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Abstract

Background

Using computational fluid dynamics (CFD) to compute the hemodynamics in cerebral aneu-

rysms has received much attention in the last decade. The usability of these methods

depends on the quality of the computations, highlighted in recent discussions. The purpose

of this study is to investigate the convergence of common hemodynamic indicators with

respect to numerical resolution.

Methods

38 middle cerebral artery bifurcation aneurysms were studied at two different resolutions

(one comparable to most studies, and one finer). Relevant hemodynamic indicators were

collected from two of the most cited studies, and were compared at the two refinements. In

addition, correlation to rupture was investigated.

Results

Most of the hemodynamic indicators were very well resolved at the coarser resolutions, cor-

relating with the finest resolution with a correlation coefficient >0.95. The oscillatory shear

index (OSI) had the lowest correlation coefficient of 0.83. A logarithmic Bland-Altman plot

revealed noticeable variations in the proportion of the aneurysm under low shear, as well as

in spatial and temporal gradients not captured by the correlation alone.

Conclusion

Statistically, hemodynamic indicators agree well across the different resolutions studied

here. However, there are clear outliers visible in several of the hemodynamic indicators,

which suggests that special care should be taken when considering individual assessment.
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Introduction

Unruptured aneurysms constitute a major dilemma for clinicians because of the high preva-

lence of about 2%, the low annual rupture risk of less than 1%, combined with a high mortality

of around 40% associated with rupture [1,2]. For this reason, improved risk assessment is

sought to improve treatment and reduce costs. To this end, several indicators representing

aneurysm morphology [3–8] and hemodynamics [9–14] have been proposed as biomarkers

for aneurysm rupture.

The in vivo measurement of detailed blood flow in intracranial aneurysms is currently

infeasible, since the existing methods are invasive and/or too limited in resolution. Because

of this, computational fluid dynamics (CFD) have been used to estimate the blood flow in

aneurysms and adjacent vessels. However, methods, resolutions, models and hemodynamic

indicators vary among studies and confound clinicians [15], and thus, CFD is still not widely

considered or used in clinical settings. For instance, the ASME 2012 Challenge [16] displayed

significant variations among results obtained from different research groups despite a com-

mon surface geometry and flow rate conditions (boundary conditions and mesh varied among

the groups). Furthermore, deviation from laminar flow has been observed [17,18]. These

studies have spurred significant activity on qualitative assessment of the effect of numerical

schemes, software packages and resolution [19–22]. Our motivation with the current study is

to address whether resolution plays an important role in quantitative studies. In particular, the

velocity and pressure are not the main quantities of interest. Hemodynamic indicators often

involve integration and differentiation of velocity and/or pressure in both space and time.

From a theoretical point of view, such derived quantities converge at different rates than veloc-

ity and pressure, in particular, convergence is often decreased by differentiation and gained by

integration.

In the numerous CFD studies on cerebral aneurysms available, a wide range of hemody-

namic indicators has been proposed. Most are based on the wall shear stress (WSS), that is, the

friction acting on the vessel wall, which may vary considerably both with respect to location,

phase in the cardiac cycle, and among patients. Some indicators like maximal or average WSS

are motivated by the assumption that the vessels are only able to sustain a certain amount of

friction. Others, like oscillatory shear index (OSI), low shear area (LSA), WSS gradients

(WSSG), and shear concentration index (SCI) are more directly motivated by the mechano-

transduction in the vessel walls. Other indicators attempt to quantify the dissipation or jets in

the flow like the viscous dissipation ratio (VDR) and inflow concentration index (ICI). The

convergence or sensitivity with respect to resolution, methods and models may vary among

these indicators. In [19], the authors highlight the missing or inadequate convergence tests in

computational studies. The cause of this is suggested to be the computational time required,

but they also point to choice of numerical scheme, with schemes tailored for laminar flow

might never capture transitional or turbulent flow patterns. Furthermore, the relationship

between the different indicators has been highlighted for being insufficiently discussed [15].

