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Abstract 

There is currently interest in transmitting acoustic signals along granular chains to 

produce waveforms of relevance to biomedical ultrasound applications. The study of 

such a transduction mechanism is greatly aided by the use of validated theoretical 

models. In view of this, a finite element analysis is presented in this paper. The 

dynamics of a granular chain of six, 1 mm diameter chrome steel spherical beads, was 

excited at one end using a sinusoidal displacement signal at 73 kHz, and terminated 

by a rigid support. Output from this model was compared with the solution provided 

by the equivalent discrete dynamics model, and good agreement obtained. An 

experimental configuration involving the same chain, but terminated by an annular 

support made of a liquid photopolymer resin was also simulated and the velocity of 

the last sphere obtained through simulation was compared with laser vibrometer 

measurement, with good agreement. This model was then extended whereby the 

granular chain was coupled to an acoustic medium with the properties of water, via a 

thin vitreous carbon cylinder. Finite element predictions of the acoustic pressure 

indicate that, for a 73 kHz excitation frequency, harmonic rich acoustic pulses with 

harmonic content close to 1 MHz are predicted. 

 

 

 

PACS numbers: 43.25.Ts, 43.35.Gk 
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I. INTRODUCTION 

Granular crystals can be thought of as ordered aggregates of elastic particles in 

contact with each other. They are a type of nonlinear periodic phononic structure.1 

Granular crystals display nonlinear characteristics which result from the nonlinear 

relationship of the force at the contact and the displacement between neighboring 

element centers (described by Hertzian contact law – a consequence of linear 

mechanics) and an asymmetric potential which arises between neighboring elements 

from the inability of granular crystals to support tensile loads.1 As a consequence of 

these nonlinearities, there is a negligible linear range for interaction forces between 

neighboring elements, in the vicinity of zero pre-compression force applied to the 

chain.1 This leads to a non-existent linear sound speed in the uncompressed material, 

resulting in a phenomenon described as a “sonic vacuum”. Under such circumstances, 

the traditional wave equation does not support a characteristic speed of sound2. 

However, granular crystals are known to support a wide array of nonlinear 

phenomena, including the generation of compact solitary waves.3,4,5,6,7,8 A 

comprehensive review of granular crystals, along with the description of the 

abundance of nonlinear phenomena that these structures support, can be revealed by 

consulting the works of Theocharis et al.1 and of Nesterenko.2 

 

In granular chains, defined here as one-dimensional granular crystals of spherical 

beads, the generation of solitary waves is supported where dispersive and nonlinear 

effects balance out.3,6,9 This phenomenon was first described by Nesterenko in 1983, 

where a discrete mechanics model was used to demonstrate that the propagation of 

solitary waves was supported in a granular chain.3 This observation was later 

confirmed in 1985 by generating solitary waves in a chain of spherical beads via the 
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impact of a piston.4 An experimental study was subsequently carried out, in which the 

propagation of high-amplitude compressional waves in a chain of beads in Hertzian 

contact was investigated.5 An extensive range of pulse amplitudes was used, with the 

chain submitted or not to a small pre-compressional static force. Comparison of the 

shape and velocity the solitary waves as functions of their maximum amplitude 

yielded good agreement with results from the discrete mechanics model. 

 

The study of nonlinear phenomena in granular chains has recently been extended to 

biomedical applications.9,10,11 Spadoni and Daraio9 generated high-amplitude focused 

acoustic pulses using a one-dimensional array of granular chains. An investigation 

was conducted where the amplitude, size, and location of the focus could be 

controlled by varying the static pre-compression of the chains. Yang et al. employed 

granular chains to assess the structural integrity of orthopedic implants.10 In the study 

described by Hutchins et al.11, displacements of the order of 1 m were produced by a 

resonant 73 kHz ultrasonic source to drive a granular chain consisting of six 1 mm 

diameter chrome steel spheres. The final sphere of the chain was in contact with a 

fixed support. Travelling solitary wave impulses were observed, which were due to 

both nonlinearity between adjacent spheres and reflections within the chain. The axial 

velocity of the final sphere of the chain was measured using a laser vibrometer. The 

acquired waveforms showed a train of impulses possessing both high amplitude and 

wide bandwidth, and featuring spectral content up to 200 kHz. This work was 

subsequently expanded upon to study the response of granular chains to a narrow 

band ultrasonic source, as a function of the static pre-compression of the chain, and of 

its properties.12 A transduction mechanism based on the nonlinear dynamics of 

granular chains may in fact possess distinct features that could make it attractive to 
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both therapeutic high-intensity focused ultrasound applications and diagnostic 

applications. 11,12 

 

