This is an author produced version of *FitSpec: refining property sets for functional testing*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/118200/

Proceedings Paper:
FitSpec: Refining Property Sets for Functional Testing

Rudy Braquehais
University of York, UK
rmb532@york.ac.uk

Colin Runciman
University of York, UK
colin.runciman@york.ac.uk

Abstract

This paper presents FitSpec, a tool providing automated assistance in the task of refining sets of test properties for Haskell functions. FitSpec tests mutant variations of functions under test against a given property set, recording any surviving mutants that pass all tests. The number of surviving mutants and any smallest survivor are presented to the user. A surviving mutant indicates incompleteness of the property set, prompting the user to amend a property or to add a new one, making the property set stronger. Based on the same test results, FitSpec also provides conjectures in the form of equivalences and implications between property subsets. These conjectures help the user to identify minimal core subsets of properties and so to reduce the cost of future property-based testing.

Categories and Subject Descriptors D.2.5 [Software Engineering]: Testing and Debugging — Testing tools

Keywords property-based testing, mutation testing, systematic testing, formal specification, Haskell.

1. Introduction

Property-based testing tools automatically test a set of properties describing a set of functions. QuickCheck (Claessen and Hughes 2000) and SmallCheck (Runciman et al. 2008) are well-known examples of such tools for Haskell. Two interesting questions arise for any specific application of property-based testing:

- Does the set of properties completely describe the set of functions? Is there no other set of functions that passes the tests?
- Is this set of properties minimal? Is there a property that is redundant? When doing regression tests, can a property be excluded to speed up the process?

This paper presents FitSpec, a tool providing automated assistance in the task of refining sets of test properties for Haskell functions. FitSpec does not require sources for functions under test: it only requires a tuple of those functions as component values. Sets of test properties are wrapped to become the result of a function, whose argument is such a tuple of functions (§3).

FitSpec enumerates small finite black-box mutations of functions under test (§4.1 and §4.3). It tests those mutants against the property set, recording the ones that survive by passing all the tests (§4.2 and §4.4). It presents the number of surviving mutants along with any smallest surviving mutant (§4.5). A surviving mutant indicates incompleteness of the property set, prompting the user to amend a property or to add a new one. When there is apparent redundancy in a property set, FitSpec provides conjectures in the form of equivalences and implications between properties, helping the user to identify minimal core subsets of properties (§4.6).

Example 1 Consider the following property set describing a sort function:

1. \(\text{\textbackslash xs \rightarrow ordered (sort \text{xs})}\)
2. \(\text{\textbackslash xs \rightarrow length (sort \text{xs}) == length \text{xs}}\)
3. \(\text{\textbackslash xs \rightarrow elem \text{x (sort \text{xs}) == elem \text{x xs}}}\)
4. \(\text{\textbackslash xs \rightarrow notElem \text{x (sort \text{xs}) == notElem \text{x xs}}}\)
5. \(\text{\textbackslash xs \rightarrow minimum (x:xs) == head (sort (x:xs))}\)

If we supply this property set as input, FitSpec reports that it is neither minimal nor complete:

Apparent incomplete and non-minimal specification

20000 tests, 4000 mutants

3 survivors (99% killed), smallest:

\(\text{sort' \ [0,0,1] == [0,1,1]}\)

\(\text{sort' \ xs} = \text{sort \ xs}\)

minimal property subsets: \(\{1,2,3\}\) \(\{1,2,4\}\)

conjectures: \(\{3\} = \{4\}\) 96% killed (weak)

\(\{1,3\} \Rightarrow \{5\}\) 98% killed (weak)

Completeness: FitSpec discovers three mutants that survive testing against all properties. The smallest surviving mutant is clearly not a valid implementation of sort, but indeed satisfies all properties. As a specification, the property set is incomplete as it omits to require that sorting preserves the number of occurrences of each element value: \(\text{\textbackslash xs \rightarrow count \text{x (sort \text{xs}) == count \text{x xs}}}\)

Minimality: FitSpec discovers two possible minimal subsets of properties: \(\{1,2,3\}\) and \(\{1,2,4\}\). As measured by the number of killed mutants, each of these subsets is as strong as \(\{1,2,3,4,5\}\). So far as testing has revealed, properties 3 and 4 are equivalent and property 5 follows from 1 and 3. It is up to the user to check whether these conjectures are true. Indeed they are, so in future testing we could safely omit properties 4 and 5.

Refinement: If we omit redundant properties, and add a property to kill the surviving mutant, our refined property set is:

1. \(\text{\textbackslash xs \rightarrow ordered (sort \text{xs})}\)
2. \(\text{\textbackslash xs \rightarrow length (sort \text{xs}) == length \text{xs}}\)
3. \(\text{\textbackslash xs \rightarrow elem \text{x (sort \text{xs}) == elem \text{x xs}}}\)
4. \(\text{\textbackslash xs \rightarrow count \text{x (sort \text{xs}) == count \text{x xs}}}\)

FitSpec reports that this property set is apparently complete but not minimal: both 2 and 3 now follow from 4. Since that is true, we might remove properties 2 and 3 to arrive at a minimal and complete property set.
Contributions The main contributions of this paper are:

1. an enumerative black-box mutation-testing technique that does not need function sources or mutation operators, and always returns a smallest or simplest surviving mutant if there is one;
2. a technique to conjecture equivalences and implications between subsets of properties based on mutation testing;
3. a tool (FitSpec) that implements these techniques providing key information for Haskell programmers refining sets of test properties;
4. several small case studies illustrating and evaluating the applicability of FitSpec.

Road-map The rest of this paper is organized as follows. §2 defines minimality, completeness, equivalence and implication of property sets; §3 describes how to use FitSpec; §4 describes how FitSpec works internally; §5 presents example applications and results; §6 discusses related work; §7 draws conclusions and suggests future work.

2. Definitions

We need suitable definitions of completeness, equivalence, implication and minimality of property sets. These are given here, each followed by simple examples.

Definition (complete specification) A set of properties specifying a set of typed and distinctly named functions is complete if no other binding of functional values to these names, with the same types, satisfies all properties.

Example 2 The following property set describing the standard function not :: Bool -> Bool is incomplete:
1. \p -> not (not p) == p
For example, the identity function id :: Bool -> Bool is distinct from not and satisfies the above property.

The following property set, again describing not, is complete:
1. \p -> not (not p) == p
2. not True == False
There is no other Bool -> Bool function distinct from the standard not function that satisfies the above specification. □

We emphasise that we are viewing functions as black-box correspondences between inputs and outputs. For example, though the alternative declarations

not True = False not p = if p then False
not False = True else True

differ, they define the same function.

Definition (equivalence of property sets) Two sets of properties for similarly named and typed functions are equivalent if the sets of functional-value bindings satisfying them are the same.

Example 3 The property set
2. not True == False
for the not function is not equivalent to the property set
3. not False == True
as, for example, the function (const False) :: Bool -> Bool satisfies property 2 but not property 3.

The property set
1. \p -> not (not p) == p
2. not True == False

is equivalent to the property set
1. \p -> not (not p) == p
3. not False == True

as both are satisfied only when the functional-value binding for not is the standard one. □

Definition (implication between property sets) A set of properties implies another set, if whenever a functional-value binding satisfies the first set, it also satisfies the second. In other words, the set of functional-value bindings satisfying the first is a subset of the bindings satisfying the second.

