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Fog Radio Access Networks: Mobility

Management, Interference Mitigation and

Resource Optimization

Haijun Zhang, Senior Member, IEEE, Yu Qiu, Xiaoli Chu, Senior Member, IEEE,

Keping Long, Senior Member, IEEE, and Victor C.M. Leung, Fellow, IEEE

Abstract

In order to make Internet connections ubiquitous and autonomous in our daily lives, maximizing the

utilization of radio resources and social information is one of the major research topics in future mobile

communication technologies. Fog radio access network (FRAN) is regarded as a promising paradigm

for the fifth generation (5G) of mobile networks. FRAN integrates fog computing with RAN and makes

full use of the edge of networks. FRAN would be different in networking, computing, storage and

control as compared with conventional radio access networks (RAN) and the emerging cloud RAN.

In this article, we provide a description of the FRAN architecture, and discuss how the distinctive

characteristics of FRAN make it possible to efficiently alleviate the burden on the fronthaul, backhaul

and backbone networks, as well as reduce content delivery latencies. We will focus on the mobility
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management, interference mitigation, and resource optimization in FRAN. Our simulation results show

that the proposed FRAN architecture and the associated mobility and resource management mechanisms

can reduce the signaling cost and increase the net utility for the RAN.

I. INTRODUCTION

Nowadays billions of mobile users receive seamless and stable wireless services supported

by the communication infrastructures. With the rapid development of mobile communications,

dozens of network standards have emerged, including the Third Generation Partnership Project

(3GPP) Long Term Evolution (LTE) standards. In addition to advanced multiple-input multiple-

output (MIMO) technologies [1], small cells and heterogeneous networks [2], cloud radio access

networks (CRAN) have emerged as a popular technology for future mobile networks [3]. CRAN

features centralized resource management, with all the computing, control, and data storage of

the network gathered into the cloud. The centralized data centers, cellular core networks and

backbone networks are equipped with computing, storage and network management functions.

However, recent research [4], [5] has shown that the completely centralized architecture of CRAN

makes it hard to cope with the unpredictable mobility of users, the increasing density of base

stations (BSs) [6], and the explosive growth of user data demand. The planning and optimization

of heterogeneous networks are facing complicated inter-cell interference problems and increased

management complexities. More recently, heterogeneous cloud radio access network (HCRAN)

has been proposed [7], where remote radio heads (RRHs) working in coordination with high

power nodes can effectively mitigate co-channel interference. Although HCRAN may offer better

cost efficiency than CRAN [7], the complex cost structure behind HCRAN, how its resource

optimization should be supported by the baseband unit (BBU) pool, and its traffic burden on the

cloud center require more in-depth studies. Since all information is exchanged through the BBU

pool, HCRAN may cause additional burden on the fronthaul and backhaul links, especially

the wireless ones [8], as compared with CRAN. In the meanwhile, more data is generated

from various social media platforms due to their increasing popularity. Hence, it becomes

increasingly important to consider social networking and local information in the management

and optimization of RANs. This is not easily achieved in CRAN or HCRAN because of their

centralized architecture.
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In view of the above issues related to CRAN and HCRAN and the requirements of the future

communication scenarios, FRAN was introduced by Cisco to exploit local signal processing and

computing, cooperative resource management, and distributed storing/caching capabilities at the

network edge [9]. In FRAN, a large amount of signal processing and computing is performed in

a distributed manner, rather than all by the centralized BBU pool, and local data can be stored

in edge devices, such as access points (APs) and user equipment (UE), instead of the cloud

data center. A unique feature of FRAN is to maximize the use of edge devices of the network,

e.g., to perform collaborated radio signal processing. As a result, the burden on the fronthaul

is much relieved than CRAN or HCRAN. Due to these distinctive characteristics of FRAN,

network management and optimization mechanisms need to be revisited for FRAN. In [10],

cooperative interference mitigation and handover management were studied for heterogeneous

