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a  b  s  t  r a  c t

Label-free  imaging  uses  inherent  contrast mechanisms  within  cells  to create  image  contrast  without

introducing dyes/labels,  which  may  confound  results. Quantitative  phase  imaging  is label-free  and  offers

higher content and  contrast compared  to traditional  techniques.  High-contrast images  facilitate  gen-

eration of individual cell metrics via  more  robust  segmentation and tracking,  enabling  formation  of  a

label-free  dynamic phenotype  describing  cell-to-cell  heterogeneity  and  temporal changes.  Compared  to

population-level  averages,  individual  cell-level dynamic  phenotypes have greater  power  to differentiate

between cellular  responses  to treatments,  which  has  clinical relevance  e.g. in the  treatment  of cancer.

Furthermore,  as  the data  is obtained  label-free,  the  same cells  can be  used  for further assays  or  expansion,

of potential benefit for  the  fields  of regenerative and  personalised  medicine.

© 2017  The Authors.  Published by  Elsevier  Ltd. This is an open  access article  under  the  CC  BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction: the need for label-free imaging

Label-free imaging ensures that native cell behaviour remains

uninfluenced by the recording process. In this mini-review, we

focus on differences between quantitative phase imaging (QPI) and

traditional label-free imaging techniques regarding: (i) the impor-

tance of image contrast for enabling robust, automated extraction

of metrics describing individual cell behaviour; (ii) the power of a

label-free dynamic phenotype over global population-level mea-

surements in identifying changes in  cell behaviour.

1.1. Visualising cells and contrast-enhancing agents

Cells are phase objects, i.e.  absorb little light, resulting in  only

minor changes in the amplitude of transmitted light through the

cell. Since the human eye relies on  changes in  amplitude of a  light

wave, cells can be  difficult to visualise using a light microscope

without a system to enhance cell contrast. One widespread solution

is to introduce dyes/labels; these provide molecular specificity but

can involve procedures (e.g. fixation) incompatible with live cell
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imaging. Even labels designed for use with live cell imaging can

cause perturbation to normal cellular function and concentration-

dependent toxicity effects (Alford et al., 2009; Coutu and Schroeder,

2013).

1.2. Phototoxicity

Phototoxicity poses additional barriers to  imaging native cell

behaviour, as the light intensity required to  excite a  fluorophore can

cause cells to  behave abnormally or die (Mov. 1). Phototoxicity is

primarily attributed to generation of reactive oxygen species, which

adversely affect cell physiology, health, behaviour, movement and

shape by various mechanisms (Magidson and Khodjakov, 2013).

Subtler phototoxic effects can easily be overlooked, confounding

experimental results (Saetzler et al., 1997; Tinevez et al., 2012),

and are  further exacerbated when imaging over extended peri-

ods, e.g. causing impairment of cell doubling time (Carlton et al.,

2010). The impact of phototoxic damage can be assessed and lim-

ited but not negated (Magidson and Khodjakov, 2013; Tinevez et al.,

2012). Thus, imaging under very low light intensity without labels

is an attractive solution to  enhance cell contrast whilst minimising

uncertainty in the recording of native cell behaviour. Furthermore,

label-free techniques enable researchers to  avoid the cost of time-

intensive dye/label optimisation or  stable fluorescent-reporter cell

line generation.

http://dx.doi.org/10.1016/j.biocel.2017.01.004
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Fig. 1. High-contrast images are obtained by  QPI techniques. (A) Diagram of phase delay caused by a cell and the basis by  which the  phase delay is  used to  create contrast

in  the image. The equation describes how phase delay (�) is  calculated from thickness (t) and the difference in refractive index (RI) of the object (�o)  and media (�m).

Whilst traditional techniques (PC, DIC) use the phase delay to  alter the amplitude of the exit wave resulting in changes in pixel intensity, in quantitative techniques (QPI)

the  phase delay is measured directly and is enumerated as a pixel intensity. (B) Line profiles across three adjacent A549 cells in an identical field of view imaged by DIC, PC,

ptychographic QPI and whole-cell fluorescence. A549 cells were labelled with CFSE and fixed. Scale bar, 50 �m.

2. What are the label-free options?

Rather than requiring contrast-enhancing dyes/labels, label-

free solutions rely on components of the optical setup that exploit

cells’ inherent contrast mechanisms (thickness and refractive index

(RI)) to create image contrast.