Example 4 The following property set for the not function
1. \p -> not (not p) == p
2. not True == False
implies the property set
3. not False == True

as all bindings of a functional value to not that satisfy both properties 1 and 2 also satisfy property 3. The converse implication does not hold: the binding not = const True is a counter-example. □

Definition (minimal property sets) A set of properties for a set of typed and distinctly named functions is minimal if none of its proper subsets is equivalent to it.

Example 5 The following property set for not is not minimal
1. \p -> not (not p) == p
2. not True == False
3. not False == True

as by inspection properties 1 and 2 completely specify the standard not function. This pair of properties is minimal, as neither property 1 nor property 2 alone is a complete specification. □

3. How FitSpec is Used

FitSpec is used as a library (by "import Test.FitSpec"). Unless they already exist, instances of the L1stable and Mmutable typeclasses are declared for types of arguments and results of the functions under test (step 1). Properties are gathered in an appropriately formulated list (step 2), and passed to the report function (step 3). Property sets are then iteratively refined, based on report results (step 4). This section details this process.

1. Provide typeclass instances for user-defined types The types of arguments and results for functions under test must all be members of the L1stable (§4.1) and Mmutable (§4.3) type-classes. Where necessary, we declare type-class instances for user-defined types. FitSpec provides instances for most standard Haskell types and a facility to derive instances for user-defined algebraic data types using Template Haskell (Sheard and Jones 2002). Writing

 deriveMmutable ''<Type>

is enough to create the necessary instances. In §4 we show how to define such instances manually, and why that is desirable in some cases.

2. Gather properties We must gather properties in a list, to form the body of a property-map function with the functions under test as argument. Given a potentially mutated version of a (tuple of) function(s), a property map returns a list of properties over it. The typical form of a property-map declaration is:
Values of the sort argument of the properties function will be mutated variants of the original and definitive `sort` function passed as argument to `reportWith`. Since FitSpec uses type-guided enumeration, we have to bind `sort` to a specific type in the type signature of `properties`.

4. How FitSpec Works

This section presents details of how FitSpec works. We explore how data values and mutants are enumerated (§4.1 and §4.3), how properties are tested (§4.2), how mutants are tested against properties (§4.4) in searches for surviving mutants (§4.5), how conjectures are made based on test results (§4.6), how we control the extent of testing (§4.7), and how we show mutants (§4.7).

4.1 Enumerating Test Data

To mitigate the combinatorial explosion when enumerating data values, FitSpec uses a size-bounded enumeration technique. The enumeration works in a similar way to Feat (Durégard et al. 2012). However, the ranking and ordering of values are defined differently to align better with our needs when enumerating functional mutants. Parallel to QuickCheck's Arbitrary, SmallCheck's Serial and Feat's Enumerable typeclasses, we define Listable:

class Listable a where
tiers :: [[a]]
list :: concat tiers

A Listable instance's `tiers` value is a possibly infinite list of finite sublists (or tiers): the first tier contains values of size 0, the second tier contains values of size 1, and so on. Size varies with the type being enumerated: for integers, it is the absolute value; for tuples, it is the sum of component sizes; for algebraic data types, the derivable default definition of size is the number of constructor applications of positive arity.

Given `tiers`, it is easy to compute a list of all values in non-decreasing order of size:

```haskell
list :: Listable a => [a]
list = concat tiers
```

Listable instances can be defined using a family of functions `cons<N>` and an operator `\`. Each function `cons<N>`, takes as argument a constructor of arity `N`, each of whose argument types is Listable, and returns tiers containing all possible applications of the constructor. The operator `\` produces the sum of two lists of tiers. So, the general form of an instance for algebraic datatypes is:

```haskell
tiers = cons<N> ConsA \ cons<N> ConsB \ cons<N> ConsZ
```

The order between different constructors only affects the order of enumeration between same-sized elements. The form of expression, using `\` to combine `cons<N>` applications, will be familiar to SmallCheck users: `tiers` and `series` declarations are similar.

The sum and product of two tier-lists are defined by:

```haskell
(\) :: [[a]] -> [[a]] -> [[a]]
xs \ [] = xs
[] \ ys = ys
(xs:xss) \ (ys:yss) = (xs ++ ys) : xss \ ys

(<>) :: [[a]] -> [[b]] -> [[(a,b)]]
xs <> [] = []
[] <> ys = []
(xs:xss) <> yss = (xs ++ ys) : xss <> yss
```

where

```haskell
xs ++ ys = [(x,y) l x <- xs, y <- ys]
```
Table 1. Numbers of data values in successive tiers for several example data types.

<table>
<thead>
<tr>
<th>Tier</th>
<th>Number of data values of type:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bool</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
</tr>
</tbody>
</table>

So, when both tier-lists are infinite:

\[[t_0, t_1, t_2, \ldots] \rightarrow [u_0, u_1, u_2, \ldots] = [t_0 + u_0, t_1 + u_1, t_2 + u_2, \ldots] \]

\[[t_0, t_1, t_2, \ldots] \rightarrow [u_0, u_1, u_2, \ldots] = [t_0 + u_0, t_0 + u_1 + t_1 + u_2, t_0 + u_2 + t_1 + u_0, \ldots] \]

Each cons<> is defined in terms of <.

Example 6 Here is a Listable instance for Bool:

```haskell
instance Listable Bool where
tiers = cons0 False \/
        cons0 True
```

There are two Bool values, both of size 0:

\[\text{tiers} :: [[\text{Bool}]] = [[\text{False, True}]] \]

Example 7 For the following natural-number type, defined as a wrapper over Ints,

```haskell
newtype Nat = Nat Int
```

assuming a Num instance, a Listable instance can be defined by

```haskell
instance Listable Nat where
tiers = cons0 0 \/
        cons1 (+1)
```

so

\[\text{tiers} :: [[\text{Nat}]] = [[0], [1], [2], [3], \ldots] \]

as the size of each number is just the number itself — or equivalently, the number of applications of (+1) used to compute it.

Example 8 Here is a Listable instance for lists:

```haskell
instance Listable a => Listable [a] where
tiers = cons0 [] \/
        cons2 ()
```

So, for example,

\[\text{tiers} :: [[\text{Nat}]] = [[], [0], [1], [0,0], [1], [0,0,0], [0,1], [1,0], [2], \ldots] \]

is the tier-list for lists of natural numbers.

Example 9 As a final example, for the tree type

```haskell
data Tree a = E | N a (Tree a) (Tree a)
```

we may define a Listable instance by

```haskell
instance Listable a => Listable (Tree a) where
tiers = cons0 E \/
        cons3 N
```

so, for example:

\[\text{tiers} :: [[\text{Tree Nat}]] = [[\text{E}]], [[\text{N 0 E E}]], [[\text{N 0 O E E}, \text{N 0 (N 0 E E) E}, \text{N 1 E E}]], \ldots \]

Table 1 shows the number of values in each tier for several types. The ratios between these quantities for successive sizes is far smaller, for example, than the ratios between quantities of values for successive depths in SmallCheck — where an increase in depth may increase the size of a test-data set by orders of magnitude (Duregård et al. 2012).