cloud small cell networks. An information-centric wireless network virtualization framework

was studied in [11]. These requirements translate into a tremendous demand for bandwidth

and energy consumption. MIMO is a promising solution for sloving these issues as it provides

extra degrees of freedom in the spatial domain which promote a tradeoff between diversity

gain and multiplexing gain. Over the past few year, an enormous amount of research has been

concentrated on MIMO communication [12]. However, the modest computational capabilities of

mobile devices limit the MIMO gains that can be achieved in practice. An attractive alternative

for realizing the performance gains offered by multiple antennas is multiuser MIMO, where

a multipleantenna transmitter serves multiple single-antenna receivers simultaneously. In fact,

the combination of multiuser MIMO and distributed antennas is widely recognized as a viable

technology for extending service coverage and mitigating interference [13]. Specifically, dis-

tributed antennas introduce additional capabilities for combating both path shadowing and loss

by shortening the distances between the the receivers and transmitters. Furthermore, even with

these powerful MIMO techniques, spectrum scarcity is still a main obstacle in providing high

speed uplink and downlink communications. In this article, we only consider the signal antenna

system and will consider the MIMO beamforming based interference management in our future

work. However, mobility management, interference mitigation, and resource optimization for

FRAN have not been sufficiently studied in the existing works.
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In this article, we first present a network architecture of FRAN. Then, we propose the handover

management and handover procedures, which make use of edge caching, in FRAN. For effective

interference and resource management, we introduce an interference-aware price and a price

of using the fronthaul for caching in the network edge. The subchannel and power allocation

problem is then modeled as a non-cooperative game to optimize the resource allocation in

FRAN. Moreover, we analyze the signaling overhead in FRAN using numerical results. We will

show that the proposed interference and resource management mechanisms not only reduce the

interference in the FRAN, but also enhance the net utility of the network.

II. SYSTEM ARCHITECTURE

Fig. 1 shows the FRAN architecture, where the marco remote radio heads (MRRHs), small

RRHs (SRRHs) and fog-computing access points (F-APs) all connect to the BBU pool. We denote

the smart user equipment as F-UE in the FRAN. The MRRHs are connected to the BBU pool by

the backhaul links. The SRRHs and the F-APs are connected to the BBU pool by the fronthaul

links. The F-APs, which are unique to FRANs, integrate not only the fronthaul radio frequency

but also the physical-layer signal processing functionalities and procedures of the upper layers.

Thus, F-APs can implement collaborative radio signal processing locally using their adequate

computing capabilities and can manage their caching memories flexibly. It is worth noting that

although both SRRHs and F-APs are equipped with caching capabilities, the contents stored in

them are fundamentally different: the contents cached in F-APs are highly locally popular or

relevant, but not those cached in SRRHs. With the increasing popularity of location-based mobile

applications, a lot of superfluous information may be generated adding to the surging data traffic

over the fronthaul between the SRRHs and the centralized BBU pool, which pushes the fronthaul

links to their capacity limits. In fact, the social application data exchanged between neighboring

F-UEs shows a high degree of conformity. Some social applications would only generate data

traffic between F-UEs in close physical proximity. Besides, users from the same social group or

having the same social interest may request the same contents over the downlink. In these cases,

F-APs can provide the requested services locally by caching the popular contents. Consequently,

users do not need to connect to the BBU pool every time when they require data or contents.
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Fig. 1. An FRAN architecture.