2.1. Traditional techniques

Phase contrast (PC) and differential interference contrast (DIC)

microscopy remain the most prevalent label-free imaging tech-

niques in biological research. Both techniques employ specific

optical setups that translate differences in  phase caused by cells

and intracellular features into changes in  light wave amplitude.
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Table 1

Examples of common metrics of a  label free  dynamic phenotype. n, refractive index; �, illumination wavelength; a  yields a  range of values between 0 and 1, with a  value of

one  being completely spherical/circular; b range of values between −90◦ to +90◦ .

Unlike changes in  phase, these can be detected by  the human eye

or recorded as pixel intensity changes on a  camera (Fig. 1a). How-

ever, the intensity in  PC and DIC images is  non-quantitative of the

phase delay, and low image contrast can make automated image

segmentation difficult at high cell densities.

2.2. Quantitative phase imaging

Quantitative phase imaging (QPI) is a label-free technique in

which various methods (e.g. holography, ptychography) can be

used to retrieve the phase information of light passing through the

cell. QPI techniques quantify the extent of phase delay introduced

by the sample and record it as pixel values within the generated

image. Pixel intensity is  dictated by  physical thickness and the RI

of the cell, the latter being a readout of biomolecule composition

and organisation (Fig. 1a) (Barer, 1952; Zangle and Teitell, 2014).

QPI produces high contrast images, with cells appearing as bright

objects on a dark background (Fig.  1a) making automated cell seg-

mentation simpler and more reliable. Commercially-available QPI

systems can be broadly classified according to  the phase retrieval

method utilised: (i)  off-axis digital holography (PhiAB, Nanolive,

Lyncee Tec, Tescan,1 Ovizio); (ii) wavefront sensing (Phasics); (iii)

spatial light interference (Phi Optics); (iv) ptychography (Phasefo-

cus).

3. Dynamic phenotype generation: from images to

numbers

Automated segmentation, tracking and linage determination

enables generation and study of the dynamic phenotype of cells.

The type and quality of images acquired influence the success of cell

1 coherence-controlled.

segmentation (object identification and separation). Typical seg-

mentation algorithms utilise a  combination of feature detection,

morphological filtering, region accumulation, deformable model

fitting, and intensity thresholding processes (Meijering, 2012).

Classical intensity thresholding and, increasingly, deformable mod-

els are the most widely used segmentation techniques within

biological research (Bajcsy et al., 2015; Meijering, 2012).

3.1. QPI images are of higher contrast than PC and DIC images

QPI produces images of high contrast: intensity profiles illus-

trate that the highest concentration of a  cell’s mass is  typically

the point of peak intensity, boundaries between adjacent cells

appear as intensity clefts, and the cells cause unidirectional changes

in  intensity with reference to a low intensity, flat background

(Fig.  1b). These image properties make label-free QPI images appear

fluorescence-like, sharing a  similar-shaped intensity profile to  that

of a  cell labelled with a whole-cell fluorescent dye (Fig. 1b). There-

fore software packages (Wiesmann et al., 2015) and segmentation

algorithms optimised for use with fluorescence images, in  particu-

lar those developed using whole-cell fluorescence intensity images

(Arce et al., 2013; Maska et al., 2013), can be utilised for segmenta-

tion of QPI images (Rappaz et al., 2014).

Compared to QPI, segmentation of PC and DIC  images poses extra

challenges because the intensity profiles are bidirectional, with

peaks and troughs that neither clearly indicate the cell centre nor

boundaries between adjacent cells (Fig. 1b) (Marrison et al., 2013;

Rappaz et al., 2014). Although segmentation is  possible (Nketia

et al., 2014; Winter et al., 2011), these factors make individual cell

segmentation of PC and DIC images notoriously difficult, especially

at high densities. Obtaining individual cell data with PC/DIC images

often requires correlative fluorescence imaging of nuclear labels

e.g. H2B-GFP. Yet, such strategies can result in  loss of morpholog-
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Fig. 2. Resolving between drug treatments using population-level and individual-cell metrics of a dynamic phenotype. (A) Population-level: Plots show the rate of change

of  dry mass, confluence, viability and viable cell count of the MDA-MB-231 cell population measured by ptychographic QPI (Livecyte, Phasefocus) and trypan blue exclusion