An auxiliary function `setsOf :: [[a]] -> [[a]]` takes as argument tiers of element values; it returns tiers of size-ordered lists of elements without repetition. For example:

```haskell
setsOf (tiers :: [[\text{Bool}]]) = [[[]]], [[\text{False}, \text{True}]], [[\text{False}, \text{True}]]
```

Another similar auxiliary function `bagsOf :: [[a]] -> [[[a]]]` also takes as argument tiers of element values; but returns tiers of size-ordered lists of elements possibly with repetition.

The `setsOf` and `bagsOf` functions will be useful when defining tiers of mutants (cf. §4.3) and tiers of values satisfying a data invariant (cf. §5.3, §5.4, §5.6).

4.2 Testing Properties

Using the enumeration described in §4.1, FitSpec provides several functions to check whether properties hold. Consider first:

```haskell
holds :: Testable a => Int -> a -> Bool
```

The function `holds` takes as arguments a number of tests `n` and a `Testable` property; its result is `True` if the property is found to hold for `n` tests (or in all cases if there are fewer than `n` possibilities) and `False` otherwise. For example, to check the ordered-result property of `sort` for the first 1000 lists of naturals we may evaluate:

```haskell
holds 1000 (\xs -> ordered (sort (xs :: [[\text{Nat}]])))
```

The type annotation of `xs` is necessary to determine the instance of `Listable` used when enumerating values for testing.

4.3 Enumerating Mutants

Unlike traditional mutation-testing techniques (Demillo et al. 1978), FitSpec adopts a black-box view of functions under test. Mutants have a finite list of exceptional cases in which their results differ from those of the original function. So mutants of a function `f` can be expressed in the following form:

```haskell
\x \rightarrow \text{case } x \text{ of }
  \langle \text{value1} \rangle \rightarrow \langle \text{result1} \rangle
  \langle \text{value2} \rangle \rightarrow \langle \text{result2} \rangle
  \ldots \rightarrow \ldots
  \langle \text{valueN} \rangle \rightarrow \langle \text{resultN} \rangle
  _ \rightarrow f \ x
```

This section explains how such mutants are enumerated.
Mutants defined in this way may be stricter than the original function. As we test properties only with finite and fully defined arguments, strictness is rarely an issue in practice. However, if the result of a property test is undefined, we catch the exception and treat the test as a failing case.

Mutable typeclass Instances of a `Mutable` typeclass define a `mutiers` function computing tiers of mutants of a given value:

```haskell
class Mutable a where
    mutiers :: a -> [[a]]
```

The first tier contains the equivalent mutant, of size 0, the second tier contains mutants of size 1, the third tier contains mutants of size 2, and so on. The size of a mutant is defined by the instance implementor. As a default, mutant-size can be calculated as the sum of the number of mutated cases and the sizes of arguments and results in these cases.

The `equivalent mutant` is the original function without mutations. As the first tier contains exactly the equivalent mutant, a product of `mutiers` can be computed by `>`. Also, `tail mutiers` contains exactly the non-equivalent mutants.

The `mutants` function lists mutants of a given value of some `Mutable` type:

```haskell
mutants :: Mutable a => a -> [[a]]
mutants = concat . mutiers
```

Enumerating Data Mutants

For `Listable` datatypes in the `Eq` class, the following function can be used as the definition of `mutiersEq`:

```haskell
mutiersEq :: (Listable a, Eq a) => a -> [[a]]
```

The `deleteT` function deletes the first occurrence of a value in a list of tiers. Assuming the underlying `Listable` enumeration has no repeated element, this definition guarantees that there is no repeated mutant. Having no repeated data mutant will be necessary to avoid equivalent and repeated functional mutants.

Example 7 (revisited)

Recalling the natural-number type `Nat`, a `Mutable` instance for `Nat` is given by:

```haskell
instance Mutable Nat where
    mutiers = mutiersEq
```

Evaluating `mutiers 3` yields:

```
[ [3], [0], [1], [2], [], [4], [5], [6], [7], ... ]
```

The original value has size zero; other mutant values have one added to their sizes; the fifth tier is empty as there is no inequivalent mutant to occupy it.

Enumerating Functional Mutants

Each single-case mutation of a function is defined by an exception pair. The `mutate` function mutates a function given a list of exception pairs:

```haskell
mutate :: Eq a => (a -> b) -> [(a,b)] -> (a -> b)
```

`foldr mutate f ms where
```

```haskell
 mut (x',fx') f x = if x == x' then fx' else f x
```

The `mutationsFor` function returns tiers of exception pairs for a given function in a given single case.

```haskell
mutationsFor :: Mutable b => (b -> a) -> a -> [(a,b)]
```

#### Table 2.

<table>
<thead>
<tr>
<th>Tier</th>
<th>Number of mutants of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>not</td>
<td>id (+) sort</td>
</tr>
<tr>
<td>-&gt; Bool -&gt; Nat -&gt; Nat -&gt; [Nat]</td>
<td></td>
</tr>
<tr>
<td>-&gt; Nat</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>49</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
</tr>
</tbody>
</table>

The `mutiersOn` function takes a function and a list of arguments for which results should be mutated; it returns tiers of mutant functions.

```haskell
mutiersOn :: (Eq a, Listable b) => a -> [[a -> b]]
```

`concatMapT` products (map (mutationsFor f) xs)

```

We can now give a `Mutable` instance for functional types:

```haskell
instance (Eq a, Listable a, Listable b) => Listable (a -> b) where
    mutiers = mutiersOn f 'concatMapT'
```

We omit details of the functions `concatMapT` and products, but they are straightforward.

Example 10

The function `not :: Bool -> Bool` has three inequivalent mutants:

```
\p -> case p of False -> False; _ -> not p
\p -> case p of True -> True; _ -> not p
\p -> case p of False -> False; True -> True
```

The first two are of size 1. The last is of size 2.

Example 11

The first four inequivalent mutants for the identity function `id :: Nat -> Nat` are:

```
\x -> case x of 0 -> 1; _ -> id x
\x -> case x of 1 -> 0; _ -> id x
\x -> case x of 0 -> 2; _ -> id x
\x -> case x of 2 -> 0; _ -> id x
```

The first two are of size 2, and the last two are of size 3.

Example 12

The first three inequivalent mutants of the natural-number addition function `(+)` are:

```
\x y -> case (x,y) of (0,0) -> 1; _ -> x + y
\x y -> case (x,y) of (0,1) -> 0; _ -> x + y
\x y -> case (x,y) of (1,0) -> 0; _ -> x + y
```

Table 2 shows, for a few example functions, the number of inequivalent mutants in successive tiers. In the worst case, this number increases by around 3^n as size increases by one.

4.4 Testing Mutants against Properties

As we saw in §3, in order to collect property functions of different types into a single list, we apply FitSpec's property function to
each of them. The property function is polymorphic over the class of Testable types:

\[\text{property :: Testable } a \Rightarrow a \rightarrow \text{Property} \]

The Property type is defined as a synonym:

\[\text{type Property = } [[[\text{String}],[\text{Bool}]]] \]

Here each list of strings is a printable representation of one possible choice of argument values for the property. Each boolean paired with such a list indicates whether the property holds for this choice. The outer list is potentially infinite and lazily evaluated.