Discrete mechanics models such as the one proposed by Lydon et al.13, have been 

shown to replicate features of the experimentally observed dynamics of granular 

chains.5,6,11,12 Nevertheless, such models are likely to have limitations when it comes 

to designing, developing and optimizing application-specific transducers. Indeed, in 

the case of biomedical ultrasound applications, a granular chain may include other 

components, such as a piezoelectric actuator and matching layers. Furthermore, the 

transducer will couple into an acoustic medium, such as water or soft tissue, the 

loading of which will affect its dynamic behavior. An investigation into generating 

acoustic signals suitable for biomedical applications will involve the study of how the 

acoustic medium will couple to the granular chain and how resulting acoustic signals 

will propagate. These complexities suggest that a numerical solution to the design of 

such a transducer is likely to provide more flexibility than the widely used discrete 

mechanics models. 

 

Khatri et al.15 developed a finite element model using the Abaqus software to simulate 

the dynamic behaviour of nonlinear actuator system based on tunable granular chains, 

consisting of rods terminated by a linear elastic rod. Good agreement with the discrete 

mechanics solution and with experimental results was demonstrated. Musson and 

Carlson16 carried out a finite element analysis (FEA) of the nonlinear dynamics of the 

granular chain investigated in by Lazaridi and Nesterenko.4 This solution was 

provided by the COMSOL Multiphysics software. It was shown that FEA could 

successfully model the generation of solitary waves in a chain of 20 beads. 
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Furthermore, the FEA results demonstrated the importance of localized plastic 

deformations in the dynamics of granular chains, hence addressing a limitation of 

discrete mechanics models, where plastic deformations are neglected, as the beads are 

assumed to be point masses.5 A finite element model was also developed to simulate 

the propagation of a solitary wave in a granular chain, in contact with a cement 

sample.17 Based on the characteristics of the observed reflected wave, an assessment 

of the elastic properties of the cement is reported. The above studies generally focus 

on the simulation of solitary wave propagation as a result of a single impact onto the 

first bead of the granular chain. Based on the results reported by Hutchins et al.11,12 

there is a requirement to extend FEA to higher frequency excitation signals, in order 

to develop a better understanding of how the nonlinear characteristics of granular 

chains may be harnessed to develop novel biomedical devices. Whilst the physics 

governing the systems under investigation remain the same, the computational 

challenges are more substantial owing to the high frequency content of the signals 

relative to the dimensions of the granular chain. Resolving this frequency content is 

likely to involve increasingly finer meshes and smaller time-steps. In order to address 

these issues, a preliminary study was described by Gélat et al.18, where FEA was used 

to study the behavior of a six-bead granular chain subject to sinusoidal excitation. The 

granular chain described by Hutchins et al.11 was subjected to five cycles of a 

sinusoidal displacement of 0.3 m amplitude, via a rigidly vibrating cylindrical piston 

at a frequency of 73 kHz. Displacements at the center of each bead were obtained as a 

function of time and compared with results from the discrete mechanics model 

described by Lydon et al.13, as implemented by Hutchins et al.11, and in absence of 

any viscous damping. The FEA results were in good overall agreement with the 

discrete mechanics model and successfully resolved multiple collisions between the 



8 

 

beads. Discernible differences between the FEA and the discrete mechanics solution 

were attributed in part to the elastic deformation of the beads, which is not accounted 

for in the discrete mechanics model when the beads separate. 

 
In this paper, the preliminary model described by Gélat et al.17 was further developed 

to include an annulus-shaped support made of liquid photopolymer resin, which was 

contact with the last bead of the granular chain. This is representative of what has 

been used experimentally by Hutchins et al.11 Dissipation mechanisms due to 

viscoelastic losses were implemented through the use of viscous dampers connected 

between the beads. The first sphere of the chain was excited via a rigidly vibrating 

cylindrical piston, the axial displacement of which was obtained from a laser 

vibrometer measurement at the tip of the purpose-built piezoelectric horn ultrasonic 

transducer described by Hutchins et al.11 The fundamental frequency of the voltage 

excitation signal was 73 kHz and this resulted in a peak normal tip displacement 

magnitude of 1 m. The FEA was carried out using a transient analysis in ANSYS 

Mechanical version 16.1.18 The chain was subsequently coupled to a half-space of 

water via a thin layer of vitreous carbon and the acoustic pressure  1 mm from the 

fluid/structure interface resulting from the harmonic excitation of the granular chain, 

was computed. 