In this study, we have investigated the robustness of common hemodynamic indicators

with respect to numerical resolution. We have chosen indicators from two of the most fre-

quently cited studies in the field, namely Cebral et al. [10] and Xiang et al. [14]. From these

studies, all hemodynamic indicators significantly correlated with rupture state (p<0.05), were

computed. In addition, we computed the wall shear stress gradient (WSSG) and the wall shear

stress time derivative (TDWSS) for completeness, in order to capture spatial and temporal var-

iations. We computed all indicators at different refinement levels to investigate the effects of

numerical resolution. Finally, we also included the morphological indicators aspect ratio (AR),

non-sphericity index (NSI) and volume (V). Correlations among morphological indicators,
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hemodynamic indicators, and rupture status were investigated to uncover potential surrogates.

To limit the amount of variability in the data selection, we limited our study to middle cerebral

artery (MCA) bifurcation aneurysms. A total of 38 geometries were studied.

Methods

3D Rotational Angiography (3DRA) images from 53 patients including a MCA bifurcation

aneurysm were selected from the @neurIST [23,24] database. The cerebral vasculature in the

region of interest was automatically segmented by a geodesic active region segmentation

method [25]. The possible geometrical and topological errors in the resulting vessel surface

were manually corrected using the suite @neuFuse [24]. The vasculature of interest was iso-

lated cutting with planes perpendicular to the centerline, and the neck was manually delin-

eated as the surface separating the aneurysm dome from the parent vessels, instead of a single

plane [7].

A selection of the suitable geometries was made based on the sufficient length of the vessels

present on the segmentation. Geometries where the segmentation did not reach further

upstream than the C3 segment of the internal carotid artery (ICA) were excluded from further

analysis. This was done to include possible secondary flows initiated around the carotid siphon

that propagates downstream, as noted in [26]. In the cases where we had multiple segmenta-

tions, the geometry with the longest centerline was selected. A total of 38 geometries were

included for further studies, and shown in S1 Fig. A brief summary of the selected dataset is

found in Table 1.

The hemodynamic indicators computed include the ones significantly correlated with

aneurysm rupture state in either Xiang et al. [14] or Cebral et al. [10]. In addition, the wall

shear stress gradient and a wall shear stress time derivative functional are computed for com-

pleteness. The exact definitions and significance of each of the indicators computed, are

shown in Table 2 and Table 3.

For completeness, we have also included in the study the two morphological indicators

most frequently considered [6,7,14] for their high correlation with aneurysm rupture state:

aspect ratio (AR) [27] and non-sphericity index (NSI) [4]. Their definition is presented in

Table 4, and they were automatically computed from the segmented aneurysm surface and the

delineated neck. We have also included the aneurysm volume as size indicator.

Tetrahedral meshes were generated using VMTK (www.vmtk.org). We generated two sets

of meshes to investigate the robustness of the computed indicators with respect to numerical

resolution. We varied the resolution depending proximity to the aneurysm domain, increasing

the target nodal distance up to a factor 2 furthest from the aneurysm domain. The parent

artery had a target nodal distance of 1.25 times the intra-aneurysmal target nodal distance. For

small arteries, we reverted to a radius-adaptive sizing method. All meshes included a boundary

layer of approximately 0.3 times the target nodal distance. This boundary layer consisted of 4

sublayers, gradually decreasing in thickness by a factor 0.6, resulting in the outermost sublayer

to be of an approximate thickness of 0.03 times the target nodal distance.

Table 1. Summary of the selected dataset.

