)] modeled a similar situation but with the random mask
removed and the specimen positioned 750 μm beyond the focus
of an ideal 10 mm focal length zone plate. Figures 4(e) and 4(f )
show example diffraction patterns (with M × N � 512 × 512
pixels) from the optical and x-ray experiments, respectively. In
the optical simulation, no noise was added to the diffraction pat-
terns, while a small amount of Poisson-distributed shot noise was
modeled in the x-ray simulation, equating to an average count in
each diffraction pattern of 109.

The optical bench setup mimicked the optical simulation,
with a microscope objective (NA � 0.25) used to focus the wave-
front from an aperture covered by a plastic film diffuser. As a
specimen, we used a microscope slide covered with lily pollen,
which has a complicated structure at the micrometer scale and
scatters strongly. The detector was an AVT Pike CCD, binned
by a factor of 4, so that, as for the simulations, the diffraction
patterns each contained M × N � 512 × 512 pixels. Three expo-
sures, of 500, 5000, and 25,000 μs, were taken at each of the
30 × 30 specimen positions and stitched together to improve
dynamic range.

Fig. 3. Addition of momentum to the object update. (a) Shows how
momentum is implemented within the flowchart of Fig. 1. (b) Visualizes
two ways in which the momentum term can be added to the object
estimate for the case T � 5: one is the conventional momentum scheme
and the second is due to Nesterov.

Table 2. Parameters Used in Simulations and Experiment

Experiment
Parameters

Optical
Simulation

X-Ray
Simulation

Optical
Experiment

λ 635 nm 2.4 nm 635 nm
z 2.4 cm 50 cm 1.57 cm
Detector pitch 29.6 μm 27.0 μm 29.6 μm
Grid size 20 × 20 20 × 20 30 × 30
Step size 30� 10 μm 2.5� 0.75 μm 50� 15 μm
Object magnitude 0.25–1.0 a.u. 0.8–1.0 a.u. 0.20–1.0 a.u.

(approx.)
Object phase 4π π∕2 3π (approx.)
Probe diameter 150 μm 10 μm 200 μm
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B. Optical Simulation Results

Our first test directly compared the three update functions de-
scribed in Section 2. For all the algorithms, an aperture of approx-
imately the same size as the simulated probe was used as an initial
probe estimate, and free-space was used as the initial object esti-
mate. The random sequences in which diffraction patterns were
addressed were kept consistent between the different algorithms.

We held α � β � 1 for ePIE, both as a reference and because
we have not observed that changes to these values confer any sig-
nificant advantage. For PIE and rPIE, we ran a series of tests using
different simulation images to determine α and β values that com-
bined good convergence rates with stability. For both algorithms,
setting α too low (less than ∼10−3 for PIE, less than ∼10−2 for
rPIE) resulted in rapid destabilization of the reconstruction, while
moderately low values (around 2 × 10−3 for PIE, 0.025 for rPIE)
resulted in convergence properties that were sensitive to the
random sequence, sj, in which the diffraction patterns were em-
ployed. For PIE especially, setting α below around 10−2 also
caused the mean intensity of the object reconstruction to slowly

reduce, eventually causing the reconstruction to destabilize;
we suggest in Supplement 1 a solution to this problem. Both
algorithms were far less sensitive to different β values. Our
final parameters were α � β � 0.01 for PIE and α � 0.05 and
β � 1 for rPIE.

We ran ten trials of the three algorithms, with a different set of sj
sequences in each trial. The progress of the trials are shown in Fig. 5(a),
where the solid traces indicate the median run and the shaded regions
enclose the convergence curves of the ten trials. The error metric plot-
ted, E sim, is a direct real-space comparison of the simulated and re-
constructed objects as the algorithms progress. Often, ambiguities
that are inherent to ptychographic reconstructions—a constant phase
and amplitude offset, a linear phase ramp, and a global translation—
are ignored in simulation results; here we compensate for these
ambiguities in the error metric, as Supplement 1 describes.

As Fig. 5(b) shows, ePIE fails to converge, while PIE realizes a
reasonable image in each trial but with a lack of accuracy reflected
in the high final error level. rPIE converges quickly and repeatably
to a lower final error.