High mobility F-UEs are served by MRRHs. Although the interface between the BBU pool

and the MRRHs on the backhaul link is compatible with that defined in the 3GPP standards for

LTE and LTE-Advanced systems [14], the BBU pool will mainly provide centralized storage

and communications in FRAN. SRRHs connect to the BBU pool in order to retrieve the packets

cached at the BBU pool or packets from the cloud network. SRRHs are also equipped with

caching capabilities to provide local caching services to their associated F-UE. Collaborative
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signal processing can be performed by SRRHs, F-APs and F-UEs locally, and cooperative

resource management is performed by F-APs and F-UEs in a distributed manner. Consequently,

the communications burden on the fronthaul and the processing and control burden on the

BBU pool can be greatly relieved. The edge devices (including SRRHs, F-APs and F-UEs) of

the network are assigned some new functionalities, for instance, distributed storage, control,

configuration, measurement and resource management.

As shown in Fig. 1, there are four possible transmission modes in FRAN: D2D and relay

mode, local distributed coordination mode, global centralized mode, and MRRH mode. F-UEs

will select the most appropriate mode through user-centric adaptive techniques, which take into

account the F-UEs movement speed, communication distance, location, quality of service (QoS)

requirements, computing capability, and caching capability.

III. MOBILITY MANAGEMENT IN FRAN

A. Handover Management

In mobile communications, handover management is one of the most critical techniques to

guarantee the QoS requirements of users. However, handover management in FRAN has not been

sufficiently studied in the existing literature. High speed F-UEs should be served by MRRHs

with large coverage areas and reliable connections. Low mobility F-UEs should be served by

SRRHs or F-APs that can provide a very high capacity to a small number of F-UEs. In a

heterogeneous network, unnecessary handovers (e.g., ping-pong handovers) or handover caused

radio link failures are more likely to happen compared with conventional cellular networks, due

to the small coverage areas of small cells and severe co-channel interference. Moreover, frequent

handovers also cause a heavy burden on the fronthaul, the backhaul and the core network. In

order to avoid frequent handovers and alleviate the control overhead of handovers, MRRHs,

SRRHs and F-APs can shift some handover related control and decision making to F-UEs in

FRAN.

B. Handover Procedures in FRAN

Since handover management in FRANs is different from that in heterogeneous networks

or in CRANs, the handover procedure should be revised for both F-AP/SRRH-to-F-AP/SRRH
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handover and F-AP/SRRH-to-MRRH handover. Different from the handover procedure in CRAN,

many handover related functions such as handover and admission control are shifted from the

BBU pool to F-APs, SRRHs and MRRHs in FRAN, in conjunction with access point selection

mechanisms for various F-UEs. Moreover, in FRAN, the data traffic is generated not only in the

BBU pool but also in the network edge, such as F-UEs, F-APs and SRRHs.

Conventional handover schemes are mainly based on the received signal strength, where

handover decisions are made by comparing the received reference signal strength with a pre-

defined threshold. This would cause many unnecessary handovers such as ping-pong handovers

in FRANs. If access points of the mobile network are regarded as another kind of resource for

mobile devices, then the handover process can be transformed into a dynamic resource allocation

problem. Note that access points may become precious or limited resources in certain scenarios,

for example, mobile devices with urgent communication needs after an accident. It is reasonable

to prioritize the allocation of access points to such mobile devices to guarantee the QoS of the

urgent communications.

Fig. 2 shows the handover procedure and signalling flow for the handover of F-UE from an F-

AP to an MRRH in FRAN. This is mainly based on the handover management in heterogeneous

cloud small cell networks [10], but different in that the handover decisions are made between

the source F-AP and the F-AP gateway (Step 3 in Fig. 2)rather than in the BBU pool; and

the transmission of data locally cached in an F-AP to F-UE does not need to go through the

core network. Source F-AP transmits handover request signalling to target MRRH through F-AP

gateway and BBU pool (Step 4 in Fig .2). Admission control happen in target MRRH, and then

handover request Ack signalling would be transmitted to source F-AP (Step 5 in Fig .2). What

follows is the data transmission between source F-AP and target MRRH, as shown in Fig. 2. The

handover procedure in Fig. 2 can be applied to the handover from an SRRH to an MRRH as well.