II. METHOD 

A. Discrete mechanics formulations 

Linear elasticity provides an exact solution to the static frictionless interaction 

between two adjacent elastic spheres. This is known as Hertz’s law20, which 

effectively expresses a nonlinear relationship between the force ܨ exerted on the 
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spheres, and the distance of approach ߜ of their centers. For homogeneous isotropic 

spheres of radius ܽ, this is expressed as follows:6 

 

ߜ ൌ ଶሺఏிబሻమȀయభȀయ          (1) 

where ߠ ൌ ଷ൫ଵିజమ൯ସா          (2) 

 and ߭ are respectively Young’s modulus and Poisson’s ratio corresponding to ܧ 

sphere material. It should be noted that this nonlinear relationship results purely from 

geometrical effects and is not a result of nonlinear stress-strain relations. 

 

Consider the case of dynamic excitation of a chain of ܰ identical, perfectly aligned 

spheres in Hertzian contact. If it is assumed that the time scale involved in the motion 

is much greater than the time needed by a bulk longitudinal acoustic wave to travel 

across the diameter of a bead, equation (1) can be considered valid for dynamic 

excitation.6 The dynamics of the ith bead of the granular chain can then be expressed 

as follows:6 

 

ሷݑ  ൌ ଵଶఏටଶ ቀሾߜ െ ሺݑ െ ିଵሻሿయమݑ െ ሾߜ െ ሺݑାଵ െ  ሻሿయమቁ   (3)ݑ

 

Equation (3) can account for loss of contacts between the beads by noting that only 

positive arguments of the 3⁄2 power-law terms need be considered. When the beads 

lose contact, i.e. for tensionless behavior, these terms can be set to zero for negative 

values of these arguments. Initial validation of the FEA was carried out in using the 
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above discrete mechanics formulation,18 as implemented by Hutchins et al.11 

Validation of the FEA with equation (3) will also be presented in this paper. It is felt 

that such further validation is desirable as granular chains are inherently highly 

nonlinear systems, and the displacement excitation acting on the first sphere of the 

chain is in this case over three times higher in magnitude than used by Gélat et al.18 

B. Finite element analysis 

The problem of frictionless (Hertzian) contact between two solid bodies is commonly 

expressed as a variational inequality. This poses a special type of minimization 

problem with inequality constraints, which can be efficiently treated with (a) the 

penalty method, (b) the augmented Lagrangian method or (c) the Lagrange multiplier 

method.21 An in-depth explanation of these methods is presented by Yastrebov.21 In 

this paper, the Lagrange multiplier method as implemented in ANSYSTM Mechanical 

v16.1 FEA package was used to solve the minimization problem associated with 

contacts between adjacent spheres and with the piston and support. Reasons for this 

are discussed by Gélat et al.18 

In simulations where the granular chain was coupled to an acoustic medium, the 

propagation of acoustic waves inside the fluid was assumed to be governed by the 

linear, inviscid acoustic wave equation, so that the fluid could be defined in terms of 

its equilibrium density and speed of sound. Coupling at the fluid/structure interface 

assumed continuity of normal velocity. An absorbing boundary was placed around the 

acoustic finite element mesh in order to simulate the Sommerfeld radiating condition 

and propagation of acoustic waves into a half-space.  
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C. Experimental configuration 

The experimental displacement normal to the horn transducer tip was measured using 

a laser vibrometer. The measurement protocol, which is further described by Hutchins 

et al.12 and by Omololu et al.13, is summarized below. 

 

Fig. 1. Schematic diagram of the experimental configuration used for the acquisition of granular chain 

displacement signals. 

