This is a repository copy of *A multi-species synthesis of physiological mechanisms in drought-induced tree mortality.*

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/118137/

Version: Accepted Version

Article:

https://doi.org/10.1038/s41559-017-0248-x

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

Affiliations:
1Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, USA
2Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
3The Boden Institute, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
4Department of Biology, University of Utah, Salt Lake City, UT, USA
Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena, Germany

Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada

Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia

Ecology and Evolutionary Biology, University of California, Irvine, CA, USA.

Department of Biology, University of New Mexico, Albuquerque, NM, USA.

School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA.

Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada

Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia

Ecology and Evolutionary Biology, University of California, Irvine, CA, USA.

Department of Biology, University of New Mexico, Albuquerque, NM, USA.

School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA

Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA

School of Biology, University of Tasmania, Hobart, TAS, Australia

Forest Ecology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland

Department of Plant Pathology, University of California, Davis, CA, USA

Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA

Institute of Ecology and Environmental Science, Nanchang Institute of Technology, Nanchang, Jiangxi, China
Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, La Cañada, Almería, Spain

Centro de Investigación en Ecosistemas de la Patagonia, Coyhaique, Chile

Instituto de Ecología y Biodiversidad, Santiago, Chile

Department of Biological Sciences, Idaho State University, Pocatello, ID, USA

School of Agricultural, Forest, Food and Environmental Sciences, University of Basilicata, Potenza, Italy

Natural Resources Ecology Laboratory, Colorado State University, Fort Collins, CO, USA

Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA

USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA;

Division of Biological Sciences, University of Montana, Missoula, MT, USA

Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA

Irstea, UR RECOVER, Aix en Provence, France

Nicholas School of the Environment, Duke University, Durham, North Carolina, USA

Department of Biology, University of Western Ontario, London, ON, Canada

Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, Ciudad Obregon, SO, Mexico

Pacific Northwest National Laboratory, Richland, WA, 99352

*Correspondence to: henry.adams@okstate.edu

For submission to Nature Ecology and Evolution as an Article
Widespread tree mortality associated with drought has been observed on all forested continents, and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water, and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analyzed across species and biomes using a standardized physiological framework. Here we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

Increasing forest mortality from global change has been observed in all forested biomes and will have profound implications for future energy and element fluxes. Predictions of vegetation responses to future climate are uncertain due to the lack of realistic mortality mechanisms in vegetation models. Recent research supports at least two tightly inter-related
physiological mechanisms associated with tree mortality by drought: (a) hydraulic failure through partial or complete loss of xylem function from embolism that inhibits water transport through the vasculature, leading to tissue desiccation; and (b) carbon starvation via imbalance between carbohydrate demand and supply that may lead to an inability to meet osmotic, metabolic, and defensive carbon requirements. Hydraulic failure is most typically assessed via percent loss of xylem conductivity (PLC), and carbon starvation via changes in tissue non-structural carbohydrate (NSC) concentrations. There has been significant debate over these co-occurring mechanisms of mortality, particularly regarding the prevalence of carbon starvation and whether reduced carbohydrate reserves can be lethal during drought.