A function propertyHolds, similar to takes, holds as arguments a number of tests and a Property; it returns True if the property holds in all tested cases, and False otherwise.

\[\text{propertyHolds :: Int } \rightarrow \text{Property } \rightarrow \text{Bool} \]

Example 1 (revisited) Consider the following sort mutant:

\[\text{sort' :: [Nat] } \rightarrow [\text{Nat}] \]

\[\text{sort'} [0,0,1] = [0,1,1] \]

\[\text{sort'} xs = \text{sort xs} \]

To test whether sort' satisfies the final property-set in Example 1 for 1000 test lists, we evaluate

\[\text{propertyHolds} 1000 \text{ 'map' properties sort'} \]

obtaining

\[[[\text{True}, \text{True}, \text{True}, \text{False}]] \]

as sort' gives ordered results, preserving length and membership, but not preserving element count in the exceptional case.

4.5 Searching for Survivors

Surviving mutants are those for which every test result returned by propertyHolds is True.

Example 1 (revisited) Recall the incomplete property set describing sort given in §1. Testing up to 4000 mutants for 4000 test arguments

\[[m \mid m < \text{take} 4000 \cdot \text{tail} \$ \text{mutants sort}, \text{and} \$ \text{propertyHolds} 4000 \text{ 'map' properties sort}] \]

three mutants survive:

\[[\lambda x \rightarrow \text{case} x \text{ of } [0,0,1] \rightarrow [0,1,1]; _ \rightarrow \text{sort} x, \lambda x \rightarrow \text{case} x \text{ of } [0,1,0] \rightarrow [0,1,1]; _ \rightarrow \text{sort} x, \lambda x \rightarrow \text{case} x \text{ of } [1,0,0] \rightarrow [0,1,1]; _ \rightarrow \text{sort} x] \]

If instead we use the complete property set, the result of the same test is an empty list.

In the actual FitSpec implementation, any reported surviving mutant is taken from the list of surviving mutants for the strongest property-set equivalence class — see the next section.

4.6 Conjecturing Equivalences and Implications

This section describes how FitSpec conjectures equivalences and implications between subsets of properties.

Properties \(\times \) Mutants Using propertyHolds and mutants, we test \(m \) mutants against each of \(p \) properties using \(n \) choices of test arguments. We derive \(p \times m \) boolean values each indicating whether a mutant survives testing against a property. These results are computed as a value of type \([[[\text{Int}],[\text{Bool}]]] \) where each \(\text{Int} \) is a property number, paired with test outcomes for each mutant.

Property sets \(\times \) Mutants Then, for each mutant, we generate \(2^p \times m \) boolean values — the conjunctions of test results for each property subset. These results are computed as a value of type \([[[\text{Int}],[\text{Bool}]]] \) where each \(\text{Int} \) represents a property subset.

Equivalence Classes \(\times \) Mutants Next, property sets are grouped into equivalence classes. Two sets are put in the same class if they kill the same mutants. Equivalence classes are then sorted by the number of surviving mutants. The results are now of type \([[[\text{Int}],[\text{Bool}]]] \) where each \(\text{Int} \) represents an equivalence class of property subsets.

Finally, we identify apparent equivalences and implications, according to the following definitions, and report those not subsumed by any other.

Definition (apparent equivalence) Two property sets are apparently equivalent (with respect to specified sets of mutant functions and test arguments) if the property sets kill the same mutants.

Definition (apparent implication) A set of properties apparently implies another set (with respect to specified sets of mutant functions and test arguments) if whenever a mutant survives testing against the first set it also survives testing against the second.

Strength We have observed that conjectures often do not hold when a supporting survival rate is either 0% or 100%. By interpolation, we speculate that equivalences and implications are more likely to hold when survival rates for mutants are closer to 50%, and less likely to hold when survival rates are closer to 0% or 100%. So when FitSpec reports equivalences and implications it sorts them accordingly, reporting first those most likely to hold. Each conjecture is also labelled “strong”, “mild” or “weak” according to the scale in Figure 1.

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Weak} & \text{Mild} & \text{Strong} & \text{Mild} & \text{Weak} \\
\hline
0\% & 11\% & 33\% & 66\% & 88\% & 100\% \\
\hline
\end{array}
\]

Figure 1. Conjecture strengths by % of surviving mutants.

4.7 Controlling the Extent of Testing

Choosing the Numbers of Tests and Mutants There is no general rule for choosing appropriate numbers of mutants and test arguments. The most effective values vary between different applications.

By default, FitSpec starts with 500 mutants and 1000 test values per property. As we saw in §3, reportWith allows the user to choose different values. After each round of testing, both numbers are increased by 50%. Testing continues until a time limit is reached (by default, 5 seconds).

Choosing the Sizes of Types During case studies (§5) involving polymorphic functions, we found it helpful to limit generated test values using small instance types. FitSpec predefined types for small signed integers (\(\text{IntN} \)) and unsigned integers (\(\text{WordN} \)), where \(\text{N} \) is a bit-width in the range 1..4. See §5.2 for further discussion.

Showing mutants FitSpec provides two different functions to show mutants: one shows mutants as a tuple of lambdas; the other shows the inequivalent mutants only, as top-level declarations. Both have the following type:

\[\text{ShowMutable } a \Rightarrow [\text{String}] \rightarrow a \rightarrow a \rightarrow \text{String} \]

The [String] argument gives names of functions. The other arguments are a tuple of original functions and a tuple of mutated functions. We omit details of the ShowMutable class: it has a method to show a mutated value given also the original value; instances for user-defined datatypes can be automatically derived.
Example 13 One mutant of \texttt{id :: Int -> Int} swaps results for argument values 1 and 2:

\begin{verbatim}
 id' :: Int -> Int
 id' = id "mutate" [(1,2),(2,1)]
\end{verbatim}

Evaluating

\begin{verbatim}
 showMutantAsTuple ["id","not"] (id, not) (id', not)
\end{verbatim}

yields (as a string):

\begin{verbatim}
 (\x -> case x of
 0 -> 1
 1 -> 0
 _ -> id x
 , not)
\end{verbatim}

If we instead use \texttt{showMutantDefinition}, we get:

\begin{verbatim}
 id' 0 = 1
 id' 1 = 0
 id' x = id x
\end{verbatim}

\texttt{ShowMutable} instances for user-defined types can be automatically derived by the function \texttt{deriveMutable} (§3).

5. Applications and Results

In this section, we use \texttt{FitSpec} to refine properties of: boolean negation and conjunction operators (§5.1); sorting (§5.2); merge on min-heaps (§5.3); set membership, insertion, deletion, intersection, union (§5.4), powersets and partitions (§5.5); path and subgraph on digraphs (§5.6).

In §5.1 and §5.3, we use \texttt{QuickSpec} (Claessen et al. 2010) to generate initial property sets. \texttt{QuickSpec} already incorporates some techniques to refine its output, but we hope for further refinements in the light of \texttt{FitSpec} results. In §5.2, our evaluation includes measurements showing the influence of element-type on \texttt{FitSpec}'s performance. In most of the examples where functions have polymorphic types, we use instances for the \texttt{Word2} type.

