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ABSTRACT

Motivation: Studying transcript regulatory patterns in cell differentia-
tion is critical in understanding its complex nature of the formation and
function of different cell types. This is done usually by measuring gene
expression at different stages of the cell differentiation. However, if
the gene expression data available are only from the mature cells, we
have some challenges in identifying transcript regulatory patterns that
govern the cell differentiation.

Results: We propose to exploit the information of the lineage of
cell differentiation in terms of correlation structure between cell
types. We assume that two different cell types that are close in
the lineage will exhibit many common genes that are co-expressed
relative to those that are far in the lineage. Current analysis methods
tend to ignore this correlation by testing for diffferential expression
assuming some sort of independence between cell types. We employ
a Bayesian approach to estimate the posterior distribution of the
mean of expression in each cell type, by taking into account the cell
formation path in the lineage. This enables us to infer genes that are
specific in each cell type, indicating the genes are involved in directing
the cell differentiation to that particular cell type. We illustrate the
method using gene expression data from a study of haematopoiesis.
Availability: R codes to perform the analysis are available in
http://iwww1.maths.leeds.ac.uk/~arief/R/CellDiff/

Contact: a.gusnanto@leeds.ac.uk

1 INTRODUCTION

Haematopoiesis is a formation of mature blood cells fronirthe
precursor stem cells. In the process, a stem cell will expeg
changes in gene expression and other complex processesilihat
direct it to a specific mature cell type. As a stem cell matuies
undergoes changes in gene expression that limit the cealbtyipat

myelomonocytic lineages from haematopoietic stem celsndii

et al. (2012) showed thaFOG1 and GATAL are involved in
the differentiation between megakaryocytic and erythrodls.
FurthermoreRUNX1has been identified to be highly expressed in
megakaryocytic cells and supressed in erythroid cellsgdeiso
characterising the lineage between the two (Kuvaréinal., 2015;
Draperet al, 2016). Ungerbaclet al. (2015) also indicated that
genesEBF1andPAX5play a significant role in the differentiation
of the T- and B-lymphocyte cells. These studies are only to
name a few; it is therefore of main interest to identify tiiys
regulatory patterns in cell differentiation to have a gloldaw and
understanding of the complex process.

Stem cell
Common Common
myeloid Lymphoid
progenitor progenitor
(Others) Myeloblast Large granular  Small lymphocyte
4 lymphocyte
(CD56)

N

(Others) Neutrophil Monocyte T lymphocyte B lymphocyte

(CD66b) (CD14) N (CD19)
Tc lymphocyte  Th lymphocyte
(CD8) (CD4)

it can become and moves it closer to a specific cell type. These

changes can often be tracked by monitoring the presencetsfips
on the surface of the cell, designated as cluster of diffexton
(CD) markers (Zolaet al., 2005), which we use in this study
to identify the different blood cell types. Each successikiange
moves the cell closer to the final cell type and further liniits
potential to become a different cell type.

Fig. 1. Diagram of the development of different blood cells from
haematopoietic stem cell to mature cells, identified byrtlogister of
differentiation (CD) markers (Zola et al., 2005). Some dgfles that are
not involved in this study are omitted from the figure.

Figure 1 shows the development of different blood cell types

Some studies have investigated the role of some speficigrom stem cell to mature cells, omitting other cell typestthge

genes in haematopoiesis. For example, Tanekaal. (2011)
reported that geneASH1and MLL1 regulate the development of

*to whom correspondence should be addressed

not involved in this study. The stem cell differentiatesoirtvo
progenitor cell types before differentiating further imature cells.
In the process, different genes are involved, either priodusore
or less mRNA, to direct the cell differentiation. We expédwittthe

© Oxford University Press 2005.
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in discovering cell type-specific genes. With six cell types

involved in our study, there are 15 pairwise comparisons for

—_— e e —— — each probe. Considering that there are more than 46 thousand
‘ probes in the data, the number of hypothesis testing indolve