Though a number of studies on the mechanism of drought-induced mortality in trees have been conducted for a variety of tree species over the last decade, the prevalence of these mechanisms at a global scale remains uncertain. Differences in approach, variables measured, and species and life stage studied have limited global assessment of drought-induced tree mortality mechanism. Here, we provide the first cross-species synthesis of tree drought mortality mechanisms. We used a standardized physiological framework to analyze drought-induced tree mortality across species and assessed hydraulic function as PLC, and carbohydrate status as NSC normalized relative to controls. We examined data from 19 recent experimental and observational studies on 26 species from around the globe. Most tree species were assessed in only one study, but for several species, data were available from more than one study, resulting in 34 cases (species-study combinations). However, data were not available for all analyses from all cases: more cases had NSC data (31 cases from 24 species) than PLC data (14 cases from 9 species) which could be used to compare NSC and PLC at mortality with that of surviving control trees (see Methods below, Supplementary Table 1). In order to make our
synthesis comprehensive, we worked with all of the data that were available, including data from studies on a range of tree sizes and ontogenetic life stages (i.e. seedlings, saplings, and large trees), conducted in a variety of settings, including potted plants in greenhouses or growth chambers, and trees grown in the field (Supplementary Tables 1, 2). Given the diversity of studies synthesized, these data were not ideal for a statistical meta-analysis; therefore, we limited our analyses to a standard comparison within each case between plants that died and plants that remained healthy (Supplementary Methods). We also compared differences in degree of embolism and carbohydrate concentrations between plants at mortality and control plants to differences in functional traits3,24,25. For each species, we obtained available data for traits that are easily measured, widely available, and likely relevant for drought tolerance, including wood density and specific leaf area26. We also obtained data for hydraulic traits that are directly related to drought tolerance, but harder to measure, including xylem water potential at 50% loss of hydraulic conductivity (Ψ_{50}), point of embolism entry (Ψ_e), and corresponding hydraulic safety margins24,27 (Supplementary Methods). We used this dataset to address the following hypotheses: 1) given the potential role of NSC in the maintenance of water transport during drought6, 28, both high PLC and reduced NSC reserves are common at tree death from drought, and 2) among species, species-level functional traits that have been positively related to drought tolerance (e.g. low xylem vulnerability to embolism, low SLA, high wood density) are associated with high NSC at tree death. According to this hypothesis we expect that for species with greater xylem vulnerability (quantified by Ψ_{50}, Ψ_e, and hydraulic safety margin), NSC at death will be relatively lower. This hypothesis is based on prior proposals that drought-sensitive trees which close their stomata earlier during drought would be more likely to show a reduction in NSC associated with carbon starvation3,25,29,30.
Results.

For the cases where PLC data at mortality were available (Supplementary Methods), PLC was 60% or higher (Figure 1A), demonstrating that a high degree of xylem embolism at drought-induced death was a universal aspect of mortality physiology in these species. Mean PLC was 84.3% at mortality, and PLC was significantly higher at mortality than for control trees in every case (p < 0.05, Student’s t-test). For NSC, we focused our analysis on differences in NSC concentration between trees that died from drought and controls which did not die, measured at the same point in time for both groups, although we also considered differences over time for trees that died (Supplementary Discussion). Reductions in NSC at mortality were common among species, but not universal, and no common NSC threshold for mortality was identified. For 48% of cases and 38% of species with available data, NSCs were significantly lower at mortality in dying trees compared to surviving or control trees (for observational and experimental studies, respectively) in at least one tissue (p < 0.05, ANOVA; Figure 1B-D). Among all species, mean NSCs at mortality for leaves, above-ground woody tissues (bole, branch, stem, or twig), and roots were 13, 17, and 35% lower in dying trees than control measurements.

For boreal and temperate angiosperms, lower NSCs at mortality relative to control trees were observed in 56% of cases and 63% of the species for at least one tissue, and NSC reductions exceeded 50% in approximately 33% of these cases and 38% of these species (Figure 1B). Higher NSCs at mortality relative to controls were common for tropical angiosperm seedlings, more than 100% higher in some cases, and reduced NSCs were not observed in this group, suggesting different physiological responses to severe drought in non-tropical and tropical
tree species (Figure 1B, C). In a similar seedling study with the same tropical species, however, lower pre-drought NSCs were consistently correlated with a shorter time to mortality though NSCs did not decline during drought14. Lower NSCs at mortality relative to controls were most common in root tissues32, and typically resulted from lower starch concentrations, consistent with a starch to sugar conversion to meet metabolic and osmoregulatory demands during drought stress6 (Supplementary Figure 1). Notably, only a few cases exhibited the hypothesized time-series trend in NSCs of initial small increase and then a more pronounced decrease in NSCs over time28 (Supplementary Figures 2, 3, 4).

Reductions in NSCs at mortality were more prevalent for gymnosperms than angiosperms (Figure 1, Supplementary Figures 2, 3, 4). Among gymnosperms, 83\% of cases and 67\% of species had lower NSC at mortality relative to controls for at least one tissue (Figure 1D). This occurred in at least one tissue for all four species of the Pinaceae, but not for the two species in the Cupressaceae, which is consistent with divergent evolutionary pathways for stomatal control between these families33. Relative reductions in NSCs were also generally greater in gymnosperms than angiosperms, e.g. \textit{Pinus sylvestris} had NSC reductions of >80\% in some tissues prior to mortality (Figure 1D).