5.1 Boolean Operators

As a very simple first application, we apply \texttt{FitSpec} to properties generated by \texttt{QuickSpec} (Claessen et al. 2010) for boolean negation and conjunction. Given the functions \texttt{not} and \texttt{&&}, and the value \texttt{False}, \texttt{QuickSpec} generates the following set of properties.

\begin{verbatim}
1. \p -> not (not p) == p
2. \p q -> p && q == q && p
3. \p -> p && p == p
4. \p -> p && False == False
5. \p q r -> p && (q && r) == (p && q) && r
6. \p -> p && not p == False
7. \p -> p && not False == p
\end{verbatim}

There are four different minimal subsets of these properties that completely specify the pair of functions \texttt{(not,&&(}). By testing 63 mutant pairs, \texttt{FitSpec} finds and reports this result.

Complete but non-minimal specification

22 tests (exhausted), 63 mutants (exhausted)

0 survivors (100%, killed)

minimal property subsets: \{1,3,6\} \{1,4,7\} \{3,6,7\} \{4,6,7\}

conjectures: \{3\} ==\> \{5\} 76% killed
\{2,7\} ==\> \{5\} 88% killed
\{2,4\} ==\> \{5\} 88% killed

... 6 conjectures omitted ...
sort' :: (Ord a, Bounded a) => [a] -> [a]
sort' = foldr insert [maxBound]
or equivalently (for finite and fully-defined arguments):

\[
\text{sort'} \, x = \text{sort} \, x \, \&\&\, [\text{maxBound}]
\]

Substituting sort' for sort in property 6, it is easy to see that it holds; unfold both uses of sort' and then the right-hand foldr application. Yet the results of sort and sort' differ for all finite and fully-defined arguments!

Mutants like sort', which alter the result in an unbounded number of cases, are not generated by FitSpec. If a user realises there is a counter-example of this kind, their best option currently is to declare it as a user-defined mutant. If we declare sort' as a mutant, property 6 alone is correctly reported as an incomplete specification. For further discussion see §7.

5.3 Binary Heaps

In this section, we apply FitSpec to the Heap example provided with the QuickSpec tool package. To limit the extent of this example, we only explore properties of the function merge:

\[
\text{merge} :: \text{Ord} \, a \Rightarrow \text{Heap} \, a \rightarrow \text{Heap} \, a \rightarrow \text{Heap} \, a
\]

If we run QuickSpec with all other functions declared as part of the background algebra, it generates the following properties:

1. \(\forall h \, h1. \text{merge} \, h \, h1 = \text{merge} \, h1 \, h\)
2. \(\forall h. \text{merge} \, h \, \text{Nil} = h\)
3. \(\forall x \, h \, h1. \text{merge} \, h \, (\text{insert} \, x \, h1) = \text{insert} \, x \, (\text{merge} \, h \, h1)\)
4. \(\forall h \, h1 \, h2. \text{merge} \, h \, (\text{merge} \, h1 \, h2) = \text{merge} \, h1 \, (\text{merge} \, h \, h2)\)
5. \(\forall h. \text{findMin} \, (\text{merge} \, h \, h) = \text{findMin} \, h\)
6. \(\forall h. \text{null} \, (\text{merge} \, h \, h) = \text{null} \, h\)
7. \(\forall h \, (\text{merge} \, h \, (\text{deleteMin} \, h)) = \text{deleteMin} \, (\text{merge} \, h \, h)\)
8. \(\forall h \, h1. \text{null} \, h \&\& \text{null} \, h1 = \text{null} \, (\text{merge} \, h \, h1)\)

We soon discover that we should add a pre-condition to properties 5 and 7, as they only work for non-null heaps.

5.4 Operations over Sets

We next apply FitSpec to a basic repertoire of six functions from a set library: set membership (<), insertion (insertS), deletion (deleteS), intersection (\(\cap\)), union (\(\cup\)) and set containment (subS).

For FitSpec runs reported in this section, the time limit was the default 5s, and the declared type of element values was Word2.

First, we need a suitable Listable instance for sets, for which the underlying representation is ordered lists without repetition.

\[
\text{instance} \, (\text{Ord} \, a, \text{Listable} \, a) \Rightarrow \text{Listable} \, (\text{Set} \, a) \, \text{where} \\
\text{tiers} = \text{mapT} \, \text{set} \, \text{setsOf} \, \text{tiers}
\]

Turning now to properties, our approach for this example is to begin by formulating the first properties that come to mind, ensuring that each function under test occurs in at least one property. We then let FitSpec results guide us in a process of refinement towards a minimal and complete specification. Our initial properties are:

1. \(\forall x \, s. x \not\in s \Rightarrow x < s \Rightarrow \text{insertS} \, x \, s\)
2. \(\forall x \, s \not\in s \Rightarrow x < s \Rightarrow \text{deleteS} \, x \, s\)
3. \(\forall x \, s \not\in s \Rightarrow (x < (s \cup t)) = (x < s \mid (s \not\in t))\)
4. \(\forall x \, s \not\in s \Rightarrow (x < (s \cap t)) = (x < s \& (s \not\in t))\)
5. \(\forall s \not\in s \Rightarrow \text{subS} \, s \, (s \not\in t)\)
6. \(\forall s \not\in s \Rightarrow (s \not\in t) = (t \not\in s)\)
7. \(\forall s \not\in s \Rightarrow (s \not\in t) = (t \not\in s)\)

FitSpec reports that this initial set of properties is neither complete nor minimal:

Apparent incomplete and non-minimal specification
3200 tests (exhausted), 750 mutants
49 survivors (93% killed), smallest:
subS' \{0\} \{\} = True
subS' s t = subS s t

Apparent minimal property-subsets: {1,2,3,4,5}
{1,2,3,4,6}
conjectures: {3} => \{\} 45% killed (strong)
{4} => \{\} 31% killed{3,6} => \{\} 72% killed (mild)
{3,4,5} = \{3,4,6\} 75% killed (mild)
Prompted by the surviving mutant, we realise that no property involving subS ever demands a False result. All the reported implications do indeed hold, so we choose to remove properties 7 and 8 — from any minimal specification and test set, at least. We also replace properties 5 and 6 by a stronger combined property about subS using a minor variant allS of the standard all function already defined in the Set library.

1. \(\forall s \rightarrow x \leftarrow \text{insertS} \ x \ s \)
2. \(\forall s \rightarrow \neg (x \leftarrow \text{deleteS} \ x \ s) \)
3. \(\forall s t \rightarrow (x \leftarrow (s \setminus t)) == (x \leftarrow s \setminus x \leftarrow t) \)
4. \(\forall s t \rightarrow (x \leftarrow (s \setminus t)) == (x \leftarrow s \setminus x \leftarrow t) \)
5. \(\forall s t \rightarrow \text{subS} s t == \text{allS} (\leftarrow t) \ s \)

FitSpec now reports minimality but incompleteness of the property set, indicating the following surviving mutant:

\[\text{deleteS'} 0 \{\} == \{1\} \]
\[\text{deleteS'} x s == \text{deleteS} x s \]

There are no further conjectures for us to think about. But the surviving mutant draws attention to a remaining weakness: property 2 requires that deleteS removes the given element, but not that it retains others. Other surviving mutants point to a similar deficiency for property 1 about insert. We strengthen both properties accordingly:

1. \(\forall y \ y \rightarrow x \leftarrow \text{insertS} \ y \ s == (x == y \setminus x \leftarrow s) \)
2. \(\forall y \ y \rightarrow x \leftarrow \text{deleteS} \ y \ s == (x == s \setminus x \leftarrow y) \)
3. \(\forall s t \rightarrow (x \leftarrow (s \setminus t)) == (x \leftarrow s \setminus x \leftarrow t) \)
4. \(\forall s t \rightarrow (x \leftarrow (s \setminus t)) == (x \leftarrow s \setminus x \leftarrow t) \)
5. \(\forall s t \rightarrow \text{subS} s t == \text{allS} (\leftarrow t) \ s \)

FitSpec reports no conjectures and no surviving mutants:

Apparent complete and minimal specification

2816 tests, 750 mutants

Indeed, these five properties provide an exact specification, by correspondence with results of Boolean membership test, for these operations on sets.

