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Slow Reflection

Anton Freund

Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom

Abstract

We describe a “slow” version of the hierarchy of uniform reflection principles
over Peano Arithmetic (PA). These principles are unprovable in Peano Arith-
metic (even when extended by usual reflection principles of lower complexity)
and introduce a new provably total function. At the same time the consist-
ency of PA plus slow reflection is provable in PA + Con(PA). We deduce a
conjecture of S.-D. Friedman, Rathjen and Weiermann: Transfinite iterations
of slow consistency generate a hierarchy of precisely ε0 stages between PA and
PA+Con(PA) (where Con(PA) refers to the usual consistency statement).

Keywords: Peano Arithmetic, Slow Reflection, Slow Consistency, Iterated
Consistency, Consistency Strength, Fast Growing Hierarchy
2010 MSC: 03F25, 03F30, 03C62

The starting point for our work is the notion of slow consistency for (finite
extensions of) Peano Arithmetic that has been introduced by Sy-David Fried-
man, Michael Rathjen and Andreas Weiermann in [1]. Up to an “index shift”
(see below) it is defined as

Con⋄(PA+ ϕ) :≡ ∀x(Fε0(x)↓→ Con(IΣx+1 + ϕ)). (1)

This formula involves the function Fε0 at stage ε0 of the fast-growing hierarchy,
due to Wainer and Schwichtenberg [2, 3]. We work with the version used by Som-
mer [4]: Adopting his assignment of fundamental sequences λ = supx∈ω{λ}(x)
to limit ordinals λ ≤ ε0 (in particular {ε0}(x) = ωx+1 is a tower of x + 1
exponentials with base ω) we define Fα by recursion on α ≤ ε0, setting

F0(x) := x+ 1,

Fα+1(x) := F x+1
α (x),

Fλ(x) := F{λ}(x)(x) for λ a limit ordinal.

To conceive of Con⋄(PA + ϕ) as an arithmetic formula (of complexity Π1),
recall that ordinals below ε0 can be represented via their Cantor normal forms.
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We adopt the efficient encoding of [4]. Building on this one can arithmetize
the fast-growing hierarchy: Sommer in [4, Section 5.2] constructs a ∆0-formula
Fα(x) = y which defines the graphs of the functions Fα for α ≤ ε0 (cf. [5,
Equation 4] for the case α = ε0). Basic relations between these functions become
provable in IΣ1. As usual Fα(x) ↓ abbreviates ∃yFα(x) = y. In addition, the
formula Con⋄(PA+ϕ) depends on a formula ProofIΣx

(p, ϕ) which is ∆1 in IΣ1

and arithmetizes the ternary relation “p is a proof of ϕ in the theory IΣx”.
Here IΣx denotes the fragment of Peano Arithmetic in which induction is only
available for Σx-formulas.
It is a classical result, due to Kreisel, Wainer and Schwichtenberg [6, 2, 3], that
Peano Arithmetic does not prove ∀xFε0(x) ↓. This opens up the possibility
that Con⋄ is strictly weaker than the usual consistency statement. Friedman,
Rathjen and Weiermann in [1] prove that this possibility materializes: Indeed,
by [1, Section 4] finite iterations of slow consistency generate a strict hierarchy
of ω theories that are stronger than Peano Arithmetic but bounded by the usual
consistency statement Con(PA). It is conjectured in [1, Remark 4.4] that the
same holds for a transfinite extension of the hierarchy up to any ordinal below
ε0. In the present paper we prove that this is the case: For an appropriate
Π1-formula Con⋄α(PA) in the variable α we have

PA � · · · � PA+Con⋄α(PA) � · · · � PA+Con⋄ε0(PA) ≡ PA+Con(PA).

As in [1, Theorem 3.1] this is also a strict hierarchy with respect to the inter-
pretability ordering.
To prove the result about iterated slow consistency we introduce a notion of
slow reflection which is interesting in its own right. As observed by Michael
Rathjen in [7] slow consistency can be derived from a corresponding notion of
slow provability, and indeed slow proof: A slow PA-proof of a formula ϕ is a
pair 〈q, Fε0(n)〉 such that q is a usual proof of ϕ in the fragment IΣn+1. Writing
πi for the projections of the Cantor pairing function this amounts to the formula

Proof⋄
PA

(p, ϕ) :≡ ∃x(ProofIΣx+1(π1(p), ϕ) ∧ Fε0(x) = π2(p))

which is ∆1 in IΣ1 (cf. [5, Definition 2.1]). Slow provability is then defined as

Pr⋄PA
(ϕ) :≡ ∃p Proof⋄

PA
(p, ϕ).

Michael Rathjen shows in [7] that slow provability realizes Gödel-Löb provability
logic (see also Lemma 3.10 below). It is easy to see that we have

IΣ1 ⊢ ∀ψ(Pr
⋄
PA

(ψ) ↔ ∃x (Fε0(x)↓∧ PrIΣx+1(ψ))) (2)

and then
IΣ1 ⊢ Con⋄(PA+ ϕ) ↔ ¬Pr⋄

PA
(¬ϕ).

Given a notion of provability one can consider the corresponding reflection prin-
ciples. We will mainly be concerned with uniform reflection. Using Feferman’s
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dot notation, slow (uniform) reflection for the formula ϕ ≡ ϕ(x1, . . . , xk) is
defined as

RFN⋄
PA

(ϕ) :≡ ∀x1,...,xk
(Pr⋄

PA
(ϕ(ẋ1, . . . , ẋk)) → ϕ(x1, . . . , xk)).

Taking the contrapositive yields the usual connection with iterations of consist-
ency:

PA+RFN⋄
PA

(¬Con⋄(PA+ϕ)) ⊢ Con⋄(PA+ϕ) → Con⋄(PA+Con⋄(PA+ϕ̇)).

We thus need to bound the strength of slow reflection. Consider the set of
formulas

RFN⋄
PA

:= {RFN⋄
PA

(ϕ) |ϕ a formula of first-order arithmetic}.

The central result of this paper is the equiconsistency

PA ⊢ Con(PA) → Con(PA+RFN⋄
PA

). (3)

Conversely the slow reflection statements are non-trivial: Let TrΠn
(x) be the

usual truth definition for Πn-sentences. We abbreviate

RFN⋄
PA

(Πn) :≡ ∀ψ(“ψ a Πn-sentence” ∧ Pr⋄
PA

(ψ) → TrΠn
(ψ)).

Similarly we write RFNPA(Πn) for the usual reflection principles over Peano
Arithmetic. We will see that

PA+RFNPA(Πn) � RFN⋄
PA

(Πn+1) (4)

holds for any number n ≥ 1. An analysis of slow reflection from a more compu-
tational viewpoint can be found in [5, Section 3]: In particular it is shown that
PA+ RFN⋄

PA
(Π2) proves the totality of a function F ⋄

ε0
(a slow variant of Fε0)

which eventually dominates any provably total function of Peano Arithmetic.
Of course, one can also consider parameter-free (also called “local”) slow re-
flection. Proposition 3.11 (a slow version of Goryachev’s Theorem) links this
principle to finite iterations of slow consistency.
We should also discuss the issue of index shifts: The original definition of slow
consistency in [1] reads

Con∗(PA+ ϕ) :≡ ∀x(Fε0(x)↓→ Con(IΣx + ϕ)),

i.e. it has Con(IΣx+ϕ) where our variant Con⋄(PA+ϕ) demands the stronger
Con(IΣx+1 + ϕ). Clearly, the upper bounds that we prove for Con⋄ also hold
for the weaker Con∗. It is easy to see that the proof which we will give for
the lower bound PA + Con⋄ε0(PA) ⊢ Con(PA) does not depend on the index
shift. Interestingly, the results change considerably when we shift the index in
the other direction: Set

Pr†
PA

(ψ) :≡ ∃x (Fε0(x)↓∧ PrIΣx+2(ψ)))
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and define Con† and RFN†
PA

accordingly. We will see that RFN†
PA

(Πn) is PA-
provably equivalent to the usual Πn-reflection principle for Peano Arithmetic,
for each n ≥ 2. Concerning slow consistency we will get a hierarchy

PA � · · · � PA+Con†n(PA) � · · · � PA+Con†ω(PA) ≡ PA+Con(PA)

with only ω stages below Con(PA). This justifies that we focus on the ⋄-variant:
It has the strongest consistency and reflection statements which are non-trivial
in the described sense. We refer to [5] for a computational view on the same
phenomenon.
An independent investigation into slow consistency has been carried out by
Paula Henk and Fedor Pakhomov [8] (for comparison, the first preprint of the
present paper was published as arXiv:1601.08214v1). Henk and Pakhomov also
prove that the usual consistency statement for Peano Arithmetic is equivalent
to ε0 iterations of slow consistency, and that this goes down to ω iterations
after the index shift. In addition, they construct a “square root” consistency
statement which reaches ordinary consistency in just two iterations, and they
determine the joint provability logic of slow and ordinary provability. They do
not consider the notion of slow uniform reflection, which is central to the present
paper.

1. Connecting Reflection and Transfinite Induction

Using (2) it is easy to see that we have

IΣ1 ⊢ RFN⋄
PA

(Πn) ↔ ∀x(Fε0(x)↓→ RFNIΣx+1(Πn)) (5)

for each number n. An analogue equivalence characterizes RFN⋄
PA

(ϕ). Let us
give a typical application of this equivalence: It is a standard consequence of
the “It’s snowing”-Lemma (see [9, Corollary I.1.76]) that

IΣ1 ⊢ ∀x≥1(RFNIΣx
(Πn) → RFNIΣx

(ϕ))

holds for any formula ϕ which is Πn in IΣ1. Using (5) we can conclude

IΣ1 ⊢ RFN⋄
PA

(Πn) → RFN⋄
PA

(ϕ).

Now claim (4) from the introduction is easily established:

Proposition 1.1. For any n ≥ 1 we have

PA+RFNPA(Πn) � RFN⋄
PA

(Πn+1).