(Vi-CELL, Beckman Coulter) upon treatment with 1 nM or 10 �M  Staurosporine compared to untreated control over a  72 h  period. (B) Individual-cell level: Images taken

from  the ptychographic QPI time-sequence (10X/0.25 objective; 72 h  duration; 10 min  imaging interval) indicate differences in dispersal of individual MDA-MB-231 cells

between untreated controls and 1 nM Staurosporine treatment. Segmentation, tracking (Cell Analysis Toolbox, Phasefocus) and post-filtering (exclusion of events <200 �m2

and  tracked for <6.7 h) enables the behaviour of individual cells to be quantified. Cell trajectory plots confirm that 1 nM Staurosporine causes increased cell dispersal com-

pared  to the untreated control. Dot plots show combinatorial metric analysis, with each point demarking the metric mean value for an  individual cell over a  24 h time window.
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ical data due to the difficulties of extrapolating the segmentation

boundary from the nuclear label  to the ill-defined cell boundary.

3.2. Accurate segmentation and tracking

Ideally, segmentation algorithms should be able to  cope with

images of different cell types, multiple cells with differing mor-

phologies and, for time-lapse data, changes in cell number and

morphology (Dimopoulos et al., 2014; Meijering, 2012). However,

in reality, algorithms tend to cope best with the images for which

they were designed (Masuzzo et al., 2016). Thus, without exception,

segmentation of both QPI and PC  images requires careful selection

of algorithms and optimisation of parameters at each step. The high

contrast nature of QPI compared to PC images enables the former

to perform with fewer steps and constraints in  order to  achieve

accurate segmentation, which permits handling of a  wider range

of cell analysis problems. Historically, the cell imaging field has

required new solutions for each cell analysis problem (Meijering,

2012), prompting development of new analysis tools for diverse

image types (Dimopoulos et al., 2014; Hilsenbeck et al., 2016).

Nevertheless, there is  also a  responsibility during experimental

design to select an image acquisition system capable of produc-

ing high-contrast data, from which analysis tools have best chance

of obtaining accurate numerical descriptions of cell phenotypes.

Following segmentation, the next challenge is  to accurately

track cells. Whilst manual tracking is  common, it is time and

labour intensive, can suffer from inter-operator variability and bias,

ill-defined cell centroid positioning (Cordelieres et al., 2013), mis-

calculation in migration rates (Huth et al., 2010), and routines

that do not co-export morphological data. Automated tracking can

circumvent these issues and accurately track large numbers of

cells (e.g. >50) more time efficiently compared to manual track-

ing (Cordelieres et al., 2013). Automated cell tracking algorithms

can be simple, linking cells ‘nearest’ in position/shape/intensity

etc., or more complex, e.g. graph-based methods (Akram et al.,

2016; Winter et al., 2011). Tracked data should be  carefully vali-

dated (Rapoport et al., 2011), which can be efficiently performed

via user-interactive lineage trees (Hilsenbeck et al., 2016; Winter

et al., 2011) or  machine-learning methods (Lou et al., 2014). Com-

pared to traditional techniques, the incorporation of cell intensity

and morphological information extracted from QPI enables track-

ing algorithms to better link cells between successive frames.

4.  Label-free metrics describing biological events

The  label-free dynamic phenotype of every cell consists of a

row of metrics (Table 1) at each time-point. Temporal readouts

offer distinct advantages over fixed endpoints by  enabling delin-

eation between biological processes that show kinetic differences,

e.g. types of cell death (Kepp et al., 2011). In the following sec-

tions, we highlight how  temporal changes in different metrics can

be combined to form biologically-meaningful conclusions.