In our next test, we implemented mPIE by adding momentum
to rPIE, using the same α and β values as before. We then ex-
plored the influence of the momentum parameters on the con-
vergence properties of the algorithm. The strategy we arrived
at after this exploration was as follows:

Fig. 5. Simulation results for the case of a strongly scattering specimen
and a highly structured probe. (a) Convergence over 200 iterations of the
ePIE, PIE, and rPIE algorithms. The solid traces indicate the median
reconstruction from ten trials of each algorithm using different diffraction
pattern orders, and the shaded regions indicate the range of convergence
results over these ten trials. (b)–(d) The final probe (top) and specimen
modulus (middle) and phase (bottom) for ePIE, PIE, and rPIE, respec-
tively. Probes are shown on the colorwheel scale of Fig. 4.

Fig. 4. Simulation setup. The specimen (a) modulus and (b) phase
used in the two simulations; these template images were scaled as listed
in Table 2. The red square indicates the field of view and the red circle
indicates the size of the probes. (c) Shows the highly diffuse probe used in
the optical simulation, and (d) shows the convergent beam probe used
in the x-ray simulation. Both are displayed on the colorwheel scale shown
in the inset to (c), which is also used in probe images of later figures. (e)
and (f ) give example diffraction patterns from the optical and x-ray sim-
ulations, respectively (contrast boosted).
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– Fix T � 30, ηobj � ηprb � 0.9.
– Use the α and β values from rPIE.
– Tune γobj and γprb for performance, as highlighted in

Fig. 6(a).
In this instance, γobj and γprb values of 0.2 and 1 gave excellent

results compared to rPIE, halving the convergence time and real-
izing a slightly lower final error [see Fig. 6(a)].

Next, we repeated the simulation with an increasingly strong
phase object, starting with an object phase range of 2π and in-
creasing it to 18π radians; this increases the complexity of the
phase, introducing phase wraps and gradients that the algorithms
find difficult to recover. Again, ten trials at each object strength
were carried out, each with a different set of diffraction pattern
orders, and the parameters were left unchanged from the original
simulations. Figure 6(b) shows the results, with the median final
error value of each algorithm plotted with solid traces and the
range of final error values over the ten trials shown shaded.
The figure highlights the advantage momentum offers not only
in convergence rate but also in the ability to converge robustly and
escape local minima in highly taxing inversion problems.

C. X-Ray Simulation Results

The initial object for the soft x-ray simulation was again free
space. The initial probe was modeled as for the true probe used
to simulate the data, but with a slightly different aperture and a
1000 μm defocus (the true probe in the simulations had a 750 μm
defocus). This represents a challenge to reconstruction algo-
rithms, which even for smaller defocus errors are prone to induce
phase vortices in the probe; a problem underlined in supplemen-
tary Visualization 1. Because noise was included in this simula-
tion, we retuned the PIE and rPIE algorithms. This time, a good

compromise between convergence speed, reliability, and final
error value was achieved with α � β � 0.004 for PIE and
α � 0.1 and β � 1 for rPIE. Interestingly, in this weak phase
scenario PIE could accommodate a less heavily regulated update
than in the strong object simulations, despite the noise. For the
momentum tuning, following the steps from Section 3.B gave
γobj � 0.15 and γprbj � 0.5.

Figure 7 shows the results, with the solid lines giving the
median reconstruction result from ten trials and the shaded re-
gions outlining the range of error values over all the trials. Of note
here are the large variations in convergence rate for PIE and
rPIE—which can take anywhere between 120–200 iterations
and 100–150 iterations, respectively, to reach an error of
10−3—and the high reliability and fast convergence of mPIE.
Although ePIE appears to have stagnated in this test, when it
is allowed to continue it does eventually reach an error of
10−4 after 1300 iterations, or around 25 times slower than mPIE.

D. Optical Bench Results

Since the optical bench experiment quite closely matched the op-
tical simulation, we retained the parameter values used in that
simulation for the reconstructions here, with the exception of
a reduction in γprb to 0.2 for mPIE. As in the optical simulation,
we initialized the reconstruction with an aperture estimate of
the probe and free-space for the object. In Fig. 8(a), we plot
the evolution of the diffraction error over 100 iterations of each

Fig. 7. Performance of the different algorithms in a simulated x-ray
experiment. (a) Their convergence over 300 iterations—solid traces
are the median and shading is the range of results from ten trials of each
algorithm; (b)–(e) final probe (top row) and specimen modulus (middle)
and phase (bottom) images of ePIE, PIE, rPIE, and mPIE, respectively.
Probes are shown on the colorwheel scale of Fig. 4.