s is in the order of 700 thousands. In a case where we have 10

cell types to be compared, for example, the total number of

- hypothesis involved is in the order of 2.1 millions. Withghi

S E level of hypothesis testing burden, the power to detectiipec

\ \ \ \ \ \ genes in each cell type will be extremely low, if any at all.
CD14 CD19 CD4 CD56 CD66b CD8
Cell Type A major drawback that makes the above procedures to
be inappropriate is that they ignore the correlation stmect
between the cell types as indicated in Figure 1. Since Stais
tests generally assume independence between obseryattons
Fig. 2. Boxplot of expression of gene LOC644039 across differdntypes  correlation is bypassed to arrive at independent obsenst\When
in our study. there are only two cell types to compare, then this is not alpro.
However, when there are multiple cell types to compare, we
are losing valuable information on the global landscape erfeg
gene expression profiles between two cell types that are @ldhe  gxpression between cell types that direct the cell difféagion.
lineage will generglly be.also more correlated than betvtaercell We believe that the key to solve the problems is to respectzked
types that are farin the lineage. y into account the correlation structure between the cetisyRather
Our objective in this study is to identify genes that are #mdly  than considering the correlation between the cell typesisance,
involved in driving the differentiation in each cell type by e accommodate it in our proposed model as described in ttie ne
incorporating the haematopoietic information descrilvedigure 1. saction. We consider a Bayesian approach to deal with theemn

This objective translates into identifying genes that#igantly and  \ynich allows us to perform rigorous statistical inference.
consistently have higher or lower mean of expressions coedpa

to the other cell types, given the blood-cell formation pathour
analysis, we will assume that the formation path as showngarg 2 METHODS
1lis fixed and known in advance. 2.1 Samples

areA :;el\éﬁicar:g Ienaaé:%pr(?eﬁln?;/f)ezpgot?)cgetrc]‘)olr?sn;f};;g?wigseenﬁs:ho hole blood units from seven healthy donors were obtaingdealNational

. . . ealth Service (NHS) Blood and Transplant. Six cell type€)4CTh
mean equallty, assuming some sort of independence bet\@len Clyphocyte, CD8 Tc lymphocyte, CD14 monocyte, CD19 B lympftec
types, either (1) between a cell type and the averaged estpres cpsg natural killer cells, and CD66 granulocyte, were igadafrom each
of the other cell types, or (2) between pairs of cell typesanhe  gonor. Total RNA were isolated, checked for quality, and fied. The
gene. For example, suppose we are interested in identify@m@s  biotinylated cRNA was applied to lllumina Human WG-6 v2 Eapsion
that are specific to CD56. In the first approach, we perform aBeadChips and hybridized overnight. Further details of zenples’
pairwise t-test between CD56 and average expressions o#CD1 preparation are described in Watkiesal. (2009). The results of analysis
CD19, CD4, CD66b, and CD8 for each gene. We declare a gen@f this dataset are presented mainly in this manuscript sdthe supporting
to be specific in CD56 if its multiplicity-adjusted p-valuagses a  information available in the Supplementary Material.
certain threshold. In the second approach, we perform @gair In addition to the abc_;ve_dataset, we also consider a secaadaﬂe_irom
test between CD56 and each other cell types, e.g. CD56 vs4£D1a study on haematopoiesis by Novershtetral. (2011). The experiment

~~“involved 38 blood cell types from 4-7 individuals. For ourabysis,
CD56 vs. CD19, CD56 vs. CD4, etc. The genes that are specific tQ,, only consider five cell types: Basophyl, CD4 Th-lymphecyCD8

CD56 are identified as those whose multiplicity-adjustedhlies ¢ iymphocyte, Erythrocyte, and Megakaryocyte, from sidividuals.
pass a threshold iall of the pairwise comparisons. The gene expressions were obtained from Affymetrix HGU18G#v2
The above procedures suffer from two problems: microarrays, which contain 22,944 probes. Further detditee experiment
are described in Novershteet al. (2011). The results of analysis of this
1. In the first procedure, the averaging of gene expressimssc dataset are presented solely in the Supplementary Material
different cell types can mislead us, as illustrated in Fegifor ] .
gene LOC644039. When we performed a paired t-test betweed-2 Gene expression data and notation
CD56 and the average of the other cell types, we obtainBefore we describe the statistical modelling involved, wstfdescribe
a significant resulty-value < 0.0001 after false discovery the notation that we use in this paper. Lt be the log expression of
rate correction), suggesting that the gene is specific inBD5 genei, in personj, and cell typek, with i = 1,2,...,ny = 46713,
However, Figure 2 clearly does not support this conclusion.j = 1,2,...,np = 7, andk = 1,2,...,ns = 6. Since the analysis that
The main reason for this significance is because the gene'¥® will describe later is performed independently for eaehey the index

expression in CD66b cell type brings down the average for noni can safely be dropped from the notation without a danger ofusion.
%Vhen there is a danger of confusion, we will put the index biackhe

CD56 cell types. Hence, the gene may appear to be specific tnotation. We denote:; = a;; as am.-vector of log expression of gerién

CD 56 when in fact itis not. persony, across the different cell types, i#; = (z;1 xj2 ... jn,)".