The procedure of handover from an MRRH to an F-AP would be the most complex, because

there could be hundreds of possible target F-APs around and there is no direct communication

about the handover from the MRRH to the F-AP.

For handover between two F-APs (or two SRRHs), the handover decisions are made be-

tween the source F-AP (SRRH) and the F-AP (SRRH) gateway. The two F-APs (SRRHs) can
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Fig. 2. Handover from F-AP to MRRH.

communicate with each other through the S1 interface. The handover signalling flow between

the source F-AP and the target F-AP via the F-AP gateway is shown in Fig. 3, where the

FRAN architecture deploys the traditional S1 and X2 interface. The procedure (signalling flow)

of handover between two SRRHs is similar to that in Fig. 3. Two scenarios are considered

in handover between source F-AP and target F-AP/MRRH. Scenario 1: an F-UE in active state

moves across the F-AP, whose session initializes out of F-AP, and finally moves out of the F-AP.

Scenario 2: an F-UE who initializes a session under the coverage of the source F-AP remains in
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Fig. 3. Handover from F-AP to F-AP.

the active state before moving out of the source F-AP; The probability of scenario 1 (P
s1) plus

the probability of scenario 2 (Ps2) equals the probability of the handover happened on the border

of the F-AP/MRRH. The handover signalling overhead can be divided into processing overhead

and transmitting overhead. The processing overhead consists of that at F-UE, F-AP/MRRH, F-

AP gateway, and core network. The transmitting overhead includes that between F-AP and F-AP

gateway, MRRH and BBU pools, and F-AP gateway and core network. Signalling overhead of
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the F-AP related handover in each scenario is the product of the probability of the handover in

the scenario and the signalling overhead in the scenario. The signalling overhead is assumed to

be proportional to the delay required to send or process a signaling message and has no unit.

We perform computer simulation to compare the performance of the proposed FRAN handover

procedure with that in a conventional RAN (denoted as non-FRAN) in terms of system signaling

overhead. In the simulation, the session holding times are generated as independent random

variables following an identical exponential distribution. The session arrivals follow a Poission

process with average arrival rate λ. The signaling overhead is assumed to be proportional to

the delay required to send or process a signaling message and has no unit. Fig. 4 shows the

signaling overhead versus the average session arrival rate λ. We can see that the signaling

overhead in both FRAN and non-FRAN increases with the average session arrival rate for both

handover between F-APs and handover from an F-AP to an MRRH. This is because the number

of handovers increases with the average session arrival rate in all considered scenarios. The
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non-FRAN handover procedure does not distinguish between high speed F-UEs and low speed

F-UEs. The proposed FRAN handover procedure prevents the high speed F-UEs from handing

over from MRRHs to F-APs/SRRHs, thus avoiding unnecessary handovers. Fig. 4 also shows that

for either F-AP-to-F-AP or F-AP-to-MRRH handover, the handover caused signalling overhead

in FRAN is much lower than that in non-FRAN. FRAN takes full advantage of edge devices

to avoid transmitting the entire data to the BBU pool and process radio signals at the SRRHs,

F-APs and F-UEs. At the same time, the handover decisions occur between the F-AP and the

F-AP gateway rather than in the BBU pool; As a result, there is the significant reduction in the

transmitting overhead. And the processing overhead in F-UE and F-AP is much smaller than

that in MME (mobility management entity) and core network. Thus, the handover procedure

in FRAN leads to a significant reduction in signalling overhead and data traffic compared to

the conventional RAN and CRAN. And the long transmission delay and heavy burden on the

fronthaul (usually seen in CRAN) can be alleviated effectively.
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Fig. 5 shows the signalling overhead versus the average holding time for λ = 0.1. As the

average session holding time increases, the total signalling overhead increases. This because the

cell-boundary crossing probability increases with the session holding times, leading to a higher

probability of handover.