Parameter Data range

Ruptured/unruptured 13/25

Age [years] 35–78 (μ = 52.8, σ = 9.2)

Female/male [–] 28/10

Flow rate (ICA) [ml/min] 100–382 (μ = 245, σ = 62)

Flow rate (MCA) [ml/min] 58–255 (μ = 134, σ = 38)

https://doi.org/10.1371/journal.pone.0177566.t001
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The coarse meshes were motivated by other studies in the field, limited by the resolution

required to resolve the geometry. These consisted of 0.5–1.5 million cells, with an average

nodal distance of 0.18mm close to the aneurysm domain, increasing to the double further

from the aneurysm. The resolution of the finer meshes used was motivated by the resolutions

given in Valen-Sendstad and Steinman [19], and had an average nodal distance of 0.13mm

in the near-aneurysm domain. The velocity is approximated using piecewise quadratic polyno-

mials, making the effective mesh resolution 0.065mm. The meshes varied in size from 1.2

to 4.0 million cells. This corresponds to approximately 10–32 million linear elements. Com-

pared to Valen-Sendstad and Steinman [19], our fine spatial resolution is similar to their high

resolution (0.065mm to 0.06mm). The coarse meshes are approximately 50% coarser than

their normal resolution (0.18mm to 0.12mm), and comparable to the resolution in [10,28]. A

comparison of the two refinements is visualized in Fig 1.

By selecting 8000 time steps for the coarse mesh, and 23000 time steps for the fine mesh, we

assured the same Courant number for both refinements, which is below 1 for flow velocities

up to 1.5 m/s.

All hemodynamic indicators were computed on both sets of refinements, and compared

with correlation coefficients, average differences and a Bland-Altman plot [29]. Differences

between indicators were calculated globally, that is as the difference in global magnitude,

rather than the magnitude of the difference locally. A more comprehensive test was performed

on the five first aneurysms of the dataset, where all results were computed on 4 different reso-

lutions. The 2 additional meshes had a resolution between the coarse and the fine meshes. For

all resolutions, the velocity was approximated with piecewise quadratic polynomials, and the

indicators were computed from the second cycle.

We assume blood to behave as a Newtonian fluid with a dynamic viscosity (μ) of 3.45 mPa

s, as justified by Evju et al. [30], and with a density of 1.056 g/mm3 (ρ). The walls were assumed

to be rigid and impermeable. The inflow boundary conditions were set on the C2/C3 segment

as a Womersley profile [31] scaled with the cross-sectional area, as suggested in[32]. The

Table 2. Definition of computed hemodynamic indicators from literature. For notation, we refer the reader to S1 Table.

Indicator Abbrev. Study Significance Definition used

Time- and space-averaged WSS AWSS Xiang et al. [14] R<U (p<0.0001) 1

Aa

R

Ga
j�τ jdS

Maximum WSS MWSS Xiang et al. [14] Cebral et al. [10] R<U (p = 0.0002) R>U (p<0.004) max
x2Ga

j�τ j

Oscillatory shear index OSI Xiang et al. [14] R>U (p<0.0001) 1

Aa

R

Ga

1

2
1 �

ð�τ Þ
ð�τÞ

� �
dS

Low shear area LSA Xiang et al. [14] R>U (p<0.0001)
1

Aa

R

Ga

�
1; ifð�τÞ < 0:1AWSS

0; otherwise
dS

Viscous dissipation ratio VDR Cebral et al. [10] R<U (p<0.0174)
1

T1� T0

R T1

T0

1
Va

R

Oa
2

m
rjj�jj

2dV

1
Vnv

R

Onv
2

m
rjj�jj

2dV
dt

Inflow concen-tration index ICI Cebral et al. [10] R>U (p<0.004)
1

T1� T0

R T1

T0

Qin=Qpa
Ain=Aneck

dt

Shear concen-tration index SCI Cebral et al. [10] R>U (p<0.049)
1

T1� T0

R T1

T0

Fh=Fa
Ah=Aa

dt

https://doi.org/10.1371/journal.pone.0177566.t002

Table 3. Definition of computed hemodynamic indicators added for completion.

Indicator Abbrev. Definition used

Time-derivative WSS TDWSS 1

Aa

R

Ga
j
@jτj
@t j dS

WSS gradient WSSG 1

Aa

R

Ga
krτkdS

https://doi.org/10.1371/journal.pone.0177566.t003
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inflow velocity was adjusted to match a physiologically realistic flow rate of 245 ml/min (±61

ml/min) [33]. We matched this with an average inflow velocity of 0.27 m/s, resulting in a stan-

dard deviation of 62 ml/min. As we apply the same boundary conditions to all models, the dif-

ferences in results between the models is only associated with the variations in geometry, as

opposed to variations in physiological conditions, such as blood pressure or heart rate.