The experimental arrangement used is shown in Fig. 1. Six spheres of 1 mm diameter 

chrome-steel spheres were placed within a cylindrical holder made of acrylic resin 

and manufactured using micro-stereolithography. The spheres were placed 

horizontally within the holder so as to just touch each other, thus minimizing static 

pre-compression forces. The first sphere was excited harmonically by a longitudinal 

ultrasonic horn, operating at 73 kHz, which was driven by a high voltage tone-burst 

signal using an Agilent 33120A function/Arbitrary waveform generator and a power 

amplifier. Both the horn and the chains of spheres were clamped rigidly onto an 

optical translation stage. A micrometer was used to position the horn against the first 

sphere of the granular chain with as little force as possible. The last sphere of the 

chain was held in place using an annular aperture, allowing detection of the particle 
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velocity waveform at the output via a Polytec laser vibrometry system. The tone-burst 

duration and amplitude of the drive voltage signal could both be adjusted. The axial 

displacement of the horn transducer tip as a function of time is displayed in Fig. 2a. 

The normalized FTT of the displacement time history is displayed in Fig. 2b, 

demonstrating that the spectral content is essentially concentrated around the 

fundamental frequency of 73 kHz. It should be noted that this measurement was 

carried out in absence of any mechanical loading on the transducer tip. In practice, the 

mechanical loading induced by coupling with the granular chain is likely to result in a 

modified displacement time history acting on the first bead of the chain, which could 

constitute a source of uncertainty when comparing the modeling results with 

experimental data. 

 

Fig. 2. (a) Normal displacement measured at the tip of the 73 kHz horn transducer using a laser 

vibrometer. (b) Corresponding Normalized FFT. 
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III. NUMERICAL CALCULATIONS 

It was assumed that the beads of the granular chain were perfectly aligned. By virtue 

of this assumption, the configuration may be considered axisymmetric. The Cartesian 

y-axis was assumed to be the axis of symmetry of the chain. In the purely structural 

FEA calculations reported in this paper, a combination of eight node quadrilateral and 

six node triangular axisymmetric elements were used, with quadratic shape functions. 

These elements feature two translational degrees of freedom per node. All degrees of 

freedom of the cylindrical piston exciting the first sphere of the chain were coupled, 

so that they assumed the same motion along the axis of the chain, i.e. the Cartesian y-

axis. In the simulations involving fluid/structure coupling, linear elements were used 

in the acoustic medium, as ANSYS does not allow for quadratic acoustic elements. 

The acoustic elements possess one degree of freedom, i.e. acoustic pressure. A 0.25 

mm thick cylindrical layer of vitreous carbon of 2 mm diameter was used to couple 

the chain to the region of fluid, which was meshed using linear four node quadrilateral 

elements. The piston translational degrees of freedom along the Cartesian x-axis were 

restrained. A graded meshing strategy was employed, with substantial mesh 

refinements occurring near the contact surfaces, to ensure a smooth distribution of 

contact stresses.16,17,18 A coarser mesh was allowed for at other locations to ensure 

that the total amount degrees of freedom could be kept within a reasonable limit, so 

that run times on the computing platform used would be manageable. The time step in 

the transient analysis was set to 0.1 s. 

 

In the experiments carried out by Hutchins et al.11 the authors report that efforts were 

made to minimize pre-compressive forces. As such, the granular chain was not pre-

compressed by a static force in the work described this paper. The response of the 
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chain to dynamic excitation as a function of a static pre-compressive force acting 

along the axis of the chain has been reported by Hutchins et al.12 

 

A. FEA of granular chain terminated by a rigid support 

A chain of six perfectly aligned chrome steel spheres was excited with five cycles of a 

73 kHz, 1 m amplitude sinusoidal displacement waveform. The final sphere of the 

granular chain was in contact with a rigid support. All contacts were assumed to be 

frictionless. This analysis was carried out primarily as a validation exercise, to 

investigate the agreement of the FEA with the discrete mechanics model implemented 

by Hutchins et al.11 

 

The mesh used for analysis of the dynamics of the six-bead granular chain involving a 

rigid support is shown in Fig. 3. The properties of chrome steel were defined by a 

Young’s modulus of 201 GPa, a density of 7833 kg∙m−3 and a Poisson’s ratio of 0.3.11 
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Fig. 3. Mesh used for axisymmetric FEA of six-bead granular chain. The top-most sphere is excited by 

a rigidly-vibrating cylindrical piston. The bottom-most sphere is in contact with a rigid support. 3038 

contact elements; and 7477 solid elements were used. 