2. In the second procedure, the amount of multiplicity imeol  Furthermore, we also denof as the matrix of log expressions for each
due to the pairwise comparison will severely restrict usgene, where the columns correspond to cell typaad the rows correspond

Gene LOC644039

15
1

Gene Expression
13
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to persony,ie. X = (w1 2 ... @n,)T oOr
CD14 CD19 CD4 CD56 CD66b CD8
Person 1/ xi1 T12 13 T14 15 T16
Person 2| x21 22 23 24 x25 26
Person 3| 31 32 33 T34 T35 36
X = Person4| x4 T42 43 44 T45 z46 |. (1)
Person 5| 51 T52 53  Ts4 T55 I56
Person 6| xzg1 Te2 63 64 65 T66
Person 7\ x71 T72 73 T4 75 76

The gene expression data involved in this study basicaltgisbofrng =

46,713 matrices ofX in (1). The expression data have been properly

normalised prior to analysis. Given this, we assume thatettpressions
between genes (between differeiX’s) to be considered independent

following Ploneret al. (2005). Since we have tens of thousands of genes in

our analysis, the departure from this assumption is too we@hkve practical
importance. Taking the correlation structure between génénportant in
some studies e.g. gene network modelling. However, thiduigige research
topic and is outside the scope of our current study which doridentify
specific genes in cell diferentiation. We also assume theirtthividuals are
independent (because e.g. they are not related geneficEtlg dependency
structure that we take into account in the modelling is threatation of gene
expression between cell types as illustrated in Figure 1s iEhdescribed
further in the following sections.

2.3 Dissimilarity and correlation between cell types

An advantage of using a Bayesian approach is the ability toodm
uncertainty and prior knowledge within an analysis, whichpur case, is
the haematopoietic paths in Figure 1. Based on the figuressndiarity

between cell types can be defined as the number of split tanafions
between two cell types. For example, a small lymphocytetsiinto B

lymphocyte and T lymphocyte is considered a split transéiom and would
count as a dissimilarity. Based on this definition and Figuyree obtain the
following dissimilarity matrix

CD14 CD19 CD4 CD56 CD66b CD8

CD14 0

CD19 5 0

CDh4 6 2 0 @)
CD56 4 2 3 0 ’
CD66b 1 5 6 4 0

CD8 6 2 1 3 6 0

From Eq. (2), cell types that have a small dissimilarity aqeeeted to be
much more correlated than the cell types that have a largediarity. With
this in mind, we can obtain a relationship of correlationimsin the different
cell types which we will take into account in the inferencedascribed in
Section 2.7. Denoting,;, as the correlation between cell typeandb, the
correlation structure that would be expected based on Eigyis

0 < {p13, P16, P53: P56} < {p12,p52} < {p14,pa5} <

{p34, pas} < {p23,p26,p2a} < {p15,p36} 3)

where the indices:,b € {1,...,6} correspond to CD14, CD19, CD4,
CD56, CD66b, and CD8, respectively.

2.4 Bayesian modelling

In general context, Bayesian modelling can be describelpms follows.
We denote the data we observeagsand they are assumed to come from
a model with parametef. The probability density for the data givehis
denoted asr(«|0) and is proportional to the likelihood. Our uncertainty or

belief held about the paramet&(before any data are seen) is called the prior

probability density and denoted a$6). As an inference, our interest is in
the posterior probability of the parameter given the dataotid (0|x).

Using Bayes'’s theorem, this is given by

w(0|x) o< w(x|0)w (D). 4)

To proceed with the Bayesian analysis in our study, we mddeleach
gene, then;-vector of gene expression in perspacross different cell types
as

xj|p, X ~ MVN (u, X) 5)

where MVN(+) is a multivariate normal distribution function, with mean
(ann¢-vector) and variance-covariance matkixof sizen: x n¢, which can
be written as (for simplicity, only the diagonal and loweamgular elements
are printed)

2

91
p2102071 o3
p310301  p320302 o2
pP410401 P420402 pP430403 Uz
P510501 P520502 pP530503 P540504 Jg
P610601 P620602 P630603 P640604 P650605 0(2;

(6)

wherep,; is the correlation of gene expression between cell typadb.

Here, it can be seen that the paramejeendX define the distribution of
the observations fully. Our beliefs about these parametershen encoded
into the prior distributions. For more interpretable résuhe distribution of
p was encoded given the covariance malx This is due to the fact that
we are encoding our beliefs about all of the parameters, lwisithe joint
distribution, 7 (u, X).