An average profile is obtained from elderly adults in Hoi et al. [33], measured using cine

phase contrast magnetic resonance imaging (PC-MRI) at the C1 segment, with a period of

0.949 seconds (63 bpm). Since we are mainly interested in the flow in the MCA, we reduced

the pulsatility by 15% to account for a dampening along the carotid siphon. The dampening

has been reported to be in the range -5% to 52% with mean 17.4%. [34] The final dampened

flow rate profile is visualized in Fig 2, normalized with 0.27 m/s times cross-sectional area.

On the other arteries included we used pressure conditions to approximately distribute the

flow by the principle of minimum work (Murray’s law) [35]. More specific, the pressure at

artery i is set to

pi ¼ K
r3

i

Sjr3
j

 !� 1 Z

Gi

u � n dS

where ri denotes the radius of artery i, Γi is the cross-sectional surface, and n the outward

Table 4. Definition of morphological indicators computed.

Indicator Abbrev. Definition used

Non-sphericity index NSI
1 �

ð18pÞ1=3V2=3
a

Aa

Aspect ratio AR Aneurysm depth
Neck width

https://doi.org/10.1371/journal.pone.0177566.t004

Fig 1. The figure illustrates the differences between the coarsest resolution on the left, and the finest

resolution on the right. The clip is done just upstream from the aneurysm of model 1. The black dots

represent points at which the velocity is computed.

https://doi.org/10.1371/journal.pone.0177566.g001

Robustness of hemodynamic indicators with respect to numerical resolution in cerebral aneurysms

PLOS ONE | https://doi.org/10.1371/journal.pone.0177566 June 13, 2017 5 / 15

https://doi.org/10.1371/journal.pone.0177566.t004
https://doi.org/10.1371/journal.pone.0177566.g001
https://doi.org/10.1371/journal.pone.0177566


pointing normal. The summation is over all arteries except ICA, and the constant K is set to

109 kg
m4 s. This outlet condition ensures that the length of the outlets has a minimal effect on the

flow division, matching Murray’s law at the M2 outlets with an average deviation of -3.2%

(±3.2%). These pressure conditions are preferred over velocity outflow conditions, because of

the lesser influence on the upstream flow.

The incompressible Navier-Stokes equations were solved using the open source software

cbcflow [36] based on FEniCS [37]. The computation of the hemodynamic indicators were

done using cbcpost [38]. The solver implementation mimics very closely the one described in

[39], and displays second order convergence in both time and space. The scheme is a pressure

correction scheme, with a linearization of the convective term, which does not introduce artifi-

cial numerical dissipation, as shown in [40]. In fact, the numerical scheme has the same stabil-

ity property as the continuous equations. At each time step, a tentative velocity is computed

using the pressure field from the previous time step. This is then followed by applying the

incompressibility constraint to compute a corrected pressure. Finally, the tentative velocity

and corrected pressure is used to compute the final velocity.

To determine the correlation with rupture status, we first grouped the results into groups of

ruptured and unruptured. We then performed a Shapiro-Wilks test for the normality of the

results. Where the null hypothesis of normally distributed data could not be rejected we used a

two-tailed t-test. Otherwise, we used a Mann-Whitney U-test. In addition, we performed a

Bland-Altman analysis for individualized assessment of the effect of resolution.

Results

Data from simulations of the 38 aneurysms on two different mesh refinements were analyzed.

The correlation between the two sets of simulations performed is shown in Fig 3A. We see that

most of the indicators are very well reproduced on the coarsest resolutions, with a few excep-

tions. That is, AWSS, MWSS, LSA, VDR, ICI, SCI correlate very strongly (r>0.95). The OSI

appears to be the most difficult quantity to correctly rank, with a correlation coefficient of 0.834,

which is largely caused by a few outliers. Also WSSG (r = 0.910) and TDWSS (r = 0.932) have a

number of outliers. We remark that although MWSS demonstrated very strong correlation it is

generally underestimated on the coarser refinement with an average deviation of 15.6%.