5.5 Powersets and Partitions

Two further functions from the same library each take a set as argument. One computes all subsets (powerS) and the other all divisions into pair-wise disjoint non-empty subsets (partitionsS).

For properties of these functions, we proceed in a similar way. The basic functions, including those for which properties were developed in the previous section, are now fixed. We work instead with properties of powerS and partitionsS — and mutant variations of these functions.

Our initial properties are as follows.

1. \(\forall s t \rightarrow (t \leftarrow \text{powerS} \ s) == \text{subS} t s \)
2. \(\forall s \rightarrow \text{allS} (\text{allS} (\text{subS}' s)) (\text{partitionsS} s) \)

For powerS we show we have learnt our lesson from §5.4! For partitionsS we know Property 2 is not enough, but will FitSpec results point to the deficiencies?

Apparent minimal but incomplete specification.

2542 survivors (91\% killed), smallest:

\[\text{partitionsS'} \{\} == \{} \]
\[\text{partitionsS'} s == \text{partitionsS} s \]

We add a limited refinement driven directly by the reported mutant.

3. \(\forall s \rightarrow \text{nonEmptyS} (\text{partitionsS} s) \)

Now FitSpec reports

Apparent minimal but incomplete specification.

459 survivors (97\% killed), smallest:

\[\text{partitionsS'} \{\} == \{} \]
\[\text{partitionsS'} s == \text{partitionsS} s \]

so we add:

4. \(\forall s \rightarrow \text{allS} (\text{allS} (\text{nonEmptyS} s \rightarrow \text{unionS} p == s \&\& a \text{allS} \text{nonEmptyS} p \)

Again we run FitSpec:

Apparent incomplete and non-minimal specification

288 tests, 19210 mutants

6 survivors (99\% killed), smallest:

\[\text{partitionsS'} \{0,1\} == \{\{0,1\}\} \]
\[\text{partitionsS'} s == \text{partitionsS} s \]

apparent minimal property-subsets: \{1,3,4\}

conjectures: \{4\} => \{2\} 71\% killed (mild)

Seeing the conjecture is indeed true, we remove property 2. Prompted by the unduly restrictive mutant, which excludes the valid partition \{0\}, \{1\}, we combine and reformulate properties 3 and 4 to form a new property 2:

1. \(\forall s t \rightarrow (t \leftarrow \text{powerS} \ s) == \text{subS} t s \)
2. \(\forall s p \rightarrow (p \leftarrow \text{partitionsS} s) == \)

\[\text{unionS} p == s \&\& \text{allS} \text{nonEmptyS} p \&\& \text{unionS} p \]

sum (map \text{sizeS} (\text{elemList} p)) == \text{sizeS} s \)

FitSpec reports that these two properties apparently form a minimal and complete specification of powerS and partitionsS — as indeed they do.

Bug report During our work on this example, we actually found a long-concealed bug. (My fault! CR) As we were refining properties of partitionsS, at one stage FitSpec reported:

ERROR: The original function-set does not follow property-set.

Counter-example to property 2: \{0,1,2\} \{0,1,2\}

Aborting.

A data invariant for the set representation requires ordered lists. The definition of partitionsS was intended to list partitions in a “clever” way to avoid reordering, but in some cases could break the invariant for the outer set. We fixed it. Conclusion: applying a new tool can be insightful!

5.6 Operations over Digraphs

Lastly, we apply FitSpec to a directed-graph library based on the datatype

\[\text{data} \ \text{Digraph} \ a = \mathcal{D} \text{\{nodeSuccs :: \{[a],[a]\}\}} \]

where values of some ordered type a are node identifiers — or more simply “nodes”. Each pair in a strictly ordered nodeSuccs list represents a node and an ordered list of its digraph successors.

To limit the extent of this example, we focus on two functions:

isPath :: (Ord a, Eq a) => a -> a -> Digraph a -> Bool

subGraph :: Eq a => [a] -> Digraph a -> Digraph a

Given two nodes and a digraph, isPath tests whether there is a path in the digraph from the first node to the second. Given a list of nodes
and a digraph, subgraph returns a restricted version of the digraph excluding any nodes not in the list. (The reader is invited to write down a few properties they expect these functions to satisfy.)

We first declare a Listable instance for Digraph:

```haskell
tiers = concatMapT graphs $ setsOf tiers where
graphs ns = mapT (D . zip ns) . listsOfLength (length ns) . setsOf $ toTiers ns
```

Then we formulate a few properties we expect the two functions to satisfy, including a property involving both of them. Our properties make use of three more basic functions from the digraph library: nodes lists the nodes in a graph; isNode and isEdge check whether a given node or edge occur in a graph:

1. \(n \in d \rightarrow \text{isPath } n \in d \Rightarrow \text{isPath } n \in d \)
2. \(n_1 \in n_2 \in d \rightarrow \text{isPath } n_1 \in n_2 \in d \quad \& \& \quad \text{isPath } n_2 \in n_3 \in d \Rightarrow \text{isPath } n_1 \in n_3 \in d \)
3. \(\text{\textbackslash d} \rightarrow \text{subgraph } (\text{nodes } d) \in d \)
4. \(\text{\textbackslash n_1 n_2 d} \rightarrow \text{subgraph } n_1 \in (\text{subgraph } n_2 d) \in d \Rightarrow \text{subgraph } n_2 \in (\text{subgraph } n_1 d) \in d \)
5. \(\text{\textbackslash n_1 n_2 d} \rightarrow \text{isPath } n_1 \in n_2 \in d \Rightarrow \text{isPath } n_1 \in n_2 d \in d \)

Strengthening the property set
FitSpec reports a surviving isPath mutant:

```haskell
isPath' 0 1 (D [(1,[])]) = True
```

isPath' n1 n2 d = isPath n1 n2 d

Except in the case where they are equal (property 1), we have not said that starting and finishing nodes of a path at least occur in the digraph! More generally, for distinct nodes, we realise that transitivity (property 2) only holds isPath to account by self-consistency. As a remedy, we add:

6. \(\text{\textbackslash n_1 n_2 d} \rightarrow \text{isPath } n_1 \in n_2 \in d \quad \Rightarrow \quad \text{isNode } n_1 \in n_2 \in d \quad \& \& \quad \text{isPath } n_1 \in n_2 \in d \quad \Rightarrow \quad \text{any } (\text{\textbackslash n_1'} \rightarrow \text{isPath } n_1' \in n_2 d) \quad \text{\textbackslash (succs } n_1 d) \)
7. \(\text{\textbackslash n_1 n_2 d} \rightarrow \text{isPath } n_1 \in n_2 \in d \quad \Rightarrow \quad \text{any } (\text{\textbackslash n_1'} \rightarrow \text{isPath } n_1' \in n_2 d) \quad (\text{\textbackslash (succs } n_1 d) \)