As shown in Fig. 4 and Fig. 5, the signaling overhead for handover in FRAN is lower than that

in non-FRAN. Moreover, as the MRRHs, SRRHs and F-APs in FRAN have control functions

and caching capabilities, a large portion of control signalling and data does not need to be

transmitted by the BBU pool. Thus, the handover procedure in FRAN leads to a significant

reduction in signalling overhead and data traffic than in conventional RAN and CRAN.

IV. INTERFERENCE MANAGEMENT AND RESOURCE OPTIMIZATION IN FRAN

Different from conventional RANs, CRANs and HCRANs, the F-APs and F-UEs in FRANs

are expected to be enhanced RRHs and UEs, respectively. F-APs integrate not only the fron-

thaul radio frequency, but also local collaborative radio signal processing and cooperative radio

resource management capabilities. Besides, both F-APs and F-UEs are equipped with some

caching capabilities. These distinctive characteristics of FRANs ask for a revisit of resource

management mechanism for FRANs. In an FRAN, F-UE can be collectively served by all the

nearby SRRHs and F-APs. This means that FRAN has evolved from a BS-centric architecture

to a usercentric architecture, as well as from connection-centric to content-centric. Therefore,

the goal of resource optimization in FRANs is to maximize the overall communication-plus-

computing energy efficiency, while guaranteeing the QoS requirements on transmission rates,

delays and jitters.

In FRANs, resources are not just limited to radio resources, but also include F-APs, SRRHs,

and caching and computing capabilities in F-UEs, F-APs and SRRHs. Accordingly, the resource

managment in FRANs goes beyond the traditional resource allocation to include also the alloca-

tion of caching and computing resources at the network edge. As a promising approach to offload

traffic from the BBU pool, the D2D and relay communications enable direct communications

between mobile devices. In the following, we focus on F-APs in the discussion of resource

allocation in FRANs, while the discussion can be easily extended to SRRHs.
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F-APs operate either on the same frequency band as the MRRH or on a dedicated frequency

band. On the one hand, the dedicated channel deployment of F-APs would be difficult (if not

impossible) especially when there are a large number of densely distributed F-APs. On the other

hand, cross-tier interference is serious in co-channel deployment where F-APs and MRRHs

share the same frequency band. Without effective management of cross-tier interference in the

co-channel deployment of FRAN, both the system throughput and the energy efficiency would

be largely limited. Consider a simple scenario where the FRAN contains only one MRRH and

several F-APs within the coverage area of the MRRH. The F-APs share the same frequency

band with the MRRH. Each F-AP makes decisions on the subchannel allocation and the power

allocation on each subchannel for the F-UEs associated with it.

In previous studies, game theory has been widely applied to alleviate co-channel interference

in RANs. Under the game theoretic framework, the utility function of each F-UE can be defined

as the capacity (maximum achievable data rate) of the F-UE. Accordingly, the optimization

of resource management in an FRAN can be formulated as the maximization of the overall

network capacity under the constraint of maximal transmission power of F-UE. In this article,

we model the optimization of uplink subchannel and power allocation in an FRAN as a non-

cooperative game considering the selfish and rational behavior of F-UEs and F-APs. Based on

the noncooperative game, we propose an interference-aware resource (power and subchannel)

allocation scheme for the uplink of co-channel deployed F-APs. Particularly, we introduce a

convex pricing function that is proportional to the transmission power of each F-UE, in order

to mitigate the interference caused by the F-UEs to the MRRH.

The proposed interference-aware uplink resource allocation scheme starts with subchannel

allocation. The interference-aware subchannel allocation is achieved by maximizing the net utility

function of each F-UE, which is defined as the maximum achievable data rate of the F-UE

subtracted by the pricing function of the uplink interference caused by the F-UE and added by

the reward function [11] of the caching offered by the F-UE. Given the optimized subchannel

allocation, the power control problem is modeled as a super-modular game. It has been proven

that the Nash Equilibriun (NE) exists on each individual subchannel [15]. When the F-UE

served by an F-AP transmits at the maximum power to achieve its maximal utility, it causes
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serious uplink interference to the MRRH, thus making the strategy far from Pareto-optimality.