B. FEA of a granular chain terminated by an annular support 

A transient dynamic analysis was carried out using the displacement time history 

obtained from laser vibrometry, which was used as input data for the Cartesian y-

component of the displacement of the piston cylinder. The geometry of the annular 

support in contact with the final sphere of the chain was based on that used 

experimentally by Hutchins et al.11 The annulus has an outer diameter of 0.55 mm and 

an inner diameter of 0.3 mm. Its thickness along the Cartesian y-direction is 0.5 mm. 

The outer surface of the annular support was assumed to be rigidly clamped. The 
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surface of the support in contact with the final sphere of the chain was modified to 

avoid defining a contact region involving a sharp edge, as this is known to cause 

numerical instability19. A toroidal surface was assumed, which results in a semi-circle 

of radius 0.25 mm in the x-y plane. The mesh used for the FEA of the six-bead 

granular chain involving an annular support is shown in Fig. 4. 

 

Fig. 4. (a) Mesh used for axisymmetric FEA of six-bead granular chain. The top-most sphere is excited 

by a rigidly-vibrating cylindrical piston. The bottom-most sphere is in contact with an annular liquid 

photopolymer resin support, clamped at its outer diameter. 2267 contact elements; and 5397 solid 

elements were used. (b) Three-dimensional visualization of mesh used for axisymmetric FEA of six-

bead granular chain, cylindrical piston and annular support. 

The support was assigned the properties of EnvisionTECTM R11 liquid photopolymer 

resin, which were obtained from the manufacturer’s datasheet22. A value of Young’s 

modulus of 1.4 GPa was used. The density of the support was taken as 1235 kg∙m−3 

and Poisson’s ratio 0.35. Dissipative effects in the granular chain include, but are not 

limited to, viscoelastic losses as adjacent bodies collide and frictional contact of the 

spheres with the holder wall. To address the latter, a full three dimensional model 

would be required, as the holder inner diameter is slightly larger than that of the 

spheres (to allow for movement of the beads). Hence, in practice, the spheres are not 
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perfectly aligned. Such a model would introduce additional complexities and is 

beyond the scope of the work described in this paper. In the calculations in this paper, 

the dissipative mechanisms were limited to viscoelastic damping. Two types of 

viscoelastic damping models were considered. One based on a velocity proportional 

damper and the other based on a nonlinear formulation proposed by Kuwabara and 

Kono.22 The latter effectively involves a damping coefficient proportional to the 

square root of the distance of approach between two adjacent spheres of the chain as 

they collide. It was chosen to implement this formulation as it features good 

representation of coefficients of restitution for hard metallic materials.24 A value of 

0.3 N∙s∙m−1 was used for the damping coefficient of the dashpots in the velocity 

proportional dashpot model. Comparisons with the experimental results by Hutchins 

et al.11 were used as a guideline to choosing this value, where the peak positive value 

of the measured normal velocity of the last sphere of the chain was used a reference. 

The authors acknowledge that this approach is heuristic in nature. In the nonlinear 

formulation proposed by Kuwabara and Kono23, a value of 3.66∙103 N∙m-3/2 was used 

for the dissipative factor of chrome steel, as derived from a least squares fit by 

Kruggel-Emden et al.23 In both implementations, as adjacent spheres separated, the 

damping term was set to zero. This was implemented by monitoring the positions of 

the centers of the spheres at each time step of the analysis. 

IV. RESULTS 

A. Granular chain terminated by a rigid support: FEA results  

Fig. 5 displays the y-component of the velocity at the center of the final sphere of the 

granular chain as a function of time, with the chain terminated by a rigid support. As 

described in Section III, the piston axial displacement time history consisted of five 
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cycles of a 73 kHz sinusoidal waveform. Results for both the FEA and the discrete 

mechanics model are shown in Fig. 5, in which good agreement between both models 

is shown. This provides confidence in the protocol used in the FEA modeling, in 

terms of the mesh density, the chosen time step and the overall accuracy of the solver. 

 

Fig. 5. Axial component of the velocity at the center of the final sphere of the granular chain 

terminated with a rigid support. Comparison of FEA and discrete mechanics solution. 