As the proof will show, even a suitable instance of parameter-free slow re-
flection is unprovable in PA+RFNPA(Πn).

Proof. If we replace slow reflection by the usual reflection principle then the
claim is a classical result of Kreisel and Lévy in [10]. We combine their proof
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with an argument specific to slow provability, due to [1, Proposition 3.3]: For
n ≥ 1 the formula ¬RFNPA(Πn) is Πn+1 in IΣ1. As we have seen above this
implies

IΣ1 ⊢ RFN⋄
PA

(Πn+1) → RFN⋄
PA

(¬RFNPA(Πn))

Aiming at a contradiction, assume that the proposition fails. Then we have

IΣk+1 +RFNPA(Πn) ⊢ RFN⋄
PA

(¬RFNPA(Πn))

for some number k. Using an analogue of (5) we can deduce

IΣk+1 +RFNPA(Πn) ⊢ ∀x(Fε0(x)↓→ RFNIΣx+1(¬RFNPA(Πn))).

Since IΣk+1 proves the true Σ1-formula Fε0(k)↓ we obtain

IΣk+1 +RFNPA(Πn) ⊢ RFNIΣk+1
(¬RFNPA(Πn)).

This is equivalent to

IΣk+1 +RFNPA(Πn) ⊢ Con(IΣk+1 +RFNPA(Πn)),

which contradicts Gödel’s second incompleteness theorem.
It is interesting to consider the following alternative argument for the case n ≥ 2:
As is well known PA + RFNPA(Π2) proves that Fε0 is total (cf. Lemma 1.5
below). Given that Fε0 is total, however, the principle RFN⋄

PA
(Πn+1) collapses

into the usual RFNPA(Πn+1), and we can hark back to the original result of
Kreisel and Lévy [10].

In the rest of this section we reformulate claim (3) of the introduction. The
goal is to make it accessible for a model construction from [4], to be carried out
in the next section. We begin with an easy observation:

Lemma 1.2 (IΣ1). If the theory PA+RFN⋄
PA

(Πn) is consistent for arbitrarily
large n then the theory PA+RFN⋄

PA
is consistent as well.

Proof. Let ϕ be an arbitrary formula in the language of arithmetic. Choose n
such that ϕ is IΣ1-provably equivalent to a Πn-formula. We have already shown

PA ⊢ RFN⋄
PA

(Πn) → RFN⋄
PA

(ϕ).

This means that PA + RFN⋄
PA

is contained in PA + {RFN⋄
PA

(Πn) |n ∈ N}.
Using (5) we can also show that m ≤ n implies

PA ⊢ RFN⋄
PA

(Πn) → RFN⋄
PA

(Πm).

By (syntactic) compactness it follows that PA+ {RFN⋄
PA

(Πn) |n ∈ N} is con-
sistent if PA+RFN⋄

PA
(Πn) is consistent for arbitrarily large n.
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Somewhat converse to the proof of the lemma, assume that ϕ(x) is the
formula TrΠn

(x). Then we have

PA ⊢ RFN⋄
PA

(ϕ) → RFN⋄
PA

(Πn),

so that the theories

PA+RFN⋄
PA

≡ PA+ {RFN⋄
PA

(Πn) |n ∈ N}

are equal, as one would expect.
We have seen in (5) how slow reflection relates to the usual reflection principles
over the fragments of Peano Arithmetic. It is well known that reflection over
these fragments corresponds to appropriate instances of transfinite induction
(see [10] for the general idea, and more specifically [11] concerning fragments
of arithmetic). Since we need to know that this correspondence is available in
Peano Arithmetic — and not only for each fixed fragment but rather uniformly
in the fragment IΣx+1 — we will repeat the arguments in some detail:
First, we adopt Sommer’s [4] coding of ordinals below ε0 (observe in particular
the notational conventions in [4, Section 3.4], which help to distinguish actual or-
dinals and their numerical codes). Note that the “stack of ω’s”-function defined
by

ωα
0 := α ωα

x+1 := ωωα
x

is not part of Sommer’s ordinal notation system (although it is part of his meta-
theory). We can easily add (α, x) �→ ωα

x as an IΣ1-provably total function with
∆0-graph (cf. [5, Section 2]). As usual we abbreviate ωx := ω1

x.
Next, let us formulate transfinite induction: For a formula ψ ≡ ψ(	x, γ) with
induction variable γ and parameters 	x we set

Progγ.ψ(	x) :≡ ∀β(∀γ<βψ(	x, γ) → ψ(	x, β)),

TIγ.ψ(α) :≡ ∀	x(Progγ.ψ(	x) → ∀γ<αψ(	x, γ)).

This is similar to the notation used by Feferman [12, Section 4.3], who would
write TI(α, γ̂ψ(γ)) where we write TIγ.ψ(α). We have decided to move the
induction formula to the subscript because we want to reserve the parenthesis for
the free variables. Note in particular that γ is bound in the formulas Progγ.ψ(	x)
and TIγ.ψ(α) (the reader may wish to think of γ.ψ(γ) as a comprehension term
with bound variable γ). Using the truth definition TrΠn

for Πn-sentences we
abbreviate

TIΠn
(α) :≡ TIγ.TrΠn (ϕ(γ̇))(α).

Note that TrΠn
(ϕ(γ̇)) is a formula with two free variables: The variable ϕ, which

stands for the code of a Πn-formula with a single free variable, is the parameter
of the transfinite induction. The induction variable γ stands for the code of
an ordinal which is substituted for the free variable of ϕ. This substitution
results in the code of an instance ϕ(γ̇), which TrΠn

(ϕ(γ̇)) asserts to be true.
Note that γ becomes bound in the statement Progγ.TrΠn (ϕ(γ̇))(ϕ) (in spite of the
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dot). The parameter ϕ is free in Progγ.TrΠn (ϕ(γ̇))(ϕ) but also becomes bound
in TIγ.TrΠn (ϕ(γ̇))(α). Using the “It’s snowing”-Lemma one establishes

IΣ1 ⊢ ∀α(TIΠn
(α) → TIγ.ψ(α))

for any formula ψ which is Πn in IΣ1. Let us connect reflection and transfinite
induction:

Proposition 1.3 (IΣ1). For any number n ≥ 1 we have

IΣ1 ⊢ ∀x≥n(TIΠn
(ωx−n+2) → RFNIΣx

(Πn)).

A similar result is shown by Ono in [11, Theorem 4.1]. There, however,
the quantification over x takes place in the meta-theory, which is not sufficient
for our purpose. The following proof (somewhat similar to the proof in [11],
but using Buchholz’ notations for infinite derivations instead of direct ordinal
assignments to finite proofs) shows that the quantification can be internalized.

Proof. Observe that the proposition itself is a Π2-statement: It claims that
for each n ≥ 1 there exists a certain IΣ1-proof. To prove the proposition in
the meta-theory IΣ1 we must thus (i) construct the required IΣ1-proofs and
(ii) show that this construction can itself be carried out in IΣ1. Let us focus on
task (i) in the first instance. Task (ii) will be discussed below.
Fix a number n ≥ 1 and write it as n = m+1. The following proof can be form-
alized in IΣ1: It is well known that RFNIΣx

(Πn) follows from RFNIΣx
(Σm).

Consider an arbitrary x ≥ n. Aiming at RFNIΣx
(Σm), assume that we have

IΣx ⊢ ϕ for some Σm-formula ϕ. We suppose that IΣx ⊢ ϕ is proved in a
Tait-style sequent calculus, with induction implemented as a rule

Γ, ψ(0) Γ,¬ψ(x), ψ(Sx)
(Ind) (x not free in Γ).

Γ, ψ(t)

Since we allow arbitrary side formulas the usual induction axioms can be de-
duced. Partial cut elimination transforms IΣx ⊢ ϕ into a “free-cut free” proof,
all cut formulas of which lie in the class

⋃
y≤x Σy ∪ Πy (see e.g. [13, Section

2.4.6] for more information).
Next, we embed the free-cut free proof IΣx ⊢ ϕ into an infinite proof system
with the ω-rule. To formalize this in the theory IΣ1 we adopt the finitary term
system Z∗ of notations for infinite proofs, developed by Buchholz in [14] (the
reader who is not familiar with these notations will hopefully find enough hints
to reconstruct the unformalized argument): Basic terms (constants) of Z∗ have
the form [d] where d is a finite derivation with closed end-sequent. Complex
terms are built by the function symbols Ik,A (inversion), RC (cut reduction)
and E (cut elimination). Intuitively [d] stands for the infinite proof-tree that
results by embedding d into the infinite system, and the function symbols denote
the well-known operators from infinite proof theory. Crucially, however, one can
work with the term system Z∗ without making the semantics official. Rather,
[14] describes primitive recursive functions which compute the end sequent, the
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ordinal height, the cut rank, the last rule, and terms denoting the immediate
subtrees of an (infinite tree denoted by an) element of Z∗. It is shown that these
functions satisfy local correctness conditions, demanding e.g. that the immedi-
ate subtrees have smaller ordinal height than the whole tree and provide the
premises required by the last rule. Let us write Ord(h), End(h) and dcut(h) for
the ordinal height, the end sequent and the cut rank of h ∈ Z∗. The crucial
clauses for us are

Ord(Eh) = exp(Ord(h)),

End(Eh) = End(h),

dcut(Eh) = dcut(h)
.− 1.

To understand the first clause, recall that the ordinal height of an infinite proof
grows exponentially when we reduce its cut rank. The most common choice
is exponentiation to the base ω. To get better bounds for small ordinals we
instead use

exp(α) :=

{
3α if α < ω2,

ωα otherwise.