Functional traits related to xylem embolism resistance and stomatal control have been suggested as useful predictors of the physiological causes of drought-induced mortality3,25,30,34. For all species, the deviation of NSCs in trees at mortality from their controls was not significantly associated with wood density or specific leaf area (p > 0.05, linear regression), regardless of whether the relationships were assessed for angiosperms, gymnosperms, or all species together. For gymnosperms, reduced NSCs at mortality in aboveground woody tissues (bole, branch, stem, or twig) were associated with lower resistance to xylem embolism (i.e.
higher Ψ_{50} and Ψ_{c}; r^2 = 0.88 and 0.91, respectively, p < 0.001, linear regression; Figure 2),
indicating that hydraulic features in gymnosperms associated with drought resistance were
related to NSC dynamics during lethal drought. Normalized NSCs in other tissues were
positively correlated with embolism resistance at mortality (leaf NSC with Ψ_{50}, root NSC with
Ψ_{c}; p < 0.05, linear regression), and normalized NSCs in aboveground woody tissue and roots at
mortality were also positively correlated with the Ψ_{50} hydraulic safety margin for gymnosperms
(p < 0.001, linear regression; Supplementary Figure 5), but these relationships were strongly
influenced by one species, *Callitris rhomboidea* (Supplementary Methods). Variation in PLC at
mortality was not related to any functional traits assessed (p > 0.05, linear regression).

Discussion.

We found that tree mortality from drought was always associated with substantial loss of
hydraulic function, and that lower NSCs at mortality were common but not universal (Figure 1).
Our findings for PLC at mortality (Figure 1A) are close to modeling and theoretical predictions
of a stem PLC mortality threshold near or above 60%7,10,35-37. In all cases, we found that PLC at
mortality was at least 60%, but values were much higher in a number of cases. The studies in
our synthesis were not designed to quantify lethal PLC thresholds, which deserve future
investigation to determine the duration and intensity of drought required to trigger mortality and
the mechanisms underlying such a threshold. The physiological effects of a particular level of
PLC likely vary among species, mediated by traits such as the capacity to refill embolism and
replace conducting area via new growth6,38. Nonetheless, a sustained stem PLC at or above 60%
provides a generally supported starting point for modeling vegetation response across spatial
scales, a point beyond which the probability of mortality increases7,10,36,37.
For the cases where both NSC and PLC data were available at mortality, all trees died with high PLC (100% of cases), but only 62% of cases also had low NSCs at mortality relative to controls (Figure 3). This suggests that trees died from either hydraulic failure alone, or hydraulic failure in combination with reduced NSCs. This finding should help lay to rest the misconception of a dichotomy between hydraulic failure and carbon starvation, which are often mistakenly thought to represent mutually exclusive mechanisms15. Clearly, our results underscore the importance of maintaining a functional plant hydraulic system for survival, while suggesting a relationship between hydraulic failure and carbon starvation mechanisms in this process. The majority of studies included in our analysis were not designed to distinguish the drivers of mortality from the non-causative symptoms of dying. Thus, it is not possible with our data to conclusively determine if changes in either NSC or PLC facilitated death or were the result of the mortality process (Supplementary Discussion). Results from studies in which light and CO\textsubscript{2} concentration were manipulated to regulate carbon fixation do suggest a role for NSC as a survival mechanism against mortality via hydraulic failure during drought, even when NSC does not decline during drought or is not reduced below control values12-16 (Supplementary Discussion).

Given the diversity of NSC responses found at mortality, there is an obvious need to develop frameworks for the sensitivity of plant metabolism to changes in NSC levels, including the potential for lethal thresholds22,39. Specific NSC thresholds for survival or mortality during drought are not well-resolved in our data, nor yet in the literature. Such survival thresholds likely vary with factors including tree species, ontogeny, tree tissue, canopy position, seasonality, environmental conditions, and interactions with other organisms, but empirical investigation of these thresholds is needed22,40,41. Determination of these thresholds is hampered
by an incomplete understanding of the role of NSC storage in plant function, and its regulatory
mechanism22,39. However, significantly lower NSCs at mortality were relatively common for a
variety of species in our analysis, such that reduced NSCs can no longer be considered a rare or
atypical response during tree death.