The variation of the hemodynamic indicators with respect to resolution is shown along the

Y-axis of the logarithmic Bland-Altman plot in Fig 3B. We note that the larges variation is in

LSA of up to a factor 16. Further, we note that the spread in magnitude of the different indica-

tors for the different aneurysms (X-axis) is large in particular for WSSG, TDWSS and LSA,

which is up to three orders of magnitude (211).

Regarding convergence, the global L2-norm of the velocity varied by less than 1.2% of time-

averaged velocity between the coarse and fine resolution for all aneurysms. The more thorough

Fig 2. Flow profile used in the simulations.

https://doi.org/10.1371/journal.pone.0177566.g002
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Fig 3. Comparison between the two refinements for all hemodynamic indicators. (A) Correlation plot between coarse and fine refinements.

(B) Logarithmic Bland-Altman plot of coarse versus fine (Vcoarse vs Vfine). r denotes the Pearson correlation coefficient, d the average difference

d ¼ 1

38

P38

i¼1

Vicoarse� V
i
fine

Vi
fine

� �
. All values are normalized with the max value at the finest refinement. The red circles refer to the cases displayed in Fig 4. *: In 5

cases, LSA was zero for at least one of the two refinements (and less than 0.03 on the other). These are excluded from the Bland-Altman plot and the

computation of d, to avoid division-by-zero.

https://doi.org/10.1371/journal.pone.0177566.g003
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convergence test on the first five geometries, revealed a difference in the same norm of less

than 0.13% between the two finest refinement levels. However, at the two finest refinement lev-

els, the AWSS, VDR, ICI and SCI varied up to 5%. The MWSS, OSI and LSA all showed differ-

ences of up to 12%, whereas the WSSG and TDWSS showed differences of up to 40% between

the two finest refinements.

Fig 4 shows a visual representation of worst case scenarios of selected indicators. Fig 4A

shows the WSS at coarse and fine resolution in case 21 which is representative for the maximal

difference in MWSS and AWSS. Clearly most of the main features are present in the coarse

resolutions but there are spots (e.g. at the top) with clear differences. In this case, AWSS was

9.7 Pa and 8.9 Pa and MWSS 43.7 Pa and 51.8 Pa at the coarse and fine resolutions, respec-

tively. Fig 4B shows the differences in OSI fields at coarse and fine resolution in case 48.

Clearly, the coarse resolution overestimates the area of local OSI above 0.1 which results in an

OSI of 0.028 at the coarse resolution and only 0.012 at the fine resolution. Fig 4C shows the

LSA field in case 9, where the coarse resolution clearly underestimates the LSA. This is

reflected in the values 0.033 at coarse resolution and 0.076 on the fine resolution. Finally, the

ICI field for case 24 is shown in Fig 4D at t = 0.2 where only slight variations between the

coarse and fine resolution can be seen. The resulting ICI is 1.20 and 1.14, respectively.

The correlation coefficients between the different indicators shown in Table 5 and Table 6

are less than the correlation between the different resolutions, which is SCI and LSA (r = 0.86).

Correlation with P<0.001 was found between AWSS and VDR (r = 0.77), WSSG (r = 0.57),

TDWSS (r = 0.53); MWSS and WSSG (r = 070); LSA and SCI (r = 0.86); WSSG and TDWSS

Fig 4. Variability in selected indicators, representative of worst case. Left figures represent the coarse resolution, right figures

represent the fine. (A) Shows the WSS fields at different refinements of case 21. (Coarse/fine: AWSS = 9.7/8.9 Pa, MWSS = 43.7/