Semantically one could take exp(α) = 3α throughout, but then one has to arith-
metize ordinal exponentiation to the base 3. We also remark that exponentiation
to the base 2 would not grow fast enough: The cut elimination operator of [14,
Definition 2.11] contains an additional step (a repetition rule) to “call” the res-
ult of cut reduction. A second minor change to [14] arises from the fact that
our finite proofs are formulated with induction rules rather than axioms. Since
rules can be nested the embedding lemma now produces ordinals Ord([d]) < ω2

(instead of Ord([d]) < ω · 2 in the case of induction axioms). Observe that em-
bedding an induction rule produces cuts over the induction formula, but not over
formulas of higher complexity. Finally, one attributes cut rank y to formulas in
Σy ∪ Πy and cut rank ∞ to formulas of a different form. Similar modifications
of [14] can be found in Buchholz’ lecture notes [15].
To put this machinery into use, consider the Πn-formula

Soundm(γ) :≡ ∀h∈Z∗(Ord(h) = γ ∧ dcut(h) ≤ m ∧ End(h) ⊆ Σm ∪Πm →

→ “End(h) contains a true formula (in Σm ∪Πm)”).

It is easy to see that this formula is progressive: The immediate subtrees of h
satisfy the assumption of Soundm(·) for ordinals γn < γ and they provide the
premises to the last rule of h (local correctness of h ∈ Z∗). Then the induction
hypothesis tells us that all the end sequents of the subtrees are true. By Tarski’s
truth conditions the rules of the infinite proof system are sound for formulas in
Σm ∪Πm. It follows that the end sequent of h is true. Having established this,
the assumption TIΠn

(ωx−n+2) yields ∀γ<ωx−n+2Soundm(γ). On the other hand,
let d be the above proof IΣx ⊢ ϕ with cut rank at most x. Then the term

h := E · · · · · ·E︸ ︷︷ ︸
x−m symbols

[d] ∈ Z∗

8



has cut rank at most m. Since Ord([d]) < ω2 implies Ord(E[d]) = 3Ord([d]) < ωω

we get Ord(h) < ωx−n+2. Also, we have End(h) = End([d]) = {ϕ}. Thus from
Soundm(Ord(h)) we can infer that ϕ is true, as required for RFNIΣx

(Πn).
Recall the tasks (i) and (ii) from the beginning of this proof. So far we have
accomplished task (i), i.e. for each n ≥ 1 we have constructed an IΣ1-proof
which shows that transfinite Πn-induction implies Πn-reflection. To settle task
(ii) we have to show that the construction of these proofs can itself be formalized
in IΣ1. The crucial observation is that the proofs constructed above contain a
common core which does not depend on n: This is the proof

IΣ1 ⊢ “the term system Z∗ is locally correct”.

Since this core proof is fixed IΣ1 shows that it exists, by Σ1-completeness. In
the part that does depend on n the main task was to show that the formula
Soundm(γ) is progressive. Besides the core proof, this depended on the fact that
IΣ1 proves the Tarski conditions for truth in Σm∪Πm. A straightforward form-
alization of [9, Theorem I.1.75] shows that these IΣ1-proofs can be constructed
in the meta-theory IΣ1.

Guided by this proposition we introduce the following notion:

Definition 1.4. For each number n the principle of slow transfinite Πn-induction
is defined by the formula

TI⋄Πn
:≡ ∀x≥n .−1(Fε0(x)↓→ TIΠn

(ωx+3−n)).

In the following we are concerned with two goals: We want to connect
slow transfinite induction with slow reflection. And we want to show that slow
transfinite Πn-induction becomes stronger as n grows. First, we need two aux-
iliary results:

Lemma 1.5 (IΣ1). For any number n we have

IΣn+1 ⊢ Fε0(n)↓ .

Proof. Since the totality of Fε0 is not available in the meta-theory IΣ1 (nor even
in PA), we cannot simply invoke Σ1-completeness. However, Σ1-completeness
does settle the case n = 0 (or any finite number of cases). For n ≥ 1 we recall
the following well-known argument: In a weak meta-theory one can formalize
the lifting construction for ordinal induction due to Gentzen [16] (see also [4,
Section 4] concerning fragments of arithmetic). It tells us that IΣn+1 proves
transfinite Π2-induction up to any ordinal below ωn+1. By [4, Section 5.2] basic
properties of the fast-growing hierarchy are provable in the theory IΣ1. In
particular the theory IΣ1 shows that the statement “Fγ is total” is progressive
in γ. Using ordinal induction IΣn+1 thus proves that Fωn+1

n
is total. Now

Fε0(x) ≃ Fωx+1(x) ≃ Fωx+1
x

(x) allows us to conclude the claim.

We can deduce the following strengthening of (5):
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Lemma 1.6 (IΣ1). For any numbers n and k we have

IΣk+1 ⊢ RFN⋄
PA

(Πn) ↔ ∀x≥k(Fε0(x)↓→ RFNIΣx+1
(Πn)).

Proof. Invoking (5) it suffices to show

IΣk+1 ⊢ ∀x≥k(Fε0(x)↓→ RFNIΣx+1(Πn)) → ∀x(Fε0(x)↓→ RFNIΣx+1(Πn)),

or also

IΣk+1 ⊢ (Fε0(k)↓→ RFNIΣk+1
(Πn)) → ∀x<k(Fε0(x)↓→ RFNIΣx+1(Πn)).

Indeed Lemma 1.5 tells us that we have IΣk+1 ⊢ Fε0(k) ↓. Now we only need
to observe IΣ1 ⊢ RFNIΣk+1

(Πn) → ∀x<k RFNIΣx+1(Πn).

Putting pieces together we get the following bound on slow reflection:

Proposition 1.7 (IΣ1). For any number n ≥ 1 we have

IΣn+1 ⊢ TI⋄Πn
→ RFN⋄

PA
(Πn).

Proof. In view of Lemma 1.6 it suffices to show

IΣ1 ⊢ TI⋄Πn
→ ∀x≥n(Fε0(x)↓→ RFNIΣx+1(Πn)).

This follows from Proposition 1.3.

The task is now to bound the consistency strength of the theories PA+TI⋄Πn
.

To prepare this we need yet another auxiliary result:

Lemma 1.8 (IΣ1). For any number n ≥ 1 we have

IΣ1 ⊢ ∀x≥1(TIΠn+1(ωx) → TIΠn
(ωx+1)).

This result is of course due to Gentzen [16], but again our formulation is
somewhat unusual in the way it internalizes x. For this reason we recapitulate
the proof.

Proof. We follow Gentzen’s construction as presented in [4, Lemma 4.4]: Con-
sider the lifting formula

liftn(ϕ, γ) :≡ ∀β(∀δ<β TrΠn
(ϕ(δ̇)) → ∀δ<β+ωγ TrΠn

(ϕ(δ̇))).

Note that ϕ is a variable that ranges over codes of formulas, rather than a single
fixed formula. Crucially, the form of liftn(ϕ, γ) depends on n but not on the
(non-standard) number x. Since liftn(ϕ, γ) is Πn+1 in IΣ1 we have

IΣ1 ⊢ ∀x(TIΠn+1(ωx) → TIγ.liftn(ϕ,γ)(ωx)).

As in the proof of [4, Lemma 4.4] we have

IΣn ⊢ ∀ϕ(Progγ.TrΠn (ϕ(γ̇))(ϕ) → Progγ.liftn(ϕ,γ)(ϕ)).

10



Note that this makes no reference to x. Together we obtain

IΣn ⊢ ∀x(TIΠn+1(ωx) → ∀ϕ(Progγ.TrΠn (ϕ(γ̇))(ϕ) → ∀γ<ωx
liftn(ϕ, γ)).

Specializing β to zero in liftn(ϕ, γ) we get

IΣn ⊢ ∀x(TIΠn+1(ωx) → ∀ϕ(Progγ.TrΠn (ϕ(γ̇))(ϕ) → ∀γ<ωx
∀δ<ωγ TrΠn

(ϕ(δ̇))).

Arguing in IΣ1, if we have x ≥ 1 then ωx is a limit ordinal, so any δ < ωx+1 is
smaller than ωγ for some γ < ωx. We thus obtain

IΣn ⊢ ∀x≥1(TIΠn+1(ωx) → ∀ϕ(Progγ.TrΠn (ϕ(γ̇))(ϕ) → ∀γ<ωx+1 TrΠn
(ϕ(γ̇))).

Unravelling the abbreviation TIΠn
(ωx+1) we see that this is exactly the same

as
IΣn ⊢ ∀x≥1(TIΠn+1(ωx) → TIΠn

(ωx+1)).

To get the claim of the lemma we need to weaken IΣn to IΣ1. This is easy,
because the antecedent TIΠn+1(ωx) with x ≥ 1 makes Σn-induction over the
natural numbers available.

Using the lemma we can show that the principle of slow transfinite Πn-
induction gets stronger as n grows:

Proposition 1.9 (IΣ1). For any numbers 0 < m ≤ n we have

IΣn +TI⋄Πn
⊢ TI⋄Πm

.

Proof. We argue by induction on n ≥ m. Note that the induction statement is
a Σ1-formula, as it asserts the existence of a certain proof. For the induction
step it suffices to show

IΣm+1 +TI⋄Πm+1
⊢ TI⋄Πm

,

with m ≥ 1. We argue in IΣm+1: Aiming at TI⋄Πm
, consider an arbitrary

x ≥ m − 1 and assume that Fε0(x) is defined. We distinguish two cases: First
assume x ≥ m. Then the assumption TI⋄Πm+1

yields TIΠm+1(ωx+3−m−1). Using
Lemma 1.8 we get TIΠm

(ωx+3−m), just as required for TI⋄Πm
. Now assume

x = m − 1. Then we cannot use the assumption Fε0(x) ↓, as TI⋄Πm+1
only

speaks about x ≥ m. Still, Fε0(m) ↓ is available by Lemma 1.5, and we get
TIΠm

(ωm+3−m) as above. A fortiori we have TIΠm
(ωx+3−m) for x = m−1.