Firstly, we define our belief about the mean given the variance-
covariance matrix to follow a multivariate normal distribution

1
K|E ~ MVN (u*, 72> ,
C

where p* is ann¢-vector of hyper mean parameter, anis a scalar that
will be described next in Section 2.5. Secondly, our belethe variance-
covariance parameter is defined as

5~ W (P, )

where IW(-) denotes the Inverse Wishart distribution with hyperpatanse
¥ andv.

The specification of prior distribution can be describedadiefs. From
the above formulation, we can infer that the meapoh each gene is given
by E () = p*, and similarly for>

1
EE®) = oY
Var(S,,) - (v —ne+ 1)\1151) + v —nt —1)¥eaUpp .
abl = (V*Ht)(l/; ne— 12w —ng —3) )
Var(Zqq) = L

(v—ni— 12 —ng —3)°
wheren; = 6 is the number of cell types in our data. A strategy for picking
a diffuse prior (and to mak@ positive definite) is to sat = n: + 4, and

select® = 3F(X). We could also set such that%:> gives a standard
deviation that would cover all possibje values. In our study.* is just set
to be the mid-point of the distribution af; ;.

2.5 Consideration for the selection of the prior
distributions

In Bayesian analysis, a natural choice for the prior distidn is conjugate
as described above. In our case of multivariate normal iloligion for
xj|p, X, a conjugate prior distribution for the meam is multivariate

1
normal with hyperparameterg™ and —32. A conjugate prior distribution

for X is Inverse Wishart distribution with hyperparametdrsandv.

The hyperparameters for the prior distributions need to &efally
selected so that the priors have little effect on the infegenThe prior
distribution of the mean was chosen tofo® = (9,9, 9,9, 9, 9)T. This was
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chosen as the median/mean of the usual range of (log) eiqmedsetween

In the above updatingz; is the mean of gene expressionjeth cell type

2 and 16. The hyperparamaterepresents the number of observations our and is ann¢-vector of cell-type means.

prior is worth. By choosing: = 1, it ensures that our prior belief ip

is relatively weak and is imposing as little information assgible on the
analysis (see also the Supplementary Material on the effegtior on the
posterior).

The choice of¥ was chosen so that the magnitude of the variances () —

and covariances is large enough to explore the posteriarespall. To
cover the expression between 2 and 16 from median/mean 9,ee€ n
standard deviation of 4, or variance of 16. Furthermoregéds to reflect
the correlation structure that we would expect to see in tta diven our
knowledge on the haematopiesis in Figure 1. For the cowmnwe then
subtract the dissimilarities between cell types in Eq. (@f the variance
16. Hence, cell types that are close in the differentiatidihbe expected to
have higher correlation due to lower dissimilarity.

After all of these factors were taken into consideration,e th
hyperparamatew is defined as
16 11 10 12 15 10
11 16 14 14 11 14
10 14 16 13 10 15
w 12 14 13 16 12 13 ®)
15 11 10 12 16 10
10 14 15 13 10 16

The covariances between cell typesdnare still large enough to be able
to cover the posterior sample space3f Our experience in the analysis
suggests that a small change to the covariance® jnas long as their
magnitudes are reasonably large, does not affect the imfere

The choice ot in our study was due to the characteristics of the Inverse

Wishart distribution as described in the previous sectir.the variance to
be defined and to ensure that our prior beliefs have as Iiféeteas possible
for the posterior and allowin& as much freedom as possible= 10 was
chosen. All of the hyperparameters are set the same for tiileajenes.
2.6 Posterior probability

Distributions are often used in their proportional form. Asch, the
proportional probability distribution functions of thekdlihood and their
parameters for each gene are given by (Maetial., 1980):

—(v4ng+1) 1
(E) o« ||z exp{fitrace(\I'E_l)},

_1 1 * - .
"D o 2] en{ =] u—wTeR -},
1 &
_mp _
m(xjlp, ) oo [T expy —o D G -wETx —p)
j=1
Using the conjugacy of the prior distributions, a postedistribution can
be obtained which gives our updated beliefs about the pdeasyén light of
the data. So, after the data are observed the posterioibdigins for each
gene are given by (O’Hagan and Forster, 2004)

1
Ij“z7mj ~N (m*y STE) ’ (9)

Sl ~ W (87,07, (10)
where
" -
m* = w7 S*an-i-c, V*:V-i-np,
np + ¢
p
cn
o= v TP () (- D (xR (k- %),
np + ¢ =
1 &
X = (T Zo Zn,)', aNdz; = — > ajp.
" =1

2.7 Inference

To obtain the posterior samples, we draw from the posterigfrilution
Y|a; and thenp = {u1,...,un, }|X, x4, for each gene, denoted as
{ugz), CpPrands®) forz = 1,2, ... , npost Wherenpostis
the number oficceptedoosterior samples. Among the samples drawn from
the posterior distributions, we accept those that fulfiéd dondition on the
correlation structure in Eq. (3).