Our finding that reduced NSCs at mortality were more common for gymnosperms, than
for angiosperms (Figure 1, Supplementary Figures 2, 3, 4), is consistent with the wider hydraulic
safety margins of gymnosperms relative to angiosperms24,42. For gymnosperms, our functional
trait analysis revealed that species with greater xylem embolism resistance had higher NSC at
mortality in boles, branches, stems, or twigs than surviving controls, indicating that species’
hydraulic traits can affect C balance during lethal drought (Figure 2). As embolism resistance is
often associated with an ability to keep stomata open at lower water potentials30,43, our results
suggest that tree species which can maintain stomatal conductance and photosynthesis at higher
xylem tension during drought are less likely to have reduced NSC at mortality29. These resistant
tree species would be more likely to die from hydraulic failure alone without reduced NSC —
consistent with hypotheses that stomatal regulation and hydraulic transport strategies influence
the contribution of carbon starvation and hydraulic failure to mortality mechanism among
species3,25,30. Caution, however, should be used in assuming stomatal regulation is highly
coupled with water potential regulation and hydraulic strategy44. Importantly, we did not find a
relationship between NSC reduction and embolism resistance for angiosperms, nor did any other
trait predict mortality physiology in these species.

Our synthesis of data from multiple studies on the physiology of drought-induced tree
mortality exposes several key knowledge gaps in the field. Our dataset of only 26 species under-
represents the enormous diversity of tree species found in forests globally, particularly so for
tropical forests, where drought-induced mortality can have substantial implications for the global carbon cycle. Pinus was relatively over-represented in this synthesis (nine cases from three species), although it is widely distributed and has been widely affected by forest die-off on multiple continents. Also, our dataset is dominated by data from seedlings and saplings, often from studies conducted with potted plants, which may be predisposed to die quickly from hydraulic failure due to limited rooting volume and lack of access to deeper soil water pools (Supplementary Tables 1, 2). Data at mortality for more than one life stage were available for only three species (Figure 1), and the consistency of NSC and PLC responses at mortality across a gradient of size and ontogeny varied in these species. Clearly, more research on the physiology of mortality in large trees in the field and the effect of size and ontogeny on the mortality process is needed. Nonetheless, our overall observation that hydraulic failure was universal, and NSC reduction was not, does not change if we only consider data for each life stage separately. In all cases for which PLC data were available, mean PLC was 60% or greater at mortality, irrespective of life stage (Figure 1A). Our finding that normalized NSC at mortality varied among cases and species also holds when seedlings, saplings, and trees are considered separately (Figure 1B-D, Supplementary Table 1).

Determining whether forests will continue to act as a global carbon sink or transition to a carbon source is a critical uncertainty for the carbon cycle with large ramifications for society and climate policy. Such a shift largely depends on tree mortality responses which could be anticipated by resolving the relative roles of hydraulic and carbohydrate mechanisms in causing tree death. We found that hydraulic failure was ubiquitous among the studies we compared, that PLC at mortality in all cases with such data was at least 60%. These results affirm that simulating hydraulic function should be a first priority for development of mechanistic tree
mortality algorithms in climate-vegetation models to improve projections of the future terrestrial carbon budget. Hydraulic models that capture drought damage at tree and landscape scales are rapidly developing \(^7,10,36,37,45-47\) and substantial improvement in vegetation model projections may be possible with simulation of hydraulic-driven mortality, whether tree carbohydrate status is represented or not. Reduced NSC in tree species dying from drought was common in gymnosperms, but not angiosperms, suggesting an influence of NSC on hydraulic deterioration in some trees that requires further investigation. Yet, the diversity of NSC responses among only 26 species and the design limitations of past studies in determining causality demonstrate that we need to further assess the influence of carbon metabolism and storage on mortality \(^39\). Ultimately, an improved representation of the physiology of drought-induced tree mortality that includes both water and carbon relations will be crucial for forecasting the fate of forests in a changing climate.