Finally, we obtain the following reformulation of claim (3) from the intro-
duction:

Corollary 1.10 (IΣ1). If the theory IΣn + TI⋄Πn
is consistent for arbitrarily

large numbers n then the theory PA+RFN⋄
PA

is consistent as well.
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Proof. By Lemma 1.2 it is enough to prove that PA+RFN⋄
PA

(Πm) is consistent
for all m ≥ 1. Proposition 1.7 reduces this to the consistency of PA+TI⋄Πm

. By
(syntactic) compactness we only need to show that IΣk+TI⋄Πm

is consistent for
arbitrary k. The assumption provides an n ≥ max{k,m} such that IΣn+TI⋄Πn

is consistent. Then it suffices to invoke Proposition 1.9.

The formulas TI⋄Πn
and Fε0(n − 1) ↓ together entail Πn-induction over the

natural numbers. It would thus be tempting to replace the theory IΣn +TI⋄Πn

by IΣ1 + TI⋄Πn
. However, this is problematic in a weak meta-theory where we

do not know that IΣ1 ⊢ Fε0(n− 1)↓ is true. Still, it will be convenient that the
induction formulas of IΣn and TI⋄Πn

have the same complexity.

2. Models of Slow Transfinite Induction

In view of Corollary 1.10 it remains to show that the theories IΣn+TI⋄Πn
are

consistent. Our approach is inspired by the proof of [1, Theorem 4.1], where a
model of Peano Arithmetic is transformed into a model of slow consistency. The
main technical ingredient is the construction of models of transfinite induction
due to Sommer in [4, Theorem 5.25], building on classical work such as [17].
As proved originally, [4, Theorem 5.25] only applies to a standard ordinal α.
This is most apparent in the proof of [4, Lemma 5.24], where α is part of the
data encoded in the standard number m. Theorem 2.15 below formulates the
same result for non-standard ordinals. It turns out that Sommer’s proof can
be adapted with some modest modifications (see in particular the explanation
after Definition 2.12). Unfortunately, we must review much of Sommer’s ori-
ginal proof in order to describe the necessary changes.
To formalize the model theoretic arguments as directly as possible it is conveni-
ent to work in the subtheory ACA0 of second-order arithmetic. Recall (e.g.
from [9, Theorem III.1.16]) that any first-order theorem of ACA0 is already
provable in Peano Arithmetic. We remark that Sommer in [4, Section 6.4]
formalizes his results in much weaker theories.
The general idea of the proof is to start with a model M of Peano Arithmetic
and to construct an initial segment I ⊆ M which satisfies some amount of
transfinite induction. The segment I will be the limit point of a sequence A
of elements of M. The sequence A will be finite in the sense of M but it
will have non-standard length from an external viewpoint. The satisfaction of
Σn-formulas in I will be reduced to the satisfaction of corresponding bounded
formulas in M, which we introduce in the following definition. Let us point out
that the concepts used in this section are implicit in the proofs from [4]. We
find it convenient to extract and name them.

Definition 2.1 (cf. [4, Section 5.5.3]). Consider a formula of the form

ϕ(	y) ≡ Qn−1
xn−1

. . . Q0
x0
θ(	x, 	y),
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where theQi ∈ {∀, ∃} are all unbounded quantifiers of ϕ. Let zϕ = 〈zϕ0 , . . . , z
ϕ
n−1〉

be a list of (the first n) variables which do not appear in ϕ. Then the formula

ϕ∗(	y; 	z ϕ) :≡ Qn−1
xn−1≤z

ϕ
n−1

. . . Q0
x0≤z

ϕ
0
θ(	x, 	y)

is called the bounded variant of ϕ.

Next, let us characterize the actual bounds d0, . . . , dn−1 that are to be sub-
stituted for the variables zϕ. They depend on the initial segment I, or rather
on the sequence A ∈ M which has I as a limit point. The following definition
is to be formalized in Peano Arithmetic: It will be applied inside our model
M � PA. In particular (iii) refers to the PA-provably total function which
maps each code of a formula ϕ (which will be an element of M) to the code ϕ∗

of its bounded variant (as computed in M).

Definition 2.2 (cf. [4, Lemma 5.11]). A pair (A, d) is called n-inductive if
A = 〈A0, . . . , Alen(A)−1〉 codes a strictly increasing sequence, d = 〈d0, . . . , dn−1〉
codes a sequence of length n, and the following holds:

(i) For i < len(A)− 2 we have A2
i ≤ Ai+1.

(ii) We have Alen(A)−1 ≤ dm for all m < n.

(iii) Consider an arbitrary m < n, an i < len(A)−1 with i ≥ n−1, and a Πm-
formula ϕ(y0, . . . , yk−1, x). Let ϕ∗(y0, . . . , yk−1, x; z

ϕ
0 , . . . , z

ϕ
m−1) be the

bounded variant of ϕ, and let p = 〈p0, . . . , pk−1〉 be a list of parameters.
If the 4-tuple 〈0, ϕ, p, 0〉 has code strictly below Ai−1 then the ∆0-formula

ϕ∗(p0, . . . , pk−1, w; d0, . . . , dm−1)

is true for some w ≤ Ai+1 if it is true for some w ≤ dm.

We say that the n-inductive pair (A, d) lies in the interval [a, b] if we have
A0 + n+ 1 ≥ a and Alen(A)−1 ≤ b.

The first and last entry of 〈0, ϕ, p, 0〉 leave room for a future extension.
Note that a truth predicate for ∆0-formulas suffices to formalize the definition.
Concerning the encoding of sequences (and tuples, represented as sequences of
fixed length), it will be convenient to (provably) have

w ≤ s ∗ 〈w〉,

w ≤ w′ → s ∗ 〈w〉 ≤ s ∗ 〈w′〉,

“s′ is an initial segment of s” → s′ ≤ s.

Also, for sequences of any fixed length the code of the sequence should be
bounded by a polynomial in its entries. All these requirements hold under the
encoding of [4, Section 2.2].
Now consider a model M � PA and assume that A ∈ M encodes a strictly
increasing sequence (from the viewpoint of M). Define

AM := {m ∈ M|M � ∃i<len(A) m = Ai}.
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A non-empty initial segment I of M is called a limit point of A if the set I∩AM

is unbounded in I. If the length of A is a non-standard element of M then we
can define a limit point (indeed the smallest limit point) as

I := {m ∈ M| for some n ∈ N we have M � m ≤ An}.

While this defines I ⊆ M as a set, it is not clear how the satisfaction relation
for M could be transformed into (an arithmetical definition of) a satisfaction
relation for I (cf. [9, Problem I.4.28]). To circumvent this difficulty, it suffices
to read [4, Lemma 5.11(b)] “the other way around”, taking the established equi-
valence as a definition and deducing what is usually the definition of satisfaction
in a model:

Proposition 2.3 (ACA0, cf. [4, Lemma 5.11(b)]). Consider a standard num-
ber n, a model M � PA, and a pair (A, d) ∈ M which is n-inductive from the
viewpoint of M. Assume that I is a limit point of A. If t(	x) is a term and 	p
are elements of I then the value t(	p)M also lies in I. Thus

t(	p)I := t(	p)M

defines an interpretation of terms in I. To interpret the relation symbols =
and ≤ in I one simply restricts their interpretations in M. To obtain a partial
satisfaction relation for I, consider a formula ϕ(	y) in

⋃
m≤n Σm ∪ Πm and

parameters 	p ∈ I, and set

I � ϕ(	p) :⇔ M � ϕ∗(	p; d0, . . . , dm−1). (6)

This is indeed a partial satisfaction relation for I, i.e. Tarski’s conditions hold
wherever satisfaction is defined.

Proof. As a limit point, I contains all standard elements, and in particular
the elements 0, 1, 2 ∈ M. This reduces closure under successor, addition and
multiplication to closure under squaring. Now I is closed under squaring by
condition (i) of Definition 2.2.
Next, note that ϕ∗ and ϕ are the same formula if ϕ is bounded. Thus we have

I � ϕ(	p) ⇔ M � ϕ(	p) for any bounded formula ϕ. (7)

If the principal connective of a formula ϕ ∈ Σm∪Πm is a propositional connective
or a bounded quantifier then ϕ must be a ∆0-formula. Thus Tarski’s conditions
for these connectives carry over from M (note that, by the first claim, any
witness m ≤ t(	p)M to a bounded quantifier lies in I). The case of an unbounded
quantifier relies on the fact that, by clauses (ii) and (iii) of Definition 2.2, the
quantifier has a witness in I if and only if it has a witness below dm−1. We
refer to the proof of [4, Lemma 5.11(b)] for more details.

Let us once more stress the important point that, due to (6), the complexity
of the partial satisfaction relation for I does not depend on n. It will be conveni-
ent to extend the partial satisfaction relation to a fixed number of additional
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quantifiers: Let Π3(Σn) be the class of formulas ∀	x∃	y∀	zψ where ψ is a pro-
positional combination of formulas in

⋃
m≤n(Σm ∪ Πm). Building on the given

satisfaction relation for Σn-formulas one can give an arithmetical definition of
satisfaction for formulas from the class Π3(Σn) (just as one usually defines truth
for Π3-formulas):

Lemma 2.4 (ACA0). In the situation of Proposition 2.3, the partial satis-
faction relation over I can be extended to a satisfaction relation for Π3(Σn)-
formulas, still satisfying Tarski’s conditions.

Note that the induction axiom for a Σn-formula lies in the class Π3(Σn)
(after prefixing quantifiers). We can thus formulate the following result:

Lemma 2.5 (ACA0). In the situation of Proposition 2.3, the initial segment
I satisfies all axioms of IΣn.

Proof. For all axioms other than induction it suffices to invoke Tarski’s condi-
tions and the absoluteness of atomic formulas, provided by (7). Equivalence (6)
reduces induction for the Σn-formula ϕ in I to induction for the formula ϕ∗ in
the model M.

The usual proof of soundness relies on a full satisfaction relation, and is thus
not available for I. It is standard to fix this:

Lemma 2.6 (ACA0). In the situation of Proposition 2.3, consider two Π3(Σn)-
formulas ϕ(	x) and ψ(	x) and parameters 	p ∈ I. If we have IΣn ⊢ ∀	x(ϕ → ψ)
then I � ϕ(	p) implies I � ψ(	p). In particular, a notion that is ∆1 in IΣn is
absolute between I and M.