4.1. Population-level metrics

Time-resolved changes in population-level metrics, such as con-

fluency, have been used to monitor cell viability and ‘growth’, with

particular effect in detecting subtle ‘growth’ changes in  response

to different drugs via PC microscopy (Blum et al., 2015; Single

et al., 2015). However, confluence-based ‘growth’ measurements

suffer from inaccuracies as they rely on 2D  measurements of cell-

substrate contact area, which assumes that growth only occurs as

changes in cell length and width. Invariably, however, cells also

alter in  height during shape changes (e.g. rounding), thus breaking

the 2D length-width assumption and rendering confluence-based

‘growth’ measurements inaccurate. This same assumption compro-

mises the use of confluence as a measure of proliferation especially

as 100% confluency is  reached (Single et al., 2015). Consequently,

more effective measurements of cell growth are  preferable. As

well as measuring changes in area-based cell confluence (Curl

et al., 2004), QPI generates unique phase metrics, which provide

accurate measurement of cell growth at an individual-cell level

alongside growth and proliferation at a  population level. Specifi-

cally, a  cell’s dry mass can be calculated from the phase delay under

previously validated assumptions that the refractive increment of

biomolecules can be closely approximated by a constant (Barer,

1952; Zangle and Teitell, 2014). The increase in  total dry mass of

cells that occurs under normal growth and proliferation can be

compared to the rate of change in total dry mass observed upon

treatment (Fig. 2a). Retardation or decrease in the rate of change is

indicative of cytostatic or  cytotoxic effects of a  drug on a  population

and has previously yielded EC50 values that agreed with existing

literature (Rappaz et al., 2014).

Population-level unique phase metrics also offer advantages

over confluence measures in label-free gap closure or scratch

wound assays, which measure cell migration and wound healing,

respectively. Endpoint or time-lapse PC microscopy assay formats

are typically used to measure the change in  confluence of  a  cell-

free region, pre-defined within a cell monolayer (Blum et al.,

2015). As above, time-resolved data is preferential to  fixed end-

point data as it enables detection of subtler treatment-induced

changes (Jonkman et al., 2014). In all gap closure assays, potential

drug-induced changes in cell proliferation must be determined and

limited as appropriate by anti-proliferative treatments to  prevent

misinterpretation of confluence-based motility measurements. Via

QPI, changes in  the growth and proliferation rate of cells during

gap closure can be monitored directly through combinatorial use

of cell dry mass and thickness measurements (Bettenworth et al.,

2014), negating the need for separate proliferation assays. Fur-

thermore, PC (Bise et al., 2011) and QPI (Mov.2) can be used to

automatically track individual cells within gap closure assays to

reveal proliferation-independent motility measures. The following

section considers the benefits and metrics of individual cell data.

4.2. Relevance of individual cell data

Cells display heterogeneous phenotypes within genetically

identical populations as a result of the expression of unique

transcriptomes and proteomes (Chang et al., 2008). Imaging cell

populations whilst simultaneously extracting metrics from each

individual cell within that population enables cell-to-cell hetero-

geneity to be assessed, yielding results of clinical importance e.g.

informing strategies to  overcome fractional killing of  tumour cells

by chemotherapeutics (Spencer et al., 2009).

4.3. Motility behaviour of individual cells

Cell motility is  essential in  many aspects of biology, e.g. immune

regulation, tissue regeneration and embryogenesis. Deregulation

of cell motility can result in diseases such as cancer, autoimmune

disorders, neurological diseases, and chronic inflammation. Direct,

.  Compared to untreated controls, 1 nM Staurosporine treatment causes emergence of subpopulations of cells with increased speed and Euclidian distance as well as decreased

sphericity (i.e. flattening) and more directed migration. Emerging populations move outside of the red box NOT-gate over time. The bar graph indicates the percentage of

cells outside of this gate for each 24 h  time window.



94 R. Kasprowicz et al. / The International Journal of  Biochemistry & Cell Biology 84 (2017) 89–95

non-invasive measurements of cell motility can be made by track-

ing individual cells in vitro using label-free imaging, with manifold

benefits: (i) direct measures of cell speed, which are independent

of factors such as proliferation; (ii) measures of path directionality

and tortuousness; (iii) identification of cell-to-cell heterogeneity

in  motility. Additionally, identification of individual cells enables

direct measurement of cell number; this can be underestimated by

area-based confluence measures at high cell density (Single et al.,

2015) or affected by treatment-induced changes in  cell area. The

cell numbers and [x,y] positions obtained during tracking can be

used to determine the effects of cell-to-cell proximity upon migra-

tion. Numerous cell morphological metrics (Table 1)  can also be

considered alongside. The result is a label-free dynamic phenotype,

which is rich in additional information and can be probed to extract

the simplest combination of metrics unique to  a given treatment.