Methods

Data Synthesis. We used literature search and extensive discussion with colleagues to identify data from 19 experimental and observational studies on 26 species, for a total of 34 cases (study and species combinations). Literature search terms included “non-structural carbohydrates”, “water potential”, “tree mortality”, and “drought”. Our synthesis was not limited to an objective literature search, as we sought to include all published data that fit our criteria for inclusion. Criteria for inclusion were that studies included data on: 1) tree mortality from drought; 2) NSC concentrations of at least one tissue, and/or PLC of aboveground woody tissue, either measured directly, or estimated from plant water potential (\(\Psi_p\)) measured at mortality, or modeled from hydraulic conductance \(^48,49\) (Supplementary Methods); and 3) that data were either: a)
concurrently collected for trees that died (either at or near mortality) and from trees that either
survived the drought or were in a paired control treatment, and/or: b) available prior to drought
or pre-treatment from the same trees that later died. We obtained data from each study directly
from contributors. Details on the specific studies synthesized can be found in Supplementary
Table 1. Determination of the point of mortality in dying trees was defined in each original
study, as detailed in Supplementary Table 3, and we relied on data contributors to provide the
appropriate data for at- (or near-) mortality assessments.

NSC measurements are methodologically challenging and comparisons of absolute
concentrations can be problematic across studies due to issues of standards, NSC technique, and
lab protocol disagreement. However, relative differences (treatment vs. control and changes
over time assessed with the same technique in the same laboratory) provide robust estimates of
NSC dynamics within studies. We limited all statistical analyses of absolute NSC data to
within each case (detailed below) and we only present relative differences in NSC in figures.
For studies where data were concurrently available for trees that died and control or surviving
trees, we calculated a normalized NSC deviation from the difference between values at or near
mortality and those for control or surviving trees divided by the control or surviving tree value.
For studies where data were available prior to the drought for the same trees that later died (or
seedlings in the same treatment harvested at measurement), normalized values were also
calculated as the difference between values at or near mortality and initial pre-treatment or pre-
drought values divided by the initial or pre-drought values. In both cases, normalized values
were expressed as a percent. For comparison of time series trends in NSC, we also calculated
normalized, proportional NSCs in trees that died by scaling values relative to the maximum
value in each time series, which was defined as a normalized value of 1. When possible,
normalizations were calculated for individual trees, and specifically for each tissue sampled. For studies 3 and 9 (Supplementary Table 1), only means and standard errors for species and tissues were available, so normalized values were calculated from these metrics.

Note that all types of data were not available for all cases in our synthesis. Among the 34 cases in our dataset, PLC measured at mortality was available for nine cases (eight species), PLC was estimated in five cases (two species), NSC deviation from control/surviving trees at mortality was available for 31 cases (24 species), and percent change in NSC was available for 28 cases (22 species). Sample sizes for PLC and NSC data are available in Supplementary Tables 4 and 5. Because PLC values are already normalized to the maximum conductivity per sample, no further normalization was conducted with these data. We also acknowledge that direct measurements of PLC and generation of hydraulic vulnerability curves can be challenging, and that method artifacts can effect results.52,53 Although the majority of hydraulic data we report were collected following recommended practices (Supplementary Methods, Supplementary Table 5), we cannot rule out the possibility of such artifacts influencing our data.

To compare physiological mortality indicators to tree species traits, we obtained trait data for the species in this synthesis from a variety of sources. We investigated the relationships between physiology at mortality and traits related to drought tolerance that are easily measured and widely available, such as wood density and specific leaf area (SLA). We also included hydraulic traits more directly related to drought tolerance that were measured with more-challenging hydraulic vulnerability curve methods. Wood density data for most species were obtained from the Global Wood Density database54,55 available through the DRYAD digital repository (www.datadryad.org). We obtained SLA data from the TRY database (www.try-db.org)56-58, for nearly all non-tropical species. We calculated species means for SLA from all
data available for each species of interest for our analysis. Data for *Acer pseudoplatanus* were available from the mortality study population\(^{16}\). For *Callitris rhomboidea* and *Eucalyptus smithii*, SLA data were not available. Additional sources of wood density data are detailed in Supplementary Methods. Hydraulic trait data for the stem water potential at 50 PLC (\(\Psi_{50}\)) and hydraulic safety margin (\(\Psi_{50} – \text{minimum } \Psi\))\(^{24,27}\), were obtained from multiple sources (Supplementary Table 5, Supplementary Methods). Data for the embolism entry point (\(\Psi_e\)) were not available in the literature, so we calculated \(\Psi_e\) from relevant hydraulic vulnerability curve for each case by applying a Weibull fit to the data, and determining the x-intercept of the line tangent to \(\Psi_{50}\) (Supplementary Table 5)\(^{27,59}\). Hydraulic trait data were unavailable for *Eucalyptus radiata*, *Eucalyptus smithii*, and *Nothofagus nitida*. No trait data were available for the tropical angiosperm species from study 7 (Supplementary Table 1) for any of the traits we assessed\(^{31}\).