Proof. First, we transform a given proof of ϕ → ψ into a sequent calculus proof
(see e.g. [13, Definition 2.3.2]) of Γ, ϕ ⇒ ψ, where Γ consists of axioms of IΣn.
Next, we eliminate all occurrences of the cut rule (see e.g. [13, Theorem 2.4.2]).
By the subformula property all formulas which occur in the resulting proof be-
long to the class Π3(Σn). For this class we have a satisfaction relation, so we
can deduce soundness as usual.
By Tarski’s conditions and the absoluteness of bounded formulas any Σ1-formula
(Π1-formula) is upwards (downwards) absolute. The desired absoluteness fol-
lows as, by the first claim, the two versions of a ∆1-formula are equivalent in
the (partial) model I.

In particular, the lemma shows how a partial satisfaction relation can yield
a consistency result. Before we move on to ordinal induction, let us observe how
the initial segment I is located inside M:

Lemma 2.7 (ACA0). Adding to the assumptions of Proposition 2.3, assume
that the n-inductive pair (A, d) lies in the interval [a, b] (from the viewpoint
of M). Then the initial segment I contains a but not b.

Proof. Straightforward from Definition 2.2.
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To see how transfinite induction is accomodated we need some more notions
concerning the ordinals below ε0: Recall (e.g. from [4]) that any limit ordinal λ is
approximated by a strictly increasing “fundamental” sequence ({λ}(n))n∈N, to
be computed from its Cantor normal form. This is extended to non-limit ordin-
als by the stipulations {α+ 1}(n) = α and {0}(n) = 0. Also recall the concept
of an α-large sequence: For an ordinal α and a sequence s = 〈s0, . . . , sk−1〉 of
natural numbers the ordinal {α}(s) is computed by first descending to {α}(s0),
then to the s1-th element of the fundamental sequence of that ordinal, finally
leading to

{α}(s) = {· · · {{α}(s0)}(s1) · · · }(sk−1).

The sequence s is called α-large if we have {α}(s) = 0. It is called exactly α-
large if it is α-large but no proper initial segment of it is α-large. According to
[4, 5.5.2] the relation {α}(s) = β is ∆1 in IΣ1. We will write s ∈ Sα to express
that s is exactly ωα-large. A finite set will be called (exactly) α-large if the
strictly increasing sequence which enumerates its elements has that property.
The connection with ordinal induction is made by the following result:

Lemma 2.8 (ACA0). There is an IΣ1-provably total function Hα(β) = s (in
the variables α and β) such that IΣ1 proves the following: For any α < ε0 the
function Hα restricts to an order-preserving bijection

Hα : (ωα
2 , <)

∼=
−→ (Sα, <L),

where <L is the lexicographic ordering of sequences.

Proof. This is [4, Theorem 5.12]. Note that the whole statement is Σ1, so
provability in ACA0 is no issue.

Inspired by this correspondence one formulates principles of “sequence in-
duction”: For a formula ϕ ≡ ϕ(	x, s) with induction variable s and parameters
	x we put

SeqProgs.ϕ(	x, β) :≡ ∀s∈Sβ
(∀s′∈Sβ

(s′ <L s → ϕ(	x, s′)) → ϕ(	x, s)),

SeqTIs.ϕ(α) :≡ ∀	x(SeqProgs.ϕ(	x, α) → ∀s∈Sα
ϕ(	x, s)).

Note that being progressive is now relative to an ordinal parameter β. This is
necessary because the correspondence between ordinals and sequences of num-
bers is not absolute but rather depends on the initial segment of the ordinals
in which we are interested. Let us reduce ordinal induction to induction over
large sequences:

Lemma 2.9 (ACA0). For any n ≥ 1 and any Πn-formula ψ(	x, γ) there is a
Πn-formula ϕ(	x, δ, s) such that we have IΣ1 ⊢ ∀α(SeqTIs.ϕ(α) → TIγ.ψ(ω

α
2 )).

The crucial point is that the quantification over α occurs in the object theory
IΣ1. This is required because we want to use the implication for a non-standard
ordinal, as opposed to [4].
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Proof. Define
ϕ(	x, δ, s) :≡ ∀β<ωδ

2
(Hδ(β) = s → ψ(	x, β)).

Using Lemma 2.8 one can verify

IΣ1 ⊢ ∀	x(Progγ.ψ(	x) → ∀α SeqProgs.ϕ(	x, α, α)).

The claim of the lemma is readily deduced.

Inspired by these considerations we extend the notion of an n-inductive
pair, to ensure that the initial segment I of M satisfies some amount of ordinal
induction:

Definition 2.10 (cf. [4, Lemma 5.24]). We say that A = 〈A0, . . . , Alen(A)−1〉
and d = 〈d0, . . . , dn−1〉 form an (n, α)-inductive pair if they form an n-inductive
pair, with n ≥ 1, and additionally the following holds: Consider an arbit-
rary i < len(A)− 1, a Πn−1-formula ϕ(y0, . . . , yk−1, s, w) with bounded variant
ϕ∗(y0, . . . , yk−1, s, w; z

ϕ
0 , . . . , z

ϕ
n−2), and a list p = 〈p0, . . . , pk−1〉 of paramet-

ers. Assume that there is an s ∈ Sα and a number w such that we have
〈1, ϕ, p, s ∗ 〈w〉 〉 < Ai and such that ϕ∗(p0, . . . , pk−1, s, w; d0, . . . , dn−2) is true.
Then there is an s0 which is <L-minimal among the elements of Sα for which
the following holds:

There is a w such that we have 〈1, ϕ, p, s0 ∗ 〈w〉 〉 < dn−1

and such that ϕ∗(p0, . . . , pk−1, s
0, w; d0, . . . , dn−2) is true.

(8)

Furthermore, s0 has code below Ai+1 and the corresponding instance of (8)
holds with a witness w that is smaller than Ai+1.

Let us show that a limit point of an (n, α)-inductive pair satisfies a certain
amount of transfinite induction.

Proposition 2.11 (ACA0, cf. [4, Theorem 5.25]). In the situation of Propos-
ition 2.3, assume that (A, d) is (n, α)-inductive for some ordinal α ∈ M (all in
the sense of M), and with n ≥ 1. If α lies in I then we have I � TIΠn

(ωα
2 ).

Note that TIΠn
(ωα

2 ) is Π3(Σn) after prefixing quantifiers (cf. Lemma 2.4).

Proof. The proof is essentially that of [4, Theorem 5.25], but we repeat it to
demonstrate the functioning of our terminology. The crucial difference to [4]
is that α may now be non-standard. By Lemma 2.9 and Lemma 2.6 it suffices
to verify the sequence induction principle I � SeqTIs.ψ(α) for an appropriate
Πn-formula ψ. Write ψ ≡ ψ(	y, s) ≡ ∀wϕ(	y, s, w). By Tarski’s conditions for I
it suffices to show the following: Given arbitrary parameters 	p ∈ I, assume that
for some s ∈ I we have (i) I � s ∈ Sα and (ii) I � ψ(	p, s). We must find a
<L-minimal s0 ∈ I which satisfies (i) and (ii).
From (ii) we infer that I � ϕ(	p, s, w) holds for some w ∈ I. Write ϕ̃ for the
Πn−1-formula which results from ¬ϕ by pulling the negation under the unboun-
ded quantifiers. Thus we have I � ϕ̃(	p, s, w), and Proposition 2.3 transforms
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this into M � ϕ̃∗(	p, s, w; d0, . . . , dn−2). In view of the “It’s snowing”-Lemma M
also satisfies the statement “ϕ̃∗(	p, s, w; d0, . . . , dn−2) is true”. Let us verify the
other assumptions from Definition 2.10: Because of n ≥ 1 any formula which is
∆1 in IΣ1 is absolute between I and M. Thus (i) yields M � s ∈ Sα. Next,
note that ϕ̃ is a standard formula and that the parameter list 	p has standard
length. Thus (the code of) ϕ̃ lies in I, and so does the tuple 〈1, ϕ̃, 	p, s ∗ 〈w〉 〉.
Since I is a limit point of A we have 〈1, ϕ̃, 	p, s∗〈w〉 〉 < Ai for some i < len(A)−1
with Ai ∈ I. Let s0 be provided by Definition 2.10. From s0 ≤ Ai+1 we infer
s0 ∈ I. Absoluteness of ∆1-formulas gives I � s0 ∈ Sα, which is (i) above.
Also, Definition 2.10 tells us that M � ϕ̃∗(	p, s0, w; d0, . . . , dn−2) holds for some
w ≤ Ai+1, i.e. w lies in I. We conclude I � ϕ̃(	p, s0, w) and then I � ϕ(	p, s0, w),
as required for (ii) above. The <L-minimality of s0 in I is similarly deduced
from the minimality provided by Definition 2.10.

Next, we show that Peano Arithmetic proves the existence of (n, α)-inductive
pairs, under the assumption that certain large sets exist. This will allow us to
apply Proposition 2.11. We need an auxiliary notion:

Definition 2.12. For n ≥ 1, an n-inductive pair (A, d) is called α-admissible if
the following holds: Consider i < len(A)−1, a Πn−1-formula ϕ(y0, . . . , yk−1, s, x)
with bounded variant ϕ∗(y0, . . . , yk−1, s, x; z

ϕ
0 , . . . , z

ϕ
n−2), a list p = 〈p0, . . . , pk−1〉

of parameters, and a sequence s′. If we have 〈1, ϕ, p, s′〉 < Ai−1 then the state-
ment

“the sequence s is exactly ωα-large, s′ is an initial segment of s,
and the ∆0-formula ϕ∗(p0, . . . , pk−1, s, w; d0, . . . , dn−2) is true”

(9)

holds for some s, w with 〈1, ϕ, p, s ∗ 〈w〉 〉 < Ai+1 if it holds for some s, w
with 〈1, ϕ, p, s ∗ 〈w〉 〉 < dn−1.