 

B. Granular chain terminated by an annular support: structural FEA results 

and validation 

Fig. 6a shows the time domain velocity of the last bead of the granular chain 

measured using a laser vibrometer, when the first sphere was excited using the horn 

transducer used by Hutchins et al.11,12 Fig. 6b displays the normalized FFT of the 

velocity signal. Both these results have already been published11 and are reproduced 

here for comparison purposes. 
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Fig. 6. Axial component of the velocity at the pole of the final sphere of the granular chain (a) 

measured using a laser vibrometer, (c) predicted with FEA using velocity proportional damping 

coefficients and with an excitation displacement corresponding to the waveform in (a) scaled by 0.5, 

and (e) predicted with FEA using a nonlinear damping coefficients based on the formulation by 

Kuwabara and Kono22 and with an excitation displacement corresponding to the waveform in (a) scaled 

by 1.5. (b), (d) and (f) correspond to the normalized FFTs of the waveforms in (a), (c) and (e), 

respectively. 

It has been demonstrated by Hutchins et al.12 that these types of impulses generated 

by exciting a six-bead granular chain were only created when the experimental 

conditions were correctly fine-tuned, an important parameter being the input 

waveform amplitude. It was noted in Section II C that there exists uncertainty in the 

normal displacement acting on the first sphere of the chain, since this quantity was 

measured without any mechanical loading of the chain on the transducer. 

Furthermore, due to the fact that the system under investigation is stongly nonlinear, 

its output is likely to be highly sensitive to initial conditions. In order to reflect this 

uncertainty, a sensitivity analysis to the input displacement was carried out. The 

amplitude of the input displacement which described the cylindrical piston motion 
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was multiplied by a scaling factor  which was varied between 0.3 and 1.5, in steps of 

0.05. For each value of , the velocity of the final sphere of the chain obtained using 

FEA. It was observed that for  = 0.5, the ratio of magnitude of the harmonic at 24.3 

kHz to that of the fundamental frequency for this velocity reaches a maximum when 

the dissipative effects were assumed to be represented by velocity proportional 

dampers. Fig. 6c shows the axial velocity time history at the pole of the final sphere of 

the granular chain, predicted by the FEA. This location corresponds to that at which 

the laser vibrometer measurement was carried out by Hutchins et al.11 The velocity 

time history replicates features of the laser vibrometer measurement reported by 

Hutchins et al.11 Indeed, a similar train of impulses is predicted here using FEA. 

Furthermore, the peak positive and peak negative amplitudes are respectively 296 

mm∙s−1 and −207 mm∙s−1 and the corresponding experimental values are 289 mm∙s−1 

and −247 mm∙s−1. The FFT of the velocity waveform in Fig. 6c is displayed in Fig. 

6d. Fig. 6d shows that the frequency content of the axial velocity of the final sphere of 

the chain bears particular features. Whilst there remains spectral content at 73 kHz, 

harmonics at 1/3rd and 2/3rd of this frequency are also observed, together with 

ultraharmonics of these spectral components. Such features were reported by 

Hutchins et al.11,12 where it was shown that this behavior was dependent on the 

excitation magnitude, the number of beads in the chain and on how the latter was 

terminated. 

Another similar sensitivity analysis was carried out where the dissipative effects were 

represented by the nonlinear dampers proposed by Kuwabara and Kono.22 All other 

model parameters remained unchanged. Whilst the axial velocity of the final sphere of 

the chain was shown to result in a train of impulses, its time and frequency domain 

characteristics were distinct from those obtained when using velocity proportional 
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damper. The set of results that best matched the experimental behavior in terms of the 

peak positive velocity was for  = 1.5. The velocity waveform of the last sphere of 

the chai and its normalized FFT are displayed in Figs. 6e and 6f, respectively. 

Although Fig. 6e shows a peak positive velocity of 214 mm∙s-1, the peak negative 

velocity is 71 mm∙s-1 which is proportionally much lower than the experimental 

value in Fig. 6a. Additionally, the spectral content displayed in Fig. 6f shows that the 

waveform in Fig. 6e has harmonics at half rather than 1/3rd and 2/3rd of the 

fundamental frequency. 