To approach the NE, an iterative scheme, in which the transmission power of each F-UE is

initialized at the smallest available power level and is iteratively and sequentially updated, can

be used.

We perform simulation to evaluate the performance of the proposed interference-aware uplink

resource allocation scheme. In the simulation, the spectrum sharing F-APs and the F-UEs served

by the MRRH are uniformly distributed in the central MRRH coverage area, and the F-UEs

served by F-APs are uniformly distributed in the coverage area of their serving F-AP. The

channel model of each subchannel consists of path loss and Rayleigh flat fading. In Fig. 6, we

compare the total net utility function of an FRAN and that of a non-FRAN versus the number

of F-UEs (femto users) per F-AP (femtocell) for three different numbers of F-APs (femtocells)

in the network. The net utility gain of FRAN compared to non-FRAN performs better and better

with the increasing of the number of F-UEs per F-AP because of the multi-user diversity. From

Fig. 6, the performance of FRAN is still good with the increasing number of F-APs. In other

words, the scheme we proposed for FRAN can provide good services, even in dense deployed

networks. As shown in Fig. 6, the proposed interference-aware resource allocation scheme for

FRAN performs better than the existing resource allocation for FRAN (denoted by ’Existing

Scheme for FRAN’ in Fig. 6) and the conventional resource allocation for LTE-A (denoted

by ’non-FRAN’ in Fig. 6). This is because in our proposed scheme based on the F-AP non-

cooperative game, the interference pricing function in the net utility function can effectively

mitigate the uplink interference from F-UEs to the MRRH, while the caching reward function

encourages F-UEs to provide local caching, thus relieving the fronthaul between F-APs and the

BBU pool and improving the total capacity of the FRAN. The total net utility of the FRAN

generally increases with the number of F-UEs per F-AP, and increases with the number of F-APs.

V. CONCLUSION AND FUTURE WORK

In this article, we have introduced an FRAN architecture for 5G networks. The FRAN

architecture provides users with distributed local caching, computing, collaborative cooperative

radio signal processing, and cooperative resource management at the edge of the network. We

have proposed mobility management (including handover signaling procedures), interference
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mitigation, and uplink resource optimization mechanisms for FRANs. Simulation results have

demonstrated that the proposed FRAN architecture in conjunction with the mobility management

scheme can significantly decrease the signaling overhead of handover as compared with conven-

tional RANs. The proposed uplink resource allocation scheme based on an F-AP noncooperative

game can effectively mitigate the cross-tier interference and increase the total net utility of the

FRAN.

What we have discussed in this article is the portion of foundation for FRAN. There are still

many challenges and open issues that remain to be discussed in the further works. For instance,

software-defined Networking (SDN) and network function virtualization (NFV) technologies are

the most effective technique in currently practical application. How we complete the combination

of FRAN and these mature technologies is the focuses of continuing study. At the same time,

due to the distributed architecture of FRAN, there exist some security threat than CRAN, which

is of centralized systems. May be we should make the nodes in FRAN carry out selected security

functions for F-UEs. The Fog architectures should allow computing, storage, and networking
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tasks to be dynamically relocated among the Fog, the Cloud, and the Things. Therefore, the

interfaces for Fog to interact with the Cloud, other Fogs, and the Things and users, must facilitate

flexible, and in some cases dynamic, relocation of the computing, storage, and control functions

among these different entities, and allow efficient and effective lifecycle management of the

system and services. And Fog will provide new opportunities for us to design end-to-end systems

to achieve better tradeoffs between distributed and centralized architectures, between careful

deployment planning and resilience through redundancy, and between what stays local and what

goes global.

Now is just the beginning, we can look forward to the changes the fog will bring to the world

of networking and computing in the next decades.
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