FitSpec now reports a surviving subgraph mutant:

```haskell
subgraph' 11 (D [(0,[]),(1,[])]) = D []
subgraph' ns d = subgraph ns d
```

Aside from the special all-nodes case (property 3) we have not said what nodes or edges subgraph should retain or discard. Again an algebraic law, this time commutativity (property 4), only requires self-consistency. We add a definitive property about subgraph nodes, and another about subgraph edges:

8. \(\text{\textbackslash n} \in d \rightarrow \text{isNode } n \in \text{subgraph } n \in d \quad \Rightarrow \quad \text{isNode } n \in d \quad \& \& \quad \text{\textbackslash n} \in d \quad \Rightarrow \quad \text{any } (\text{\textbackslash n_1'} \rightarrow \text{isNode } n_1' \in n \in d) \quad (\text{\textbackslash (succs } n_1 d) \)
9. \(\text{\textbackslash n_1} \in n_2 d \rightarrow \text{isNode } n_1 \in n_2 \in d \quad \Rightarrow \quad \text{isNode } n_1 \in n_2 d \quad \& \& \quad \text{\textbackslash n_1} \in n_2 \quad \Rightarrow \quad \text{any } (\text{\textbackslash n_1'} \rightarrow \text{isNode } n_1' \in n_2 d) \quad (\text{\textbackslash (succs } n_1 d) \)

FitSpec reports the following mutant:

```haskell
isPath' 1 0 (D [(0,[]),(1,[0])]) = False
```

isPath' n1 n2 d = isPath n1 n2 d

By making property 7 an implication with an isPath test on the left, we allow a false-for-true mutant to survive. Our reformulation involves subgraph:

<table>
<thead>
<tr>
<th>Example</th>
<th>#-mutants</th>
<th>#-tests</th>
<th>time</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bool (§5.1)</td>
<td>63</td>
<td>8</td>
<td><1s</td>
<td>18MB</td>
</tr>
<tr>
<td>Sorting (§5.2)</td>
<td>4000</td>
<td>4000</td>
<td>12s</td>
<td>62MB</td>
</tr>
<tr>
<td>Heaps (§5.3)</td>
<td>4000</td>
<td>2000</td>
<td>42s</td>
<td>102MB</td>
</tr>
<tr>
<td>Basic Sets (§5.4)</td>
<td>750</td>
<td>1024</td>
<td>5s</td>
<td>22MB</td>
</tr>
<tr>
<td>Sets of Sets (§5.5)</td>
<td>17441</td>
<td>256</td>
<td>5s</td>
<td>58MB</td>
</tr>
<tr>
<td>Digraphs (§5.6)</td>
<td>750</td>
<td>1500</td>
<td>12s</td>
<td>1853MB</td>
</tr>
</tbody>
</table>

Table 4. Summary of Performance Results

Basic Sets (§5.3)	4000	2000	42s	102MB
Sorting (§5.2)	4000	4000	12s	62MB
Bool (§5.1)	63	8	<1s	18MB
Digraphs (§5.6)	750	1500	12s	1853MB

5.7 Performance Summary

Our tool and examples were compiled using ghc -O2 (version 7.10.3) under Linux. The platform was a PC with a 2.2Ghz 4-core processor and 8GB of RAM. Some performance results are summarized in Table 4.

When using FitSpec, ideally users should decide how long they want to wait for FitSpec to run; the simplest parameter to adjust with confidence is the time limit. Reported figures for numbers of mutants and test-cases help the user decide whether to re-run FitSpec allowing more time.

As noted in §5.2, for polymorphic functions, the element affects both the results obtained and resources needed to obtain them. For the examples we present, Word2 offers a good balance between diversity of values and performance.
6. Related Work

Since the introduction of QuickCheck (Claessen and Hughes 2000), several other property-based testing libraries and techniques have been developed, such as Smallcheck, Lazy SmallCheck (Runciman et al. 2008; Reich et al. 2013) andFeat (Duregård et al. 2012).

QuickSpec Claessen et al. (2010) present the QuickSpec tool, which is able to generate algebraic specifications automatically. Although QuickSpec has rules by which some properties can be discarded as redundant, the goal of its developers was not to generate minimal sets of properties, but instead interesting properties.

Boolean (5.1) and Heaps (5.3) As we show in §5.1 and §5.3, FitSpec can assist in the refinement of specifications generated by QuickSpec.

Basic Sets (5.4) For comparison, consider again the basic functions of the set library (5.4), an example where we did not start with QuickSpec-generated properties. We can compare our final specification with QuickSpec’s output. For comparison, in the Set library example, QuickSpec 1 (Claessen et al. 2010) generates a complete specification with 70 properties. QuickSpec 2 (Smallbone and Johansson 2016) generates a complete specification with 43 properties, not including any of ours.

MuCheck Le et al. (2014) present MuCheck, a tool for mutation testing in Haskell. Both MuCheck and FitSpec provide a measure for property-set completeness. Unlike FitSpec, MuCheck: depends on source-code annotations; generates mutants by transformations of the source code; does not provide conjectures or any form of automated guidance towards minimization; may generate mutants equivalent to the original function. For comparison, we apply MuCheck (version 0.3.0.0, with QuickCheck test adapter version 0.3.0.4) to two of the case studies from §5.

Sorting (5.2) Consider the following explicit definition of sort, which is used as an example in Le et al. (2014).

```
sort [] = []
sort (x:xs) = sort 1 ++ [x] ++ sort r
  where 1 = filter (< x) xs
         r = filter (>= x) xs
```

Given this definition, and properties 1–6 listed in §5.2, MuCheck with default settings gives the following output.

Total mutants: 13
alive: 1/13
killed: 12/13 (92%)

MuCheck does not detect that the only surviving mutant is actually an equivalent mutant formed by swapping pattern match cases. MuCheck does not consider property subsets. However, if we manually select subsets of properties, results include:

- 1 equivalent mutant for properties 2, 4, 5 and 6 alone;
- 3 surviving mutants for properties 1 and 3 combined (e.g.: the mutant in which $>$ is changed to $>$);
- 5 surviving mutants for property 1 (e.g.: changing $>$ to $>$);
- 5 surviving mutants for property 3 (e.g.: changing $>$ to $>$).

It takes from 2 to 4 seconds to run MuCheck for each property subset. MuCheck’s default settings allow up to 300 mutants, but for this example it only generates 13.

In this example, with regards to evaluating minimality and completeness, FitSpec outperforms MuCheck with default settings. However, MuCheck results might be improved by the definition of custom mutation operators.

Basic Sets (5.4) MuCheck derives no mutants for any of insertS, deleteS, subS, \lor or \land (cf. §5.4). The reason may be that there are no MuCheck mutation operators specific to the Set type, as we did not add any. For $<$, MuCheck does derive three mutants, but it then fails because of an internal error. We did not investigate this error, nor did we try applying MuCheck to other functions in the set library.

Ultra-lightweight black-box mutation testing During the Haskell Implementor’s Workshop 2014, Jonas Duregård gave a five-minute “lightning talk” about a lightweight technique for mutation testing in Haskell (Duregård 2014): ultra-lightweight black-box mutation testing. The technique damages result values randomly.