To identify whether a gene is specific in directing a cell efntiation,
we calculate the probability of the-th cell type to have higher (or lower)
posterioru, |2, «; than those of the other cell types, i.e.

npost
pz: Z I(u,(f) >M;(j)>7 fork’ € {1,...,n:} andk # &’
Tpost 3 a
11
| "post
— (2) (2) / /
P, = I, <p,, ), fork" e {1,...,n¢}andk # k
k Tlpostzz::l ( k k ) { t}

(12
where the summation is across the accepted posterior ssrapl#f (-) is an
indicator function which is equal to one if the argumentdesthe brackets
is true and zero otherwise.

Having posterior samplea,(f), k = 1,...,n¢, also enables us to
construct 95% credible interval for each pf,|X, «;. The limits of the
interval are defined as the 2.5 and 97.5 percentiles of thepsadt posterior
samplesul(:) acrossz = 1,2,...,npostfor eachk = 1,...,n¢. In
our analysis, the number of accepted posterior sampjgst is set to be
1000. The reasoning of the choice of this number is becauaehieved
an acceptable mean square error on the posterior mean (seethal
Supplementary Material).

The above inference has some flexibilities, for example ¢otifly genes
that are involved in the differentiation of more than oné tgles. In the first
situation, we can identify them as those with h'ygb in one cell type and
high p,; in another cell type. They are referred to as non-specifiegém
Section 3.2. In the second situation, we can identify theithase that have
higher (or lower) posterior means in two cell types compé#oetie other cell
types. This is done by including another inequality for teead cell type
in each of the Equations (11) and (12), as described in thelSuentary
Material.

2.8 Simulation study

We perform a simulation study to investigate the proposedhauts
operating characteristics in acknowledging correlatietwieen cell types
in the analysis of cell differentiation. We anticipate thespecting lineage
in cell differentiation, in terms of correlation structuoé gene expression
between cell types, would result in higher sensitivity tdede genes that
direct cell differentiation.

We generate gene expressions for 1000 genes, under incemend
between genes. Within each gene, we generate gene expsefsicgeven
individuals and six cell types from the same meaand variance covariance

matrix 3. Among the genes, 100 of them are set to have different (true)

mean for the first cell typey(;) to indicate that the 100 genes are directing
differentiation of the first cell-type. The mean for the fzstl-type is differed
by one to three, corresponding@®350 to 1.10, to represent low, medium,
and high signals. Three different scenarios that we considebased on the
form of correlation between cell types }:

1. under different correlation structure based on the pathcedl
differentiation in Figure 1 (scenario A)

2. under equal correlation between cell-types, which meahss
symmetric matrix with the same non-zero off-diagonal eletse
(scenario B)
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3. under independence between cell-types, which m&ais diagonal
matrix (scenario C).

We then estimate the operating characteristics, in ternssmitivity and
specificity, of the proposed method based on 100 simulatéasets per
setting. As a comparison, we will also consider thest. In withdrawing
samples from posterior distribution, we do not apply thest@int in the
correlation structure in Eq. (3).

3 RESULTS
3.1 Posterior

An illustration of the posterior samplgs'*)’s and the estimated
correlation between cell types and b, pqs, for genes SLC46A2
(9932) and CYFIP2 (5g33.3) are presented in Figure 3. These t
genes in our analysis are among genes that are identifiedcagun
CD14 and involved in directing its differentiation. Gene(316A2
and CYFIP2, respectively, have higher and lower posterieamin
CD14 compared to the other cell types. These figures are @@ 1
posterior samples in each cell types, and it can be showrttirat
probabilitiesp;” for gene SLC46A2 is 1 angl; for gene CYFIP2
is 1. We are confident that these two genes are involved ictdige
the cell differentiation of CD14.

Figure 3 also presents the accepted posterior correlatisedon
the cell differentiation diagram in Figure 1. For examplaséd on
Figure 1, we constrain that the correlation between CD4 ané C

(pe3) is higher that the correlation between CD4 and CD14. We

also constrain the correlation between CD66b and CR14) fo be
higher than the correlation between CD66b and CD56. Thedimpa
of these constraints are not immediately visible in Figurehss

is more clearly visible if we create a scatterplot betweesterior
correlations as in Figure 4. The figure shows that the canssrare
imposed in the result that we observe previously in Figure 3.