Fig. 6. Including momentum significantly improves performance.
(a) Tuning the momentum part of the update does require some effort.
However, (b) shows how effective it can be for difficult data sets, in this
case, an increasingly strong phase object and a highly diffuse probe. Solid
traces indicate the median final error over ten trials of each algorithm, and
shading indicates the range of final errors over these trials.
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algorithm, where again solid traces give the median and shading
gives the range of 10 trials using different diffraction pattern
sequences, sj. The diffraction error is given by Eq. (23):

Ediff �
P

ujI sju − jI�ψ jr	j2j2P
uI

2
sju

; (23)

where I is the propagator used in the reconstruction (a Fourier
transform in all the work presented here).

Both ePIE and PIE quickly stagnated in this test, becoming
trapped in local minima. With the parameters we used, neither
algorithm could produce a reconstruction that resembled the
specimen, nor could we noticeably improve the images in Figs.
8(b) and 8(c) by retuning these parameters. rPIE does converge in
most cases, but as in the x-ray simulations, its performance is sen-
sitive to the diffraction pattern order used in the reconstruction.
The median reconstructions from the ten trials of rPIE and mPIE
produced visually indistinguishable results; the images in Fig. 8(d)
show the unwrapped object phase and the probe from the median
mPIE reconstruction.

4. CONCLUSION

Given only the results above, it would be reasonable to conclude
that ePIE performs uniformly poorly. In fact, the data we have used
in this paper deliberately targets pathologically difficult cases, and
ePIE works remarkably well most of the time (at least in our work
on the optical bench and with the electron microscope). There are
also important additions to ePIE—for instance multi-slice 3D im-
aging [16], position correction routines [11–13], and multi-mode
reconstruction [39]—whose performance within the revised rPIE
and mPIE algorithms has yet to be assessed. That said, there is no
cost associated with adopting rPIE over ePIE, and its tuning param-
eter simply offers far better control over the update rate. We do also
find that the original PIE scheme outperforms ePIE in most cases,
especially when the power correction step detailed in Supplement 1
is included, but it cannot match rPIE in terms of robustness and
stability over a range of different experimental geometries and
specimen types. mPIE converges far more quickly and to a lower
error value than any of the other algorithms, and it is indispensable
when the data is extremely difficult to invert, but in its current
form, it suffers from a large set of parameters. We are working
to simplify the tuning process, but for now can offer Table 3 as
a suggested range of effective values.

Our future work in this area will investigate adaptations to the
diffraction pattern update step, for example incorporating the
noise models described by Godard et al. [15]; testing the algo-
rithms described in Section 2 for Fourier ptychography; compar-
ing the algorithms to batch methods such as DM and RAAR; and
investigating the use of automated parameter scheduling, along
the lines of that described in Ref. [40].
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Fig. 8. Diffuse probe and an intricate specimen (lily pollen in this op-
tical experiment) make for a difficult ptychographic reconstruction.
(a) Progress of the diffraction error [Eq. (23)] over 100 iterations of four
ptychographic algorithms. Ten runs of each algorithm were carried out
with different position orders. The median run is shown as a solid trace,
while all other outcomes were within the correspondingly colored boun-
daries. ePIE and PIE give the phase images shown in (b) and (c), respec-
tively. rPIE give reasonable results in most cases, and mPIE converges
reliably within 25 iterations. Both give excellent reconstructions, such
as that shown in (d), where the phase has been unwrapped. Insets to
the images show the reconstructed probe displayed using the colorwheel
of Fig. 4. Scale bar 200 μm.

Table 3. Suggested Parameter Ranges for mPIE

Parameter α β ηobj ηprobe γobj γprobe T

Suggested min. 0.05 0.5 0.5 0.75 0.1 0.2 10
Suggested max. 0.25 5 0.9 0.99 0.5 1 100
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