We remark that the proof of [4, Lemma 5.24] treats Definition 2.12 as a
special case of Definition 2.2(iii). To do so, one pulls the truth predicate around
the whole statement (9), such that this whole statement becomes the formula ϕ
of Definition 2.2. Then, however, the ordinal α becomes part of the parameter
list p, and the condition 〈0, ϕ, p, 0〉 < Ai − 1 forces us to consider bounds on its
code. This is no problem if α is standard, as in [4], but it becomes an issue when
we consider non-standard ordinals. The notion of α-admissibility disentangles
α and p, and then [4] extends to non-standard ordinals:

Proposition 2.13 (PA, cf. [4, Lemma 5.10, 5.11(a)]). Assume that we have
Fω

γ
n−1

(a) = b for ordinals γ ≥ 1 and α and numbers n ≥ 1, a ≥ n + 1 and b.

Then there is an n-inductive α-admissible pair (A, d) in [a, b], such that A is
γ-large.

Proof. The proof is by induction on n, and very similar to the proofs of [4,
Lemma 5.10, 5.11(a)]. Let us review the case n = 1. The idea is to build
sequences A and B with the following properties:

(i’) For i < len(A)− 1 we have F{γ}〈A0,...,Ai〉(Ai) ≤ Ai+1.
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(ii’) We have a − 2 ≤ A0 < · · · < Alen(A)−1 ≤ Blen(B)−1 ≤ · · · ≤ B0 ≤ b, as
well as len(A) = len(B).

(iii’) Consider i < len(A)−1, a bounded formula ϕ(y0, . . . , yk−1, x) and a para-
meter list p = 〈p0, . . . , pk−1〉 with 〈0, ϕ, p, 0〉 < Ai − 1. Then the for-
mula ϕ(p0, . . . , pk−1, w) is true for some w ≤ Ai+1 if it is true for some
w ≤ Bi+1.

(iv’) Consider i < len(A)− 1, a bounded formula ϕ(y0, . . . , yk−1, s, x), a para-
meter list p = 〈p0, . . . , pk−1〉 and a sequence s′ with 〈1, ϕ, p, s′〉 < Ai − 1.
Then statement (9) holds for some s, w with 〈1, ϕ, p, s ∗ 〈w〉 〉+ 1 ≤ Ai+1

if it holds for some s, w with 〈1, ϕ, p, s ∗ 〈w〉 〉+ 1 ≤ Bi+1.

(v’) For any i < len(A) the set [Ai, Bi]∩ [a−2, b] is (ω{γ}〈A0,...,Ai−1〉+1)-large.

By induction on l we prove the following:

There are sequences A and B, both of length l+1, such that the following
holds for all j ≤ l: Either 〈A0, . . . , Aj−1〉 is γ-large or the sequences
〈A0, . . . , Aj〉 and 〈B0, . . . , Bj〉 fulfill conditions (i’) to (v’).

(10)

In the base case l = 0 we set A := 〈a − 2〉 and B := 〈b〉. Condition (ii’) is
immediate, and conditions (i’,iii’,iv’) are void because of len(A) − 1 = 0. For
condition (v’) we need to check that the set [a − 2, b] is (ωγ + 1)-large. This
follows from the assumption Fγ(a) = b by [4, Proposition 5.8]. We come to
the induction step l � l + 1: Let A and B be the sequences given by the
induction hypothesis. We may assume that A = 〈A0, . . . , Al〉 is not γ-large. In
particular, 〈A0, . . . , Al−1〉 is not γ-large, and the induction hypothesis tells us
that A and B satisfy (i’) to (v’). By condition (v’) the set [Al, Bl] ⊆ [a − 2, b]
is (ω{γ}〈A0,...,Al−1〉 + 1)-large. Using [4, Proposition 5.9] we can write

[Al, Bl] = {Al, Al + 1} ⊔ I1 ⊔ · · · ⊔ IAl+1

as a disjoint union, such that each interval Ii is ω{γ}〈A0,...,Al〉-large (thus in
particular non-empty). To extend A and B as required for the induction step, we
would like to pick Al+1 := max(Ii) and Bl+1 := max(Ii+1) for some 1 ≤ i ≤ Al.
Conditions (iii’) and (iv’) will be satisfied if certain minimal witnesses do not lie
in the interval Ii+1. The assumptions 〈0, ϕ, p, 0〉 < Al−1 and 〈1, ϕ, p, s′〉 < Al−1
ensure that there are less than Al relevant witnesses. Thus we can pick a
suitable interval by the pigeonhole principle. The construction also validates
(ii’) and (v’). Condition (i’) follows since [Al + 1, Al+1] is ω{γ}〈A0,...,Al〉-large,
using [4, Proposition 5.8, 5.9].
Now let A and B be provided by (10), for l = b− a+ 3. Since A cannot satisfy
condition (ii’) it must be γ-large. Shortening the sequences if necessary, we can
assume that A is exactly γ-large. Still by (10) it follows that (the shortened) A
and B satisfy conditions (i’) to (v’). We set d := 〈Alen(A)−1〉. It is immediate
that (A, d) has most properties of a 1-inductive α-admissible pair in [a, b]. What
remains to be checked is that A2

i ≤ Ai+1 holds for all i < len(A) − 2. For
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such an i we must have {γ}〈A0, . . . , Ai〉 ≥ 2, and then (i’) combined with [4,
Proposition 5.4] allows us to conclude.
For the induction step n � n + 1 one argues similarly, replacing the interval
[a − 2, b] by the set {a − (n + 2), A0, A1, . . . , Alen(A)−1} given by the induction
hypothesis. We refer to the proof of [4, Lemma 5.11(a)] for details.

Building on this, we can construct (n, α)-inductive pairs:

Proposition 2.14 (PA). For numbers n ≥ 1 and c and an ordinal α, consider
an (ωα · c)-large sequence A such that (A, d) is an n-inductive α-admissible
pair in the interval [a, b]. Then there is an (n, α)-inductive pair (B, d) in [a, b]
with len(B) = c.

The central idea of the following proof is due to [4, Lemma 5.24], but we
must adjust the details in a non-trivial way: The original statement of the result
assumes an inequality a ≥ m+ n+ 1 where m depends on (the code of) α. We
have to avoid such a bound, since in our application α will itself depend on the
(non-standard) number a.

Proof. By [4, Proposition 5.9] the sequence A can be written as a concatenation
A = A0 ∗ · · · ∗ Ac−1 such that each sequence Aj is ωα-large. Let Bj be the
first element of the sequence Aj , and set B := 〈B0, . . . , Bc−1〉. It is easy to see
that the pair (B, d) is n-inductive and lies in the interval [a, b], as B is a sub-
sequence of A. To verify that it is (n, α)-inductive, consider j < len(B)− 1,
a Πn−1-formula ϕ(y0, . . . , yk−1, s, x), a parameter list p = 〈p0, . . . , pk−1〉, a
sequence s ∈ Sα and a number w with 〈1, ϕ, p, s ∗ 〈w〉 〉 < Bj , such that
ϕ∗(p0, . . . , pk−1, s, w; d0, . . . , dn−2) is true. We construct a sequence s0 with
len(s0) = len(Aj) as follows:

For any i < len(s0), either 〈s00, . . . , s
0
i−1〉 is ωα-large or else s0i is min-

imal with the following property: There is an end-extension s ∈ Sα

of 〈s00, . . . , s
0
i 〉 and a number w with (1, ϕ, p, s ∗ 〈w〉) < dn−1 such that

ϕ∗(p0, . . . , pk−1, s, w; d0, . . . , dn−2) is true.

(11)

Indeed, if 〈s00, . . . , s
0
i−1〉 is not ωα-large then the induction hypothesis or the

above assumptions (in case i = 0) provide us with an end-extension s of
〈s00, . . . , s

0
i−1〉 as described in (11). Since s is ωα-large it is even an end-extension

of 〈s00, . . . , s
0
i−1, x〉 for some x. It suffices to minimize over x to get s0i . Now that

the construction is complete, let us establish the following property of s0:

If 〈s00, . . . , s
0
i−1〉 is not ω

α-large then 〈1, ϕ, p, 〈s00, . . . , s
0
i 〉 〉 < Aj

i −1 holds.

We argue by induction on i. The base case i = 0 follows from the above
assumption 〈1, ϕ, p, s ∗ 〈w〉〉 < Bj = Aj

0 and the inequalities listed after Defin-
ition 2.2. In the step the induction hypothesis tells us 〈1, ϕ, p, 〈s00, . . . , s

0
i 〉 〉 <

Aj
i − 1. We can combine this with (11) and the fact that A is α-admissible,

to learn that 〈s00, . . . , s
0
i 〉 has an end-extension s ∈ Sα such that the formula
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ϕ∗(p0, . . . , pk−1, s, w; d0, . . . , dn−2) is true for some w with 〈1, ϕ, p, s ∗ 〈w〉 〉 <
Aj

i+1. Minimality of s0i+1 yields the required

〈1, ϕ, p, 〈s00, . . . , s
0
i+1〉 〉 ≤ 〈1, ϕ, p, s〉 < 〈1, ϕ, p, s ∗ 〈w〉 〉 ≤ Aj

i+1 − 1.

In particular we can infer s0i ≤ Aj
i . As Aj is ωα-large it follows that s0 is

ωα-large, by [4, Proposition 5.9]. Possibly after shortening the sequence s0

we may assume that it is exactly ωα-large. When we apply (11) with i =
len(s0) − 1 we obtain a sequence s which is exactly ωα-large and has s0 as an
initial segment. This forces s0 = s, so that s0 has the properties attributed to
s in (11), i.e. it satisfies condition (8) from the definition of an (n, α)-inductive
sequence. We have already seen 〈1, ϕ, p, s0〉 < Aj

len(Aj)−1 − 1. Note that Aj+1
0

follows Aj

len(Aj)−1 in the list A. By α-admissibility we obtain a w such that

ϕ∗(p0, . . . , pk−1, s
0, w; d0, . . . , dn−2) is true and such that we have

〈1, ϕ, p, s0 ∗ 〈w〉 〉 < Aj+1
0 = Bj+1.