3.2 Specific and non-specific genes

In our analysis, we obtain posterior samples that are ittt in
Figure 3 for each gene. This allows us to estimate the prbbabi
of a gene to have consistent higheit ] or lower ;) posterior
mean in one cell type compared to the others. The number efsgen
whose probabilities match and pass different levels ofttblelsare
presented in Table 1 and Table 2, fgF andp;, respectively. Table 1
indicates that the number of genes that have at least 99%lpitityp
to have higher posterior mean in CD8 is only seven, while ir66iD
itis 1,029. Table 2 also indicates that there are 12 genésawvieast
99% probability to have lower posterior mean in CD56 comgaoe
the other cell types.

Table 1 and Table 2 provide a profile of the distributioppfand
p, in the data, which in turn suggest how the genes are involve
in directing haematopoiesis. For example, both tables sthai
more genes are involved in directing the CD66b cell difféetion
compared to the other cell types, either by actively indrepsr
lowering gene expression. Similarly, there are not manyegen
specifically involved in CD8 cell differentiation. Both tiais also
suggest that, with the exception of CD66b cell type, moreegere
involved in directing cell differentiation by actively ineasing gene
expression than lowering them.

Due to the definition ofp; of p, in Egs. (11) and (12), it is
possible to have a consistently higher posterior means éncef

Posterior mean — gene SLC46A2

3 i
5 R B T +
o - 4+ U T

CD4 CD56 CD66b

Correlation — gene SLC46A2

1.0

0.8
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HH BHH
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-+
8
[

o | i i L T o4
© T T T T T T T T T T T T T T T
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g -
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i H g H %
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s : 3 8 ! .
i

CD19 CD4 CD56 CD66b CD8

Correlation — gene CYFIP2
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Fig. 3. Posterior mean samplea() for gene SLC46A2 (top panel) and
gene CYFIP2 (third panel), and correlation between celletyp,; for
those two genes in second and bottom panels. The indi@e® b in the
orrelation are from 1 to 6, which correspond to CD14, CD1®4; CD56,
D66b, and CD8, respectively. For examp}g; means the correlation
between CD8 and CD14.

type, and vice versa. We consider these genes to be norfisgasi
opposed to specific to one cell type). However, the termscifipe
and 'non-specific’ need to be interpreted in relative seasé, not
in absolute sense, due to the definition in Egs. (11) and (2.
numbers of such genes are shown in Table 3. The table indittege
number of specific and non-specific probes across all ceistygi

type and at the same time lower posterior means in another cetlifferent probability thresholds. The posterior mean slasfrom
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Psa

00 02 04 06 08 1.0

Psa
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00 0.2

Fig. 4. Left column: Comparison of correlation posterior samplesizen
cell types CD66b and CD14of;) and those between CD66b and CD56
(p54)- Right column: Comparison of correlation posterior saggpbetween
cell types CD66b and CD14o§;) and those between CD66b and CD19
(p52)- The top panels are for gene SLC46A2 and bottom panels agefe
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CYFIP2.
pz CD14 CD19 CD4 CD56 CD66b CD8
>0.00 46713 46713 46713 46713 46713 46713
>0.50 2030 1713 2242 1216 5816 156
>0.80 922 881 767 500 3223 41
>0.90 658 638 445 323 2127 23
>0.95 505 494 313 235 1675 15
>0.99 268 320 158 116 1029 7
1.00 83 169 42 38 402 3

Table 1. Number of probes whosg‘f ’'s match and pass different thresholds.
pz is defined as the probability of a gene to have a higher pastenean
in each cell type than the other cell types. The probabibtyefach probe is

presented in the Supplementary Material.

p, CDl14 CD19 CD4 CD56 CD66b CD8
>0.00 46713 46713 46713 46713 46713 46713
>0.50 1590 1066 1055 363 4970 55
>0.80 494 409 410 85 3102 2
>0.90 294 268 270 42 2427 1
>0.95 179 200 191 27 1957 1
>0.99 79 111 88 12 1221 0

1.00 28 36 13 1 447 0

Table 2. Number of probes whogg; 's match and pass different thresholds.
p,, is defined as the probability of a gene to have a lower posteniean in
each cell type than the other cell types. The probability dach probe is

presented in the Supplementary Material.

pr >0.50 >0.80 >0.90 >0.95 >0.99 1.00
Specific 9060 7816 6074 4938 3163 1242
Non-specific 6606 1510 721 427 123 10
Table 3. Number of probes whosg, ’s or pk+’S match and pass different
thresholds that are specific or non-specific to a cell typer-Specific means
that the probes havp; above the threshold in one cell type apg above
the threshold in another cell-type. The ten non-specifibgsoat probability
one are from the genes RNF149, HS.579530, NUP88, SP140,RRFS2,
CPD, HSPA6, TNFRSF1A, and FAM129A. The posterior meansefioesgy
SP140 and RP9 are shown in Figure 5.