51.8 Pa.) (B) OSI fields at different refinements for case 48 (coarse: 0.028, fine: 0.012). (C) LSA fields (|τ| < 0.1 in red) at different

refinements of case 9 (coarse: 0.033, fine: 0.076). (D) ICI fields at different refinements for case 24 at t = 0.2 (coarse: 1.20, fine:

1.14).

https://doi.org/10.1371/journal.pone.0177566.g004
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(r = 0.63). We note that OSI and ICI have no significant correlation with other indicators at

this significance level. Correlation between morphological and hemodynamic indicators was

P<0.001 for LSA and AR (r = 0.64); ICI and Volume (r = 0.62); SCI and AR (r = 0.62); AWSS

and Volume (r = -0.55). All other correlations had P-values larger than 0.001.

Concerning rupture status, summarized in Table 7, we see that all the morphological indi-

cators computed are able to discriminate between the two groups at a statistically significant

level. Of these, NSI were the most significant, with higher values in the ruptured group (0.18 to

0.12; p = 0.007). AR was also higher in the ruptured group than in the unruptured group (1.25

to 0.97; p = 0.016). The ruptured aneurysms were also larger, demonstrated with a greater vol-

ume (123 to 88mm3; p = 0.019). Of the hemodynamic indicators computed, only ICI showed a

significant difference between the two groups, with higher values in the ruptured aneurysms

(1.64 to 1.29; p = 0.044). MWSS also showed a tendency of higher values in the ruptured

group, however not at a significant level (65.2 to 57.2; p = 0.068). The other hemodynamic

indicators were not statistically significant, with p-values ranging from 0.131 to 0.896. We

remark that large changes between both mesh resolutions were observed in the p-value of OSI

(from 0.244 to 0.896) and MWSS (from 0.112 to 0.068). However, none of the indicators

changed from not-significant to significant or vice versa with respect to resolution.

Table 5. Correlation coefficients between hemodynamic indicators.

AWSS MWSS OSI LSA VDR ICI SCI WSSG TDWSS

AWSS 1.00††

MWSS 0.30 1.00††

OSI -0.10 -0.17 1.00††

LSA -0.46† 0.19 0.02 1.00††

VDR 0.77†† -0.07 0.07 -0.41† 1.00††

ICI -0.24 -0.33† 0.41† -0.08 -0.09 1.00††

SCI -0.49† 0.31 -0.07 0.86†† -0.51† -0.01 1.00

WSSG 0.57†† 0.70†† 0.00 -0.16 0.23 -0.33† -0.12 1.00††

TDWSS 0.53†† 0.31 0.49† -0.26 0.35† 0.17 -0.26 0.63†† 1.00††

†: p<0.05
††: p<0.001.

https://doi.org/10.1371/journal.pone.0177566.t005

Table 6. Correlation coefficient between all hemodynamic and morphological indicators.

AR NSI Volume

AWSS -0.46† -0.42 -0.55††

MWSS 0.29 0.22 -0.19

OSI 0.00 0.02 0.07

LSA 0.64†† 0.43† 0.45†

VDR -0.51† -0.51† -0.49†

ICI 0.20 0.35† 0.62††

SCI 0.62†† 0.41† 0.51†

WSSG -0.15 -0.18 -0.33†

TDWSS -0.21 -0.11 -0.22

†: p<0.05
††: p<0.001.

https://doi.org/10.1371/journal.pone.0177566.t006
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Discussion

In this study we investigated the computational robustness of hemodynamic indicators based

on two of the most frequently cited quantitative studies in the field [10,14], on a dataset con-

sisting of 25 unruptured and 13 ruptured MCA aneurysms. In addition, we included three

common morphological indicators, as well as two hemodynamic indicators for completeness.