The signals predicted by the FEA which most closely match those observed by 

Hutchins et al.11 are those in Fig. 6c, which were obtained using velocity proportional 

dampers. Prior studies have demonstrated that dissipative effects due to viscoelasticity 

in granular chains of chrome steel beads may be more closely approximated by 

nonlinear damper models.24 It appear that, however, in this case, velocity proportional 

dampers provide better agreement with experimental results. There exist sources of 

dissipation other than viscoelasticity, including friction with the holder, plasticity of 

the beads, and viscous drag.1 It is therefore possible that a more simplified model for 

damping in fact results in a better heuristic description of the overall mechanisms for 

dissipation. Clearly, further simulations and experimentation would be required to 

confirm this. The effects of von Mises stresses and their impact on plasticity have 

been studied using FEA by Musson and Carlson16 demonstrating that localized plastic 

deformation is a likely source of dissipation in the experiments carried out by Lazaridi 

and Nesterenko4. This is also likely to be the case in the experiments described by 

Hutchins et al.11,12 Friction of the beads with the cylindrical holder is also likely to be 

a source of dissipation, as is viscous drag. The inclusion of such effects was 

considered beyond the scope of the study. It is however acknowledged that all the 
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above phenomena, together with imperfect experimental alignment of the beads and 

indeed the elasticity of the holder, will play a role in the observed discrepancies 

between experimental and FEA results. This statement is supported by a recent study 

whereby, in granular chains featuring stainless steel beads of 0.3 mm diameter, it was 

demonstrated that the propagation of highly nonlinear solitary waves was very 

sensitive to the presence of imperfections, including misalignment of the beads.25 

Whilst Figs. 6c and 6d bear similar features to Figs. 6e and 6f, respectively, some 

discrepancies between the FEA and experimental results exist. Indeed, the spectral 

content in the vicinity of 1/3rd and 2/3rd of the fundamental frequency is more 

pronounced in the experimental case. Due to the high nonlinearity of the system being 

studied, it is somewhat expected that differences between experimental observation 

and theoretical calculations should exist, due to propagation of uncertainties in the 

system as time increases. In addition to the methodology used for modelling 

mechanisms of dissipation, which has been discussed in the previous paragraph, two 

other important sources of uncertainties are present. The first is related to the pre-

compression of the granular chain. In practice, some pre-compression will always be 

present when coupling the transducer to the first sphere of the chain. Prior theoretical5 

and experimental12 studies demonstrate that this is an important parameter which has 

a strong effect on the dynamics of the chain. The second source of uncertainty, which 

was mentioned in Section IIC, is the effect of the mechanical loading of the granular 

chain on the vibration of the horn transducer tip. Hence, the input displacement 

waveform shown in Fig. 2a may not in fact be entirely representative of how the chain 

is excited, and is likely to be overestimated. The sensitivity analysis carried out here 

confirms this observation. 
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Another class of uncertainties arises from effects of particle rotation. In point bodies 

representing a continuum, a generalized theory of elasticity accounting for the 

rotational degrees of freedom of these bodies was proposed.26 Experimental 

observation of coupled rotational-translational modes in 3D, hexagonal closely 

packed granular phononic crystals has been recently carried out.27 Experimental 

evidence of transverse rotational modes has also been observed in a 1D magneto-

granular phononic crystal, with beads of 15.875 mm diameter.28 Effects of nonlinear 

dynamic hysteresis, such as nonlinear absorption, have been shown to occur in 

granular chains under torsional excitation.29 

Whilst the experimental configuration and excitation conditions reported above differ 

somewhat from those described in this paper, these particle rotation and nonlinear 

hysteretic effects could constitute a further source of discrepancies between FEA and 

experiment, since the FEA is limited to the axisymmetric case. In practice, due to 

manufacturing tolerances, the horn transducer used in the experiments described in 

this paper is unlikely to result in a tip displacement which is purely translational. 

Thus, contributions from undesirable rotational excitations could distinctly affect the 

dynamics of the granular chain. Further research is however required to clarify the 

extent to which this occurs relative to other unwanted effects. Quantifying these 

effects could be particularly important when designing clinical devices where a 

reproducible output within strict tolerances is required. 

C. Acoustic pressure prediction using FEA 

Following the results in the previous section, it was decided that the velocity 

proportional damping model provided a better description of the experimental 

configuration. It was therefore used in the FEA involving fluid/structure coupling, the 



24 

 

outcome of which is discussed in this Section. The six-bead granular chain under 

investigation was coupled to a half-space of a fluid via a 0.25 mm thick cylindrical 

layer of vitreous carbon. A displacement excitation was applied to the steel piston in 

contact with the first sphere of the granular chain, with a fundamental frequency of 73 

kHz. The displacement signal consisted of a 30 cycle sinusoidal waveform with a 

Gaussian envelope. A sensitivity analysis was carried out, similar to that described in 

Section IV B, where the amplitude of the driving signal was varied until the desired 

train of impulses was generated. Such signals were observed for a peak displacement 

of 3.96 m. The input displacement signal and its normalized FFT are shown in Fig. 