Mutation testing beyond Haskell In a survey of the development of mutation testing, Jia and Harman (2011) specifically identify equivalent mutants as one of the barriers to wider adoption of mutation testing. They propose several possible approaches to the problem of equivalent mutants. The approach we have adopted in our work on FitSpec can be characterised in their terms as: (1) “avoiding their initial creation”, and (2) “interest in the semantic effects of mutation”. The competent programmer hypothesis (Demillo et al. 1978) states: “[Competent programmers] create programs that are close to being correct”. In mutation-testing literature, mostly concerned with imperative languages (Jia and Harman 2011; Le et al. 2014), closeness is usually regarded as syntactic closeness. We suggest that a semantic notion of closeness is even more suitable for pure strongly-typed functional programs: minor syntactic slips are very often caught by the type-checker; errors that are harder to detect involve incorrect associations between input and output values.

Haskell Program Coverage The coverage tool HPC (Gill and Runciman 2007) records fine-grained expression-level coverage, and value coverage in syntactically boolean contexts. By applying HPC to sources of properties, test-value generators and functions under test, we can check the scope and reach of property-based testing. We can also detect automatically when further exploration of the test-space seems unproductive. However, there are well-known limitations of code-coverage measures: for example, they do not reveal faults of omission (Marick 1999). HPC does not provide the kind of information needed to discover apparent completeness or minimality of test properties.

7. Conclusions and Future Work

Conclusions In summary, we have presented the FitSpec tool to evaluate minimality and completeness of sets of test properties for Haskell functions, providing automated assistance in the task of refining those sets. As set out in §3 and §4, FitSpec tests mutant variations of the functions under test and reports the number of surviving mutants and, if present, a smallest surviving mutant. When there is apparent redundancy in a property set, FitSpec reports conjectures in the form of equivalences and implications between property subsets. We have demonstrated in §5 FitSpec’s applicability for a range of small examples, and we have briefly compared in §6 some of the results obtained with related results from other tools.

Completeness and the Value of Surviving Mutants Our experience, as represented by our account of example applications in §5, is that details of surviving mutants do point out weaknesses of property sets in a specific and helpful way. Though any mutant-killing refinement of properties depends on the programmer, the smallest-mutant reports are indeed valuable prompts.

Reports of no surviving mutants suggest completeness. However, inherent limitations of a test-based approach make these suggestions uncertain in most cases, and this is one reason for the somewhat
repetitive preambles at the head of all FitSpec reports: “Apparent . . .
specification, N tests, M mutants”. We saw in §5 examples where
property sets are incomplete yet kill all mutants. In some cases
uncertainty can be resolved by increasing the numbers of mutants
and tests, but in other cases would-be survivors are never generated.
As a limited remedy, FitSpec allows the user to provide manually
defined mutants to be tested alongside those automatically generated.
We shall return to this issue shortly, when considering future work.

Minimality and the Value of Conjectures The conjectured equiv-
lences and implications reported by FitSpec are surprisingly accurate
in practice, despite their inherent uncertainty in principle. As we
hoped, these conjectures provide helpful pointers to apparently re-
dundant properties. Because conjectures are not guaranteed, before
removing any test properties programmers should seek to verify a
conjecture that would justify the removal. As we illustrated in §5,
once we have a conjecture, verifying it often only requires a few
straightforward steps appealing to the properties involved — though
in general, of course, verification can be a difficult task.

Ease of use Arguably, a tool is easier to use if it requires less work
from the programmer. As we illustrated in §3, writing a minimal
program to apply FitSpec takes only a few lines of code. FitSpec
provides functions mainDefault and mainWith, similar to report
and reportWith but parsing command-line arguments to configure
test parameters. If only standard Haskell datatype types are involved, no
extra Listable instances are needed. If user-defined data types can
be freely enumerated without a constraining data invariant, instances
can be automatically derived. The wrapping of any existing test
properties into a property-map declaration is a minor chore.

However, often we do need to restrict enumeration by a data
invariant, and a crude application of a filtering predicate may be
too costly, with huge numbers of discarded values. Effective use of
FitSpec may require careful programming of custom Listable
instances, even if suitable definitions can be very concise. The
FitSpec library does not currently incorporate methods to derive
enumerators of values satisfying given preconditions (Bulwahn
2012; Lindblad 2007).

Future Work Finally we note a few avenues for further investi-
gation that could lead to improved versions of FitSpec or similar
tools.

Alternative mutation techniques The current mutation technique
based on individual exception cases has the advantage of simplicity,
but its limitations are most apparent in reports of zero survivors
despite incomplete properties. A hybrid approach could generate in
addition mutants that alter results for all functions satisfying a property.
There are suitable classes of black-box mutants too. For example, as
we saw in §5, constant-result mutants may survive properties that
kill exception-based mutants; or where there is an argument of the
result type, projection-based mutants would be another possibility.

Mutation of higher-order functions Our current mutation tech-
nique only works for first-order functions. We might investigate
ways to mutate higher-order functions.

Relaxed specifications Our current definition of completeness
requires equality of results for all functions satisfying a property
set. FitSpec regards the results of an original unmutated function
as canonical; any other result computed by a mutant function is
incorrect. But the natural specification of some functions is more
relaxed. For example, sometimes the order of elements in a list is
immaterial; in this case, the programmer could resolve the issue by
defining a new type for which the equality test disregards order. Not
all examples are so simply resolved however: a function to find a
shortest path between two nodes in a digraph may return any one of
several shortest paths. We might therefore investigate more general
ways to characterize equivalence of functional results, with respect
to argument values if necessary.

Availability FitSpec is freely available with a BSD3-style license from either:

- https://hackage.haskell.org/package/fitspec
- https://github.com/rudymatela/fitspec

Acknowledgements We thank Jonas Duregård for discussions and an alternative way
to enumerate mutants; and Glyn Faulkner, Iavylo Hristakiev, Jeremy
Jacob and anonymous reviewers for their comments on earlier drafts.

Rudy Braquehais is supported by CAPES, Ministry of Education of
Brazil (Grant BEX 9980-13-0).

References
L. Bulwahn. Smart testing of functional programs in Isabelle. In LPAR 2012,

K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random

K. Claessen, N. Smallbone, and J. Hughes. QuickSpec: Guessing Formal

R. Demillo, R. Lipton, and F. Sayward. Hints on test data selection: Help

A. Gill and C. Runciman. Haskell Program Coverage. In Haskell’07, pages

Y. Jia and M. Harman. An analysis and survey of the development of
mutation testing. IEEE Transactions on Software Engineering, 37(5):

D. Le, M. A. Alipour, R. Gopinath, and A. Groce. MuCheck: An extensible
tool for mutation testing of Haskell programs. In ISSTA 2014, pages

F. Lindblad. Property directed generation of first-order test data. In TFP’07,

B. Marick. How to misuse code coverage. In International Conference on

In IFL’13, LNCS 8241, pages 53–70. Springer, 2013.

C. Runciman, M. Naylor, and F. Lindblad. SmallCheck and Lazy Small-
Check: Automatic exhaustive testing for small values. In Haskell’08,

T. Sheard and S. P. Jones. Template meta-programming for Haskell. In

N. Smallbone and M. Johansson. Quick specifications for the lazy pro-
chalmers.se/~niclasa/papers/quickspec2.pdf.