The majority of datasets generated and analyzed during the current study are available from the corresponding author on reasonable request. Trait data obtained for the current study from the TRY Database were used under license and as restrictions apply to the availability of these data, these are not available from the corresponding author, but can be requested from the TRY Database (www.try-db.org).

Statistical Analyses. We used MATLAB R2012a (The Mathworks, Inc., Natick, MA, USA) for all statistical analyses, with \(\alpha = 0.05\). All NSC and PLC comparisons were performed using ANOVA or Student’s t-test individually for each case, between dead (or dying) and control/surviving trees or between post-drought dead and corresponding pre-drought values, with tissue as a factor for analysis of NSC. Since our NSC normalization could affect tissue
comparisons within the same case, these analyses were performed on non-normalized NSC data to maintain the correct ratio among tissues, a conservative approach. Our within-individual case analysis on relative differences in non-normalized NSC does not bear the risk of error introduced by different NSC techniques or labs, or uncertainty in standards for determining absolute NSC, and furthermore the inferences are based on large effect sizes compared to possible measurement error\(^{50,51}\). In experimental cases that included temperature or CO\(_2\) concentration treatments in addition to drought, we included these factors in ANOVA tests to determine if PLC and NSC should be pooled or split among levels of these factors (Supplementary Table 1). For NSC, these analyses also included tissue as a factor. Functional trait relationships with normalized NSC data at mortality were analyzed with linear regression. Cook’s distance was calculated for all points in significant linear regressions, and a value greater than three times the mean of the Cook’s distance was used to identify outliers for exclusion.

References and Notes

Acknowledgements. This research was supported by the US Department of Energy, Office of Science, Biological and Environmental Research and Office of Science, Next Generation Ecosystem Experiment-Tropics, the Los Alamos National Laboratory LDRD Program, the EU Euforinno project, the National Science Foundation LTER Program and EF-1340624, EF-1550756, and EAR-1331408, ARC DECRA DE120100518, ARC LP0989881, ARC DP110105102, the Philecology Foundation of Fort Worth, Texas, the Center for Environmental Biology at UC Irvine through a gift from Mr. Donald Bren, and additional funding sources listed in the Supplementary Acknowledgements. We thank Amanda Boutz, Sandra Bucci, Rosie Fisher, Andrew Meador-Sanchez, Rick Meinzer, and Don White for discussions on study design, analysis, and interpretation of results, and Troy Ocheltree for helpful comments on the manuscript. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author Contributions. ADC, AH, AKM, AS, BEE, CDA, CXU, DAG, DAW, DTT, GBG, HDA, HH, JAP, JDL, JMK, JML, JSS, LDLA, LTD, MJBZ, MJG, MM, NGM, PJH, RCC, RV, SML, SS, TEF, TEH, TEK, UH, WRLA, and WTP designed the study. AH, AOG, BEE, DAG, DDB, DJB, DML, DTT, EAP, EAY, FIP, GBG, HD, HDA, HH, JAP, JDL, JMV, JQ, JSS, KR, LDLA, LGP, LTD, MJBZ, MJG, MJO, MLG, NGF, NGM, PJH, PJM, REP, SML, SS, TEH, TEK, TJB, UH, WRLA, and WTP contributed data. HDA, MJBZ, PJH, and TEF analyzed the
data. ADC, AG, AH, AKM, AOG, AS, BEE, CDA, CXU, DAW, DDB, DJB, DJL, DML, DTT, EAP, FIP, FR, GBG, HB, HD, HDA, HH, JDL, JDM, JMK, JMV, JQ, JSS, KR, LDLA, LGP, LTD, MGR, MJBZ, MJG, MJO, MLG, MM, MV, MWJ, NGF, NGM, PJH, PJM, RCC, RV, SML, SS, TEF, TEH, TEK, UH, WRLA, and WTP contributed to the discussion of results.