This implies s0 < Bj+1 and w < Bj+1, as required by Definition 2.10. The
<L-minimality of s0 follows easily from its construction.

Putting pieces together we obtain a non-standard version of Sommer’s result:

Theorem 2.15 (ACA0; cf. [4, Theorem 5.25]). Consider n ≥ 1, a model
M � PA, a non-standard number c ∈ M, and an ordinal α ∈ M (possibly
non-standard). Assume that we have

M � Fωωα·c
n−1

(a) = b

for some elements a ≥ n + 1 and b of M. Then there is an initial segment
I ⊆ M equipped with a satisfaction relation for Π3(Σn)-formulas. We have
a ∈ I and b /∈ I, and I satisfies all axioms of IΣn. If α lies in I then we have
I � TIΠn

(ωα
2 ).

Proof. Proposition 2.13 yields a pair (A, d) ∈ M in [a, b] which is n-inductive
and α-admissible, and such that A is (ωα · c)-large (all from the viewpoint of
M). By Proposition 2.14 this can be transformed into an (n, α)-inductive pair
(B, d) ∈ M in [a, b], with B a sequence of length c. Since c is non-standard
the sequence B has a limit point I. Proposition 2.3 and Lemma 2.4 equip I
with a satisfaction relation for Π3(Σn)-formulas. By Lemma 2.7 we have a ∈ I
and b /∈ I. Lemma 2.5 yields I � IΣn, and Proposition 2.11 accounts for
transfinite induction.

To apply this theorem we need a preparatory result:

Lemma 2.16 (PA). For any y < x, if Fε0(x) is defined then F
ω

ωx−y·(x+1)
y

(x) is

defined and has value at most Fε0(x).
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Proof. Recall the “step down”-relation β ցx α of [18], arithmetized in [1]: It
expresses that α can be reached from β by descending to the x-th member of the
fundamental sequence a finite number of times. It is well known that, provably
in PA, we have α ցx 0 for any ordinal α < ε0 (cf. [18, Proposition 2.9]).
Also recall Fε0(x) ≃ Fωx+1

(x). Thus [1, Lemma 2.3] reduces the claim to

ωx+1ցxω
ωx−y·(x+1)
y . To establish the latter, note that ωx−y ցx ωx−y−1 + 1

holds by [1, Lemma 2.13]. Then [1, Lemma 2.10] gives ωx−y+1 ցx ω
ωx−y−1+1.

In view of {ωωx−y−1+1}(x) = ωx−y ·(x+1) we conclude ωx−y+1ցxωx−y ·(x+1).

Iterating [1, Lemma 2.10] yields ωx+1ցxω
ωx−y·(x+1)
y , as desired.

Finally, we can construct a model of slow transfinite induction. Our proof
is inspired by that of [1, Theorem 4.1], which uses the standard version of
Sommer’s result.

Proposition 2.17 (PA). If Peano Arithmetic is consistent then so is the theory
IΣn +TI⋄Πn

, for each n ≥ 1.

Proof. Since the claim is arithmetic we can work in ACA0. The assumption
that Peano Arithmetic is consistent provides us with a non-standard model
M � PA. By Lemma 1.5 we have M � Fε0(k)↓ for each standard number k. It
is worth noting that this step requiresM to be a model of full Peano Arithmetic.
Using overspill we get

M � Fε0(a) = b for some non-standard numbers a, b ∈ M.

Lemma 2.16 tells us that F
ω

ωa−n+1·(a+1)

n−1

(a) is defined in M, and that its value

is at most b. Now apply Theorem 2.15 with α = ωa−n (as computed in M).
This produces an initial segment I ⊆ M, equipped with a satisfaction relation
for Π3(Σn)-formulas, such that we have a ∈ I, b /∈ I and I � IΣn. Recall that
x �→ ωx (in terms of codes) is an IΣ1-provably total function with ∆0-graph.
Thus we may compute ωa−n from the viewpoint of I. By absoluteness the
computations in I and M yield the same ordinal ωa−n = α. Theorem 2.15 thus
also gives I � TIΠn

(ωa−n+2). Recall

TI⋄Πn
≡ ∀x≥n .−1(Fε0(x)↓→ TIΠn

(ωx+3−n)).

To verify I � TI⋄Πn
we consider an arbitrary p ∈ I with p ≥ n − 1. Assume

that we have I � Fε0(p) = q for some q ∈ I, and observe that this implies
q < b. Since Fε0(x) = y is a bounded formula we also have M � Fε0(p) = q.
Using [1, Lemma 2.3] we can conclude p < a. Thus I � TIΠn

(ωa−n+2) implies
I � TIΠn

(ωp+3−n), as required for I � TI⋄Πn
. Even though I does not have a full

satisfaction relation, the desired consistency result follows by Lemma 2.6.

The promised result about slow uniform reflection follows immediately:

Theorem 2.18. We have

PA ⊢ Con(PA) → Con(PA+RFN⋄
PA

).

Proof. Combine Corollary 1.10 and Proposition 2.17.
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3. Iterated Slow Consistency

Recall the slow consistency formula

Con⋄(PA+ ϕ) ≡ ∀x(Fε0(x)↓→ Con(IΣx+1 + ϕ))

with variable ϕ. Following [19, Lemma 2.1], transfinite iterations along the
ordinals can be defined with the help of the fixed point theorem (see e.g. [9,
Theorem III.2.1]): It provides a formula Con⋄α(PA) with variable α such that
we have

IΣ1 ⊢ Con⋄α(PA) ↔ ∀β<α Con⋄(PA+Con⋄
β̇
(PA)). (12)

In particular the equivalence implies that Con⋄α(PA) is Π1 in IΣ1. Even though
ε0 is not part of the ordinal notation system, the equivalence makes the state-
ment Con⋄ε0(PA) meaningful. To show that iterations of slow consistency be-
come stronger as the ordinal parameter grows we need the following observation:

Lemma 3.1 (Σ1-completeness for slow provability). If ϕ ≡ ϕ(x) is Σ1 in IΣn,
with n ≥ 1, then we have

IΣn ⊢ ϕ(x) → Pr⋄
PA

(ϕ(ẋ)).

Proof. Write n = k + 1. By assumption and Σ1-completeness for the usual
notion of proof we have

IΣn ⊢ ϕ(x) → PrIΣk+1
(ϕ(ẋ))

In view of IΣn ⊢ Fε0(k)↓ the result follows by (2).

We can deduce that the hierarchy of slow consistency statements is strict:

Proposition 3.2. We have

IΣ1 ⊢ ∀β<α(Con
⋄
α(PA) → Con⋄β(PA)).

Given ordinals β < α ≤ ε0 we have

PA+Con⋄β(PA) � Con⋄α(PA).

Proof. Equivalence (12) reduces the first claim to

IΣ1 ⊢ Con⋄(PA+Con⋄
β̇
(PA)) → Con⋄β(PA). (13)

This is nothing but the contrapositive of slow Σ1-completeness. Let us come to
the second claim: Aiming at a contradiction, assume that Con⋄α(PA) is provable
in PA+Con⋄β(PA). By equivalence (12) this implies

PA+Con⋄β(PA) ⊢ Con⋄(PA+Con⋄β(PA)).

According to [1, Corollary 3.4] this is only possible if PA + Con⋄β(PA) is in-
consistent. The consistency of PA+Con⋄β(PA) is easily established in a strong
meta-theory: By induction on β one shows that Con⋄β(PA) holds in the stand-
ard model, using (12) for the induction step. To avoid a strong meta-theory we
could invoke Theorem 3.4 below (which does not rely on the present claim): It
shows that PA+Con(PA) proves the consistency of PA+Con⋄β(PA).
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The following result shows in particular that the finite part of the hierarchy
coincides with the iterations considered in [1, Section 4].

Proposition 3.3. We have

IΣ1 ⊢ Con⋄0(PA),

IΣ1 ⊢ Con⋄α+1(PA) ↔ Con⋄(PA+Con⋄α̇(PA)),

IΣ1 ⊢ “λ limit” → (Con⋄λ(PA) ↔ ∀γ<λ Con
⋄
γ(PA)).

Proof. The first claim follows immediately from (12), and so does direction “→”
of the second claim. For the other direction, assume Con⋄(PA + Con⋄α̇(PA)).
By (13) we get Con⋄α(PA), i.e. ∀β<α Con⋄(PA+Con⋄

β̇
(PA)). Together we have

∀β<α+1 Con
⋄(PA+Con⋄

β̇
(PA)), and thus Con⋄α+1(PA) by (12). The last claim

follows from similar considerations.

We remark that all theories PA + Con⋄α(PA) in our hierarchy are finite
extensions of Peano Arithmetic. In this respect our set-up differs from the
iterations of (usual) consistency investigated by Schmerl [20] and Beklemishev
[19]: Their approach would suggest to consider the infinite extension

PA+ {Con⋄γ(PA) | γ < λ}

at limit stage λ. We want to avoid infinite extensions because they make the
notion of slow consistency somewhat less canonic: Assuming Fε0(x) ↓, should
we demand the consistency of IΣx+1 + {Con⋄γ(PA) | γ < λ} or the consistency
of, say, IΣx+1 + {Con⋄γ(PA) | γ < {λ}(x+1)}? Another reason is that we hope
to reach the finite extension PA+Con(PA) at limit stage ε0.
We have seen that iterations of slow consistency generate a strict hierarchy.
Now we prove a main result of this paper, relating this hierarchy to the usual
consistency statement:

Theorem 3.4. We have

PA+Con(PA) ⊢ ∀α<ε0 Con(PA+Con⋄α̇(PA)).