Gene SP140 Gene RP9
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Fig. 5. Posterior mean sampleg(?) for genes SP140 and RP9, which
are identified as non-specific genes in the haematopoiebis.génes are
identified to be involved in the direction of haematopoiésisvo different
cell types: CD14 and CD19 for SP140 and CD19 and CD66b for RP9.

two non-specific genes (SP140 and RP9) are presented ineFigur
5. The figure illustrates the non-specificity of the two genies
which the posterior mean samples are consistently highene
cell type and lower in another cell type. More details, iuidhg

the probability and information for each probe, are avddab the
Supplementary Material.

3.3 Gene ontology

Table 4 presents some of the gene ontology (GO) biological
processes of genes wifl] andp; greater than 0.95 in Table 1
and Table 2, based on the PANTHER classification system (&kom
et al, 2003; Mi et al, 2005). The full list of the GO biological
processes is available in the Supplementary Material aslHikes,
which indicates the full extent of biological processest® genes
identified by our method.

To highlight few genes, our method identifié¥P1B1, COORF88
(FAM129B) and CEPBAto be significantCYP1B1is involved in
the signalling of haematopoietic stem cells as recentlcrilgsd
in (Rentaset al, 2016). FAM129B was identified to suppress
apoptosis (Cheret al, 2011), and suppression of apoptosis was
recognised to allow differentiation and development of &imotent
hemopoietic cell line (Fairbairet al,, 1993). With regard t€EPBA
Wolfler et al. (2010) showed thaCEPBA/EYFR+) cells represent
a significant subset of multipotent hematopoietic progesijt
which predominantly give rise to myeloid cells in steadsgtst
haematopoiesis.




Analysis of cell differentiation

GO Biological Process Observed
leukocyte diff.

Expected Foldp-value

(G0O:0002521) 103 53.73 1.92 9.02E-06
lymphocyte diff.
(G0O:0030098) 73 38.3 1.91 2.72E-03
reg. of leukocyte
diff. (GO:1902105) 80 42.66 1.88 1.45E-03
reg. of haematopoiesis
(G0O:1903706) 102 55.18 1.85 6.59E-05
imm. syst. process
(G0O:0002376) 641 360.12 1.78 5.91E-42
apoptotic process
(G0O:0006915) 288 171.35 1.68 3.51E-13
locomotion
(G0:0040011) 274 202.02 1.36 3.34E-03
metabolic process
(G0:0008152) 2336 1802.96 1.3 4.11E-64
cellular process
(G0:0009987) 3155 2620.86 1.2 5.95E-85
biological regulation
(G0O:0065007) 2372 2049.82 1.16 1.44E-22
develop. process
(G0:0032502) 1079 949.13 1.14
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6.78E-03 Fig. 6. Operating characteristics of the proposed method (sohe)liand

Table 4. Some gene ontology (GO) biological processes from the fist o t-test (dashed line) in the simulation study for medium dignhere

genes in both Table 1 and Table 2 V\m}j andp, greater than 0.95 based on
PANTHER classification system (Thomas et al., 2003; Mi ¢2@D5). The
complete lists are available in the Supplementary MateaiglExcel files.
Thep-value is the result from an over-representation test, Wwiiempared
the observed count of genes in each category to the expemted lzased on
the GO reference list. Bonferroni multiplicity correctitvas been applied to
thep-value.

3.4 Sensitivity analysis

In the above analysis, the structure @nin the prior is defined
according to the structure of the cell differentiation irgliie 1 as
indicated in Eq. (8). To check whether our analysis does epéedd
largely on the choice of prior, we also consider other stmeg of
W (see also the Supplementary Material for mathematicavalion

the simulated gene expression are correlated across geéistyaccording
to Figure 1 (simulation A), under equal correlation acrossllctypes
(simulation B), and under independence (simulation C). fidhees for low
and high signals are available in the Supplementary Materia

Material). The figure indicates reasonably good charasttesi of
the proposed method (solid line). The area-under-curvettier
proposed method in simulation A is slightly more than that in
simulation B, which is also more than that in simulation CisTh
result is as expected. The setting for simulation A and B iy ve
close; both have correlation structure in the expressita aeross
cell types, while in simulation C, the gene expressions betw
cell types are independent. The figure also indicates taering
the correlation structure between cell types gives betfperaiing
characteristics than ignoring them, as is the case in usieg-test

on how much the prior is worth). The first one we consider i$ tha (gashed lines).