Coarse and fine resolution simulations correlated very strongly (r>0.95) for AWSS, MWSS,

LSA, VDR, ICI, SCI, while OSI (r = 0.83), WSSG (r = 0.91), and TDWSS (r = 0.93) correlated

strongly. Although strongly correlated, the important deviations from the identity line ob-

served for LSA (d = 63.9%), TDWSS (d = -24.7%) and WSSG (d = 23.1%) indicates over- or

underestimation in the coarser resolution with respect the finer resolution. The inspection of

the corresponding logarithmic Bland-Altman plot revealed large variations for the lower val-

ues, in particular for LSA. The variation of up to 16 (24) demonstrates that correlation alone is

not a sufficient criterion for robustness. From the plot, we see that LSA, WSSG, TDWSS in

particular are difficult to accurately compute for lower values.

Our coarse resolution in this study is representative of a normal or high resolution in com-

mon CFD analysis of aneurysms. Considering the global L2-norm of the velocity, we found

only very small changes (<1.2%) between this resolution and our finest resolution. However,

even at the finest refinement levels, a detailed convergence analysis of the indicators on five

aneurysms showed that not all indicators were converged in the strict sense usually applied to

CFD analysis. Only the indicators AWSS, VDR, ICI, and SCI showed a differences of less than

5% between the two finest refinements. MWSS, OSI and LSA showed differences of up to 12%,

while WSSG and TDWSS had a difference of up to 40%. Note that as the mesh resolution

Table 7. Comparison between the ruptured and unruptured aneurysms for all indicators at both resolutions.

Indicator Units Resolution Ruptured Unruptured p-value

Mean Std. dev. Mean Std. dev.

AWSS Pa fine 6.8 6.3 7.3 3.9 0.131

coarse 7.0 6.5 7.2 3.9 0.190

MWSS Pa fine 65.2 32.7 57.2 44.1 0.068

coarse 51.8 24.8 46.3 30.8 0.112

OSI - fine 0.028 0.018 0.029 0.020 0.896

coarse 0.026 0.014 0.027 0.023 0.244

LSA - fine 0.130 0.238 0.069 0.114 0.151

coarse 0.131 0.234 0.066 0.109 0.144

VDR - fine 0.49 0.51 0.63 0.52 0.182

coarse 0.50 0.53 0.60 0.47 0.190

ICI - fine 1.64 0.73 1.29 0.98 0.044

coarse 1.66 0.74 1.30 0.98 0.041

SCI - fine 6.9 8.2 4.5 2.7 0.295

coarse 6.4 6.7 4.6 2.9 0.306

WSSG Pa/mm fine 1012 1202 2138 3368 0.137

coarse 1154 1516 1861 2093 0.124

TDWSS Pa/s fine 407 729 400 541 0.235

coarse 315 577 260 401 0.244

AR - - 1.25 0.43 0.97 0.41 0.016

NSI - - 0.18 0.05 0.12 0.07 0.007

Volume mm3 - 123 95 88 143 0.019

https://doi.org/10.1371/journal.pone.0177566.t007
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change, the approximation of the wall geometry also changed slightly. This might contribute

to the lack of convergence of several indicators.

Correlation between indicators were weak to none, with the exception of SCI-LSA (r =

0.86), VDR-AWSS (r = 0.77), WSSG-MWSS (r = 0.70), and TWDSS-WSSG (r = 0.63). Corre-

lation between morphological and hemodynamic indicators were weak to none except for

LSA-AR (r = 0.64), SCI-AR (r = 0.62), and ICI-Volume (r = 0.62). This suggests that there

could be possibilities for surrogates that are more robust, for example the SCI as a surrogate

for the less robust LSA.

Only one of the hemodynamic indicators, the ICI, showed a significant difference between

ruptured and unruptured aneurysms. The morphological indicators all showed significant dif-

ferences between the two groups, with NSI as the strongest of the three indicators included.

For the other hemodynamic indicators, the tendencies were as expected with basis in the stud-

ies they were taken from, but not strong enough to reach statistical significance. The OSI was

however an exception from this, where the means were practically identical, and the p-value as

high as 0.896. For MWSS, the tendency was towards higher MWSS in ruptured aneurysms

than unruptured aneurysms, but with a p-value of 0.068, this was not deemed significant. The

increased resolution did not change the p-value from significant to not-significant or vice

versa for any of the indicators. This suggests that coarse simulations can provide useful infor-

mation, even though the actual values are not strictly converged.