A practical example that exploits a  dynamic phenotype, which

incorporates both population and individual cell metrics derived

from QPI, is illustrated in Fig. 2.  Here, MDA-MB-231 cells treated

with 1 nM and 10 �M of Staurosporine were imaged for 72 h by

ptychographic QPI. Population-level indicators of cell growth, con-

fluence, proliferation and viability indicated that cells were only

killed with 10 �M Staurosporine (Fig. 2a). However, individual cell

data revealed that 1 nM Staurosporine caused a  subset of cells to

exhibit more directed motion, become elongated, and roam further

from neighbouring cells when compared to  control cells (Fig. 2b).

The results suggest treatment of MDA-MB-231 cells with sub-toxic

concentrations of Staurosporine elicits a pro-migratory phenotype

in a subset of cells. This example data demonstrates the power of

individual cell measurements for creating dynamic phenotypes to

annotate the effects of drugs/treatments that are not captured by

population-level approaches nor  endpoint analysis.

4.4.  Cell cycle and lineage

Deregulation of the cell cycle is  a  hallmark of cancer. Label-free

imaging offers a non-invasive solution to  track temporal perturba-

tions in the cell cycle in  individual cells through successive divisions

(i.e. in vitro lineage tracing). A key step involves detection of pat-

terns of metrics that  indicate mitosis, which has been successfully

achieved for both PC and QPI techniques (Huh et al., 2011; Marrison

et al., 2013; Masuzzo et al., 2016; Rapoport et al., 2011; Zangle et al.,

2014). Output measurements are timeframes associated with mito-

sis and have uses in  the development of anti-mitotic cancer drugs.

Label-free imaging is  particularly suited to cell cycle/in vitro lin-

eage tracing that necessitates long-term analysis of successive cell

divisions of individual cells. Example applications include the ori-

gins of trisomies (Gisselsson et al., 2010) and restricted stem cell

colony formation (Barbaric et al., 2014). Critically, label-free tech-

nologies enable these results to be obtained without adding labels

that potentially alter normal cell proliferative behaviour.

Discrimination between cell cycle stages is  an active area

of label-free research. Recently, label-free identification of DNA

content and mitotic phases was achieved via imaging flow cytom-

etry and machine-learning (Blasi et al., 2016). For discrimination

between cell cycle stages via label-free microscopy, QPI represents

a likely candidate for success as image intensity information relates

to cellular biomolecule content and structure. Although numerous

label-free QPI metrics have been proposed for different cell cycle

stages (Girshovitz and Shaked, 2012; Mir  et al., 2011), only one

study validated the cell cycle stage with correlative fluorescent

markers (Mir  et al., 2011). Fluorescent biosensors demark specific

biochemical processes and can be useful in  annotating a  dynamic

phenotype in order to  validate label-free patterns, thus necessitat-

ing  the existence of QPI systems that offer correlative fluorescence

capability and allowing a  ground truth to be established.

5. Future perspectives

We  have illustrated that high-contrast image outputs from

QPI systems produce label-free dynamic phenotypes, which can

discriminate between changes in  cell behaviour not captured by

typical population-level approaches or  endpoint assays. Yet effi-

cient analysis of this type of data can be challenging. The sheer

quantity of values recorded within a  label-free dynamic phenotype

necessitates increased computational time and development of

analysis strategies to fully understand the data. To date, strategies

such as surface-level combinatorial metric analyses have proved

useful, for example in  discriminating between cell types in complex

culture (Suman et al., 2016); however advanced analysis strate-

gies such as nth-dimensional parameter space and support vector

machines (Feng et al., 2009)  will need to  be utilised to reveal novel

behaviours and subpopulations of cells that are not immediately

apparent in the data.

Efforts are also being made to develop label-free imaging sys-

tems compatible with 3D samples e.g.  spheroids and organoids.

Whilst implementation for QPI and PC remains at proof-of-concept

stage, 3D imaging systems will enable deeper imaging of  unla-

belled samples as opposed to  typical 2D QPI systems where imaging

depth is limited to  within a  few tens of microns (Adanja et al.,

2010; Godden et al., 2014). Realising label-free 3D  imaging will

help to alleviate reliance on fluorescent dyes and offer non-invasive

insights into native cell behaviour within the context of 3D extra-

cellular environments.
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