ADC, AG, AH, AOG, AS, BEE, CDA, CXU, DAW, DDB, DJB, DJL, DTT, EAP, FIP, FR, GBG, HB, HDA, HH, JDM, JML, JMV, KR, LDLA, LGP, LTD, MGR, MJBZ, MJG, MJO, MLG, MM, MV, MWJ, NGF, NGM, PJM, RCC, RH, REP, RV, SML, SS, TEH, TEK, TJB, UH, and WRLA wrote the manuscript.

Competing financial interests. The authors declare they have no competing financial interests.

Figure Legends

Figure 1. Physiological responses at, or prior to, mortality from drought for multiple tree species. Percent loss of hydraulic conductivity (PLC) for ambient moisture, control, or surviving trees and concurrently at mortality from drought is shown for both angiosperm and gymnosperm species (A). PLC was either measured directly (red) for control (open symbols) and dying (closed symbols) trees or estimated from either water potential with a hydraulic vulnerability curve (green) for control (open) and dying (closed) trees, or modeled from hydraulic conductance (orange) for control (open), and dying (closed) trees. An “NA” indicates that control PLC data were not available. In all panels for cases where individual data were available, boxes indicate the 25% and 75% quartiles, whiskers indicate the extent of data, and black bars indicate the mean. For cases where only means and a measure of variability were
available, means are indicated with squares and error bars are one standard error. For each case in A where control and dying tree data were available, PLC was significantly higher at mortality than for controls concurrently (p < 0.05, Student’s t-test). A potential threshold for hydraulic failure is indicated by a line at 60%. Non-structural carbohydrate concentration (NSC) at mortality, normalized as the percent deviation from concurrent measurements of ambient, control, or unaffected trees in each study for each plant tissue, is shown for deciduous and evergreen non-tropical angiosperm (B), evergreen tropical angiosperm (C), and evergreen gymnosperm (D) species. Significant differences for each tree tissue between drought trees at mortality (black bar or square) and ambient, control, or surviving trees (0% line) are indicated with an asterisk (p < 0.05, ANOVA). Note that the absolute values in NSC concentration used in statistical analysis varied for each tissue in each case, such that distances between the mean and zero in B-D are not a consistent indicator of statistical significance among cases or for tissues within a case. An “M” indicates data from a study on mature trees; all other data are from studies of seedlings, saplings, and small trees (Supplementary Tables 1, 2). Numbers after species names in all panels designate original studies (Supplementary Table 1). Sample size for all data analyzed for Figure 1 are shown in Supplementary Table 4.

Figure 2. The relationship between the tree hydraulic traits related to xylem embolism resistance and normalized non-structural carbohydrates (NSC) in aboveground woody tissue at, or prior to, mortality from drought, expressed as a deviation from concurrent measurements of surviving control trees, for angiosperm (blue circles; A, B) and gymnosperm (red triangles; C, D) species. Tree hydraulic traits related to embolism resistance are the water potential at 50% loss of hydraulic conductivity (Ψ₅₀; A, C) and point of xylem embolism entry (Ψₑ; B, D). Xylem
embolism resistance increases to the right. NSC data shown are means for aboveground woody
tissue (bole, branch, stem, or twig), normalized as a percent of ambient moisture, control, or
surviving trees in each case. Significant linear regressions were found for gymnosperms (C, D)
but not angiosperms (A, B). Values for Callitris rhomboidea (upper right in C, D) were
identified as potential outliers, but both relationships remain statistically significant (p < 0.01,
linear regression) for the remaining data with the removal of these points (Supplementary
Methods).

Figure 3. Physiological responses associated with hydraulic failure and carbon starvation, as
defined by PLC and NSC deviation from control in 13 cases (study × species combinations) for
which both data were available. Among these cases, trees either died with high PLC and low
NSCs (8/13 cases), or with only high PLC (5/13 cases). NSC data are means for all sampled
tissues available for each case and normalized as a percent of difference from concurrent
measurements of control trees. PLC data are those shown in Figure 1A. NSC and PLC at
mortality for angiosperm (blue circles) and gymnosperm (red triangles) species are shown
relative to hypothesized drought mortality mechanisms. Numbers near points designate original
studies (Supplementary Table 1). Error bars are one standard error.
\(r^2 = 0.88, p < 0.001 \)

\(r^2 = 0.91, p < 0.001 \)