This study involved 38 MCA aneurysms which is less than the 119 and 210 in Cebral et al.

[10] and Xiang et al. [14] and might explain why statistical significance was not obtained. We

have also only studied MCA bifurcation aneurysms, which may have different mechanisms

related to rupture than aneurysms at other locations. Still, from the coefficient of variation

(standard deviation divided by mean) of 0.5–1.83 in Table 7, we can conclude that the hemo-

dynamic variations within aneurysms at this location are substantial. In addition, this study, as

comparable studies, is done retrospectively. This further complicates the usage of these indica-

tors as predictors of aneurysm rupture. In particular, it has been shown that the morphology

may be significantly affected by aneurysm rupture [41]. Finally, we remark that we have not

assumed laminar flow in our simulations and our numerical algorithms were hence not tai-

lored towards such application, using e.g. dissipative or stabilized schemes. The results in par-

ticular for OSI, WSSG and TDWSS might have been different if laminar flow was assumed.

The spatial resolution of the quantitative studies considered in [10] and [14] are similar to

what we consider coarse resolution. Xiang et al. [14] report 300 000 to 1 000 000 tetrahedral

elements, with a hexahedral boundary layer, whereas Cebral et al. [10] report a resolution of

0.1 to 0.2 mm. The temporal resolution is typically much coarser than what we have used, with

time steps of 0.001s to 0.01s [19]. This is connected to the solution strategy as mentioned

above, an implicit or explicit assumption of laminar flow, and the usage of diffusive schemes

or stabilization terms. Other relevant studies such as [12,42–44] either lack information about

resolution, or report similar resolutions. In light of the results in this study and recent studies

such as [19,22], it seems reasonable to question whether these results are converged in a strict

sense. However, using quantitative methods, the results of this study suggest that strict conver-

gence does not alter conclusions based on quantitative analysis.

A detailed grid convergence of 5 aneurysms was done by Hodis et al. [45], where the

authors used extrapolation to estimate the grid uncertainty of velocities and average and maxi-

mal WSS at peak systole. Our meshes are roughly comparable to their mesh refinements h4

and h1. They reported grid convergence errors in average WSS of 1–11% and in maximal WSS

of 6–15% for the finest mesh. This does not compare directly to our findings, but similar to

this study, it highlights the difficulties of strict convergence. They state that each patient-spe-

cific model requires individual grid convergence studies. However, as our study shows, this
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requirement might be unnecessary strict for quantitative studies that considers tens to hun-

dreds of aneurysm models, as the effect of outliers will be diminished.

In Khan et al. [22], the authors study resolution requirements on 3 different aneurysms.

They highlight the need for a minimally dissipative solver as more important than grid or tem-

poral resolution. In this study we use the same numerical scheme as the high fidelity solver

used by the authors in that study. They state that this high fidelity solver “can tolerate surpris-

ingly coarse resolutions”, and show that in particular AWSS and OSI are properly resolved at

spatial resolutions comparable to our coarse resolutions. In our study, we find that for our 38

cases, this still holds true for AWSS, but the OSI seems more difficult to resolve for certain

geometries.

Conclusion

In this study we demonstrate that a quantitative CFD analysis of hemodynamics in cerebral

aneurysms, are reasonably robust even though strict convergence in a traditional sense is not

obtained. This suggests that the results of the previous quantitative CFD studies such as

[10,12,14,40–42], would correlate strongly with properly resolved simulations, although we

note that our simulations and scheme may not be representative for all previous studies, which

often employ dissipative schemes. However, some hemodynamic indicators such as AWSS,

VDR, ICI and SCI are relatively easy to resolve, compared to OSI, LSA, MWSS, WSSG and

TDWSS. For individual assessment, special care should be taken that the considered hemody-

namic indicators are converged, as there are outliers. Besides ICI, the hemodynamic parame-

ters studied here were unable to discriminate ruptured from unruptured aneurysms.
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