W is a diagonal matrix, i.e. the off-diagonal entries®fin Eq. (8)

are zero. In this setting, we assumgriori that the gene expression

between the different cell types are independent. The skcoa is
that ¥ is a symmetric matrix, by which we assumriori that the
genes are equally correlated (i.e. there is a correlatibmdmn cell
types, but not in the structure in Figure 1). The results aesented
in the supplementary material.

The results indicate that the posterior samplesu6f under
diagonal ¥ are relatively consistent to those under gendbain
Figure 3. However, the posterior correlation samples betweell

types under diagonal priak are higher than those in Figure 3 under

generaly.

3.5 Simulation study

The simulation results are presented in Figure 6. The figuoe/s
the operating characteristics of the proposed methodd(dioie)
in three different scenarios for the medium signal (the &gur

4 DISCUSSION

Identifying specific genes in cell differentiation is a dbabing
task, especially when gene expression data available are fr
mature cells. In the ideal case where gene expressions were
obtained from cells at different stages in the cell diffeiaion,
then the identification of specific genes can be performed in a
straightforward manner. However, when the gene exprestitea
available are from the final stage in cell differentiatidrern the cell
differentiation paths need to be taken into account in tferémce.
Failing to take into account these information means thabwmlg
identify genes that are differentially expressed betweshtgpes
under some sort of independence assumption. To take intuatc
the cell differentiation paths, we consider Bayesian modglas

a natural and intuitive method, where the cell differentiatpaths

for the low and high signals are presented in the Supplementa serve as prior. In this study, we present how this methogotam
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address the challenge under some distributional assunspéiad
conjugacy.

using Bayesian approach. It is natural and intuitive to ipocate
cell differentiation paths as prior information and the heet is able

The proposed method enabled us to identify genes that arg identify the relevant genes in haematopoiesis. The sitiaul

specifically involved in the differentiation in each cellpg. The

indicates that we obtain the best advantage among low to ratede

results indicate that the number of such genes in each qadl ty signal when we take into account the correlation stucture.
varies. It turns out many more genes that are responsibe in
directing the cells to mature to CD66b (neutrophil) and CD19

(B lymphocytes) than those to the other cell types. Lookimg i
the GO biological processes involved in the significant getiee
results indicate that the haematopoiesis is controlled hyide
transcription regulatory networks. Further downstreanalysis
also indicates that many genes that are specific in eachypal t
share common transcription factors (see also the Supptanyen
Material). This study is an important effort to identify genthat
control lineage commitment, albeit from a difficult contdrtwhich
the information come from final mature cells in the diffeiation.

pipeline where the cell differentiation paths are takeo @tcount
as a correlation structure between cell types. Firstlys itni the
formulation of the prior, and secondly, in the inference ct®m
2.7). The correlation structure, as prior, has little inflce on
the posterior distribution of the mean and variance, ascatdd
in Section 3.4 and the Supplementary Material. Our seiitgitiv
analysis on the choice off as hyperparameter in the prior
distribution of = indicates that the mean posterior samplés’s
are relatively consistent; i.e. the mean posterior sampfigs*)’s
are relatively consistent whether the correlation stmgchetween
cell types are reflected in the prior distribution or not. Hoer, a
difference is visible on the correlation posterior samgiesveen
the two cases of the prior. The results indicate that if threatation
structure between cell types are not included in the pribg t
correlation posterior samples are generally higher thasettwhen
the structure are not included in the prior. In the secongd, dtee
correlation between cell types imposes a stronger streigtuthe
posterior sample. As illustrated in Figure 4 and the Supplaary
Material, the posterior samples that we accept are thosedsgect
the constraints on the correlation between cell types if&q.

Simulation results indicate that the proposed method has
Respectieg t

a reasonably good operating characteristics.
correlation structure between cell types in the analysitaogy
gives an advantage in the inference, even if the data werergtea
assuming independence between cell types. The resultalsee

the Supplementary Material) suggest that when the amount of

signal is low and medium, this advantage is notable. As theasi
increases to high, this advantage is reduced because taeiggal
already stands out. This suggests that when the gene expréass
a particular cell type is relatively high, the correlatioetleen cell
types are somehow less relevant.

5 CONCLUSION

We have some challenges in identifying transcript regmato
patterns that govern cell differentiation when gene exgioesdata
available are only from mature cells. To identify specifinge that
are involved in directing cell differentiation, we propdseake into
account the information of cell differentiation paths i tanalysis

. .Fairbairn,
In the proposed method, there are two steps in the analysis
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