7. 

 

FIG. 7. (a) Piston excitation displacement waveform used for acoustic pressure predictions. 73 kHz 

fundamental 30-cycle sinusoidal pulse with a Gaussian envelope and with a peak value of 3.96 m. (b) 

Corresponding normalized FFT. 

 

The density of the acoustic medium was 1000 kg∙m-3. The speed of propagation of 

compressional waves was 1500 m∙s-1. The properties of vitreous carbon were those of 

Sigradur® K i.e. a Young’s modulus of 35 GPa, a density of 1540 kg∙m-3 and a 
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Poisson’s ratio of 0.15. The velocity of the final sphere of the chain, in contact with 

the vitreous carbon cylinder, was extracted from the FEA. The acoustic pressure was 

predicted 1 mm from the fluid/structure interface, along the axis of symmetry of the 

configuration. These results, along with the normalized FFT of the acoustic pressure 

signal, are shown in Fig. 8a, 8b and 8c, respectively. 

 

FIG. 8 (a) Axial component of the velocity at the pole of the final sphere of the granular chain, in 

contact with the cylindrical layer of vitreous carbon. (b) Acoustic pressure predicted with FEA 1 mm 

from the fluid/structure interface on the axis of symmetry. (c) Normalized FFT of acoustic pressure 

waveform in (b). 

 

This set of results clearly shows that a pulse train is propagated into the acoustic 

medium, with a peak acoustic pressure of 14 kPa, 1 mm from the fluid/structure 

interface. The acoustic signal has multiple harmonics and features spectral content up 

to 0.95 MHz, at 21 dB relative to the fundamental frequency. This set of results 

demonstrates the potential for generating acoustic signals with frequency content of 

relevance to biomedical ultrasound applications. 



26 

 

V. CONCLUSIONS 

In this paper, a finite element contact mechanics model was presented for simulating 

the dynamics of a granular chain, subjected to a tone burst excitation. The model was 

initially validated against results from a discrete mechanics model commonly used to 

simulate the dynamics of chains of spheres in Hertzian contact. A rigid support was 

used to terminate the chain in this validation exercise, as this could be replicated in 

the discrete mechanics model. Good agreement between both models was obtained. 

The FEA model was subsequently modified to include an accurate model of the 

termination of the granular chain used in the experiments carried out by Hutchins et 

al.11 This termination consisted of an annular support made of a liquid photopolymer 

resin, rigidly clamped around its outer diameter. The predicted axial component of the 

velocity of the final sphere of the chain was compared with the laser vibrometer 

measurement obtained by Hutchins et al.11 Two types of viscoelastic damping models 

were implements: one based on velocity proportional damping and another featuring a 

nonlinear damping coefficient proportional to the square root of the distance of 

approach between the centers of two adjacent spheres. The former provided good 

agreement with the experimental waveform both in terms of its time domain and 

frequency domain characteristics. The finite element model was then extended 

whereby the granular chain was coupled to a half-space of water via a thin layer of 

vitreous carbon. Under specific excitation conditions, it was possible to generate 

frequency content close to 1 MHz with a 73 kHz fundamental excitation signal on the 

first sphere of the chain. 

 

This work was carried out in view of simulating a transduction mechanism which is of 

interest to biomedical ultrasound applications, whereby a narrowband excitation can 
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result in high-amplitude impulses which possess a broad range of frequencies. The 

analyses presented in this paper demonstrate that, despite the strong nonlinearities 

present in the dynamics of the system under investigation, FEA is a suitable tool for 

predicting both time and frequency domain features of transmitted ultrasonic signals. 

Applications of the resulting acoustic signals may then be studied for a range of 

biomedical ultrasound applications. These include therapeutic ultrasound, medical 

imaging and targeted drug delivery. FEA will enable configurations which present 

challenges using discrete mechanics formulations to be investigated thoroughly, and 

suitable transducer designs arrived at. 
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