By Σ1-completeness and Proposition 3.3 this implies

PA+Con(PA) ⊢ Con⋄ε0(PA).

It is worth noting that the proof uses slow reflection only for Σ1-formulas.

Proof. By Theorem 2.18 we have PA + Con(PA) ⊢ Con(PA + RFN⋄
PA

), so it
suffices to establish

PA ⊢ ∀α<ε0 PrPA+RFN⋄

PA
(Con⋄α̇(PA)).

As famously shown by Gentzen [16], PA proves ordinal induction for any proper
initial segment of ε0. This fact can itself be established in PA (cf. Lemma 1.8).
The open claim is thus reduced to

PA ⊢ PrPA+RFN⋄

PA
(Progα.Con⋄

α(PA)),
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i.e. the theory PA + RFN⋄
PA

must prove that Con⋄α(PA) is progressive in the
ordinal parameter α. Considering the contrapositive of RFN⋄

PA
(¬Con⋄

β̇
(PA))

we have

PA+RFN⋄
PA

⊢ ∀γ(Con
⋄
γ(PA) → Con⋄(PA+Con⋄γ̇(PA))).

Together with (12) we get

PA+RFN⋄
PA

⊢ ∀β(∀γ<β Con
⋄
γ(PA) → Con⋄β(PA)),

just as required.

Our next goal is to prove the converse implication, namely that ε0 itera-
tions of slow consistency yield the usual consistency statement. This follows
from a result of Schmerl [20] and Beklemishev [19], stating that Con(PA) is
implied by ε0 iterations of consistency over the elementary arithmetic EA. To
conclude one only needs to observe that slow consistency entails the consistency
of EA, and that this is preserved under iterations. Since Fε0(0) ↓ is provable
by Σ1-completeness equivalence (1) shows that slow consistency even implies
Con(IΣ1). The same argument works for the variant Con∗ (because Fε0(1) ↓
is provable as well, cf. the introduction) and other possible variations of slow
consistency. Let us provide details: We have already mentioned that [19] works
with infinite collections of consistency statements, taking

EAα := EA+ {Con(EAβ) |β < α}

for the theory at stage α. Still, the fixed point theorem allows us to express the
relation EAα ⊢ ϕ: Following [19, Equation 3] we consider a formula �(α,ϕ)
with

EA ⊢ �(α,ϕ) ↔ Pr
EA+{¬�(β̇,0=1) | β<α}(ϕ). (14)

By [19, Proposition 7.3, Remark 7.4] we have

IΣ1 ⊢ “ϕ a Π1-formula” ∧ PrPA(ϕ) → �(ε0, ϕ).

Taking the contrapositive of the instance ϕ ≡ (0 = 1) yields

IΣ1 ⊢ ¬�(ε0, 0 = 1) → Con(PA). (15)

Let us establish the connection with slow consistency:

Lemma 3.5. We have

IΣ1 ⊢ ∀α<ε0(Con
⋄
α+1(PA) → ¬�(α, 0 = 1)).

Proof. Let us abbreviate

ψ(α) :≡ Con(IΣ1 +Con⋄α̇(PA)) → ¬�(α, 0 = 1).
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In view of (12), (1) and IΣ1 ⊢ Fε0(0)↓ we have

IΣ1 ⊢ ∀α(Con
⋄
α+1(PA) → Con(IΣ1 +Con⋄α̇(PA))).

Thus it suffices to prove IΣ1 ⊢ ∀α<ε0ψ(α). We would like to argue by transfinite
induction, but this does not yield a uniform proof for all ordinals below ε0 (not
even if we work in PA instead of IΣ1). Instead we use a trick based on Löb’s
theorem, namely the “reflexive induction rule” introduced by Schmerl in [20] (see
also the proof of [19, Lemma 3.2]). This admissible rule allows us to conclude
IΣ1 ⊢ ∀αψ(α) once we have established

IΣ1 ⊢ PrIΣ1(∀β<α̇ψ(β)) → ψ(α). (16)

To prove the latter, let us work in IΣ1: We assume PrIΣ1(∀β<α̇ψ(β)) and,
unravelling the definition of ψ, also Con(IΣ1 +Con⋄α̇(PA)). By (12) this gives

Con(IΣ1 + ∀β<α̇ Con⋄(PA+Con⋄
β̇
(PA))).

Note how the dot-notation operates on two different levels. By Σ1-completeness
Fε0(0)↓ is available. Thus (1) yields

Con(IΣ1 + ∀β<α̇ Con(IΣ1 +Con⋄
β̇
(PA))).

Using the assumption PrIΣ1(∀β<α̇ψ(β)), i.e. the reflexive induction hypothesis,
we conclude

Con(IΣ1 + ∀β<α̇¬�(β, 0 = 1)).

A fortiori we have

Con(EA+ {¬�(β̇, 0 = 1) |β < α}).

By (14) we get ¬�(α, 0 = 1), i.e. the conclusion of ψ(α), as required for (16).

Now we can deduce the converse bound to Theorem 3.4:

Corollary 3.6. We have

IΣ1 +Con⋄ε0(PA) ⊢ Con(PA).

Proof. We argue in IΣ1: By (12) and Proposition 3.3 the assumption Con⋄ε0(PA)
implies ∀α<ε0 Con

⋄
α+1(PA). Lemma 3.5 yields ∀α<ε0¬�(α, 0 = 1). Using (14)

we arrive at ∀α<ε0 Con(EA + {¬�(β̇, 0 = 1) |β < α}), and (the syntactic ver-
sion of) compactness leads to Con(EA + {¬�(β̇, 0 = 1) |β < ε0}). The other
direction of (14) gives ¬�(ε0, 0 = 1). Finally Con(PA) follows from (15).

We come back to the topic of index shifts in the definition of slow provability,
as discussed in the introduction. Recall the †-variant with consistency statement

IΣ1 ⊢ Con†(PA+ ϕ) ↔ ∀x(Fε0(x)↓→ Con(IΣx+2 + ϕ)) (17)
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and uniform reflection principles

IΣ1 ⊢ RFN†
PA

(Πn) ↔ ∀x(Fε0(x)↓→ RFNIΣx+2
(Πn)).

As already observed in [5] this index shift makes slow reflection as powerful as
the usual reflection principle:

Lemma 3.7. For all n ≥ 2 we have

IΣ1 ⊢ RFN†
PA

(Πn) → RFNPA(Πn).

Proof. It suffices to show that RFN†
PA

(Πn) implies the totality of Fε0 . Let us
prove the induction step

IΣ1 +RFN†
PA

(Πn) ⊢ Fε0(x)↓→ Fε0(x+ 1)↓ .

Working in IΣ1, the assumptions RFN†
PA

(Πn) and Fε0(x)↓ make Πn-reflection
over the theory IΣx+2 available. On the other hand, Lemma 1.5 tells us that
IΣx+2 proves the Σ1-formula Fε0(x+ 1)↓.

The situation is somewhat different for n = 1: Finitely many iterations
of slow consistency are still weaker than the usual consistency statement. Of
course, iterations of Con† are defined parallel to (12). We will cite results for
the ⋄-variant if the proofs carry over easily.

Proposition 3.8. We have

PA ⊢ Con(PA) → Con†ω(PA).

Proof. According to Proposition 3.3 we can replace Con†ω(PA) by ∀n Con
†
n(PA).

Invoking Σ1-completeness the claim can then be strengthened to

PA+Con(PA) ⊢ ∀n Con(PA+Con†ṅ(PA)).

This is established by induction on n. Concerning the base case, Proposition 3.3
givesPA ⊢ Con†0(PA). Thus Con(PA+Con†0(PA)) follows from the assumption
Con(PA). Again using Proposition 3.3 the induction step amounts to

PA ⊢ Con(PA+Con†ṅ(PA)) → Con(PA+Con†(PA+Con†ṅ(PA))).

Note that, by Σ1-completeness, it does not matter whether the code of the
formula Con†ṅ(PA) in the conclusion is computed in the object theory (i.e.
inside the consistency statement) or in the meta-theory. Then the induction
step follows from the more general statement

PA ⊢ ∀ϕ(Con(PA+ ϕ) → Con(PA+Con†(PA+ ϕ̇))).

This is essentially [1, Theorem 4.1]. Let us repeat the argument given there, to
show that one can accomodate the index shift: Working in PA, the assumption
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Con(PA + ϕ) provides a non-standard model M � PA + ϕ. Since PA + ϕ is
reflexive we have M � Con(IΣk+2 + ϕ) for each number k. By overspill we get

M � Con(IΣa+2 + ϕ) for some non-standard a ∈ M.

Assume first that we have M � Fε0(a + 1) ↓, i.e. that M � Fε0(a + 1) = b
holds for some b ∈ M. Let n be a standard number. By [1, Corollary 3.8]
(derived from [4, Theorem 2.25], see also our Theorem 2.15) there is an initial
segment I ⊆ M with a ∈ I, b /∈ I and I � IΣn+1. We verify that I satisfies
Con†(PA + ϕ) as characterized by (17): Assume that we have I � Fε0(p) = q
for some p, q ∈ I. This implies M � Fε0(p) = q, and then q < b yields
p ≤ a. Thus we have M � Con(IΣp+2 + ϕ). Since this is a Π1-formula we get

I � Con(IΣp+2 + ϕ), as required for I � Con†(PA+ ϕ). Since n was arbitrary

we have indeed shown Con(PA+Con†(PA+ϕ)). In the remaining case, assume
that we have M � Fε0(a+1)↓. Then M itself satisfies Con†(PA+ϕ): Consider
p ∈ M with M � Fε0(p) ↓. In view of [1, Lemma 2.3] we must have p ≤ a.
Thus M � Con(IΣa+2 + ϕ) implies M � Con(IΣp+2 + ϕ), as required for

M � Con†(PA + ϕ). As M is a model of PA we have again established the
consistency of PA+Con†(PA+ ϕ).

Conversely, the index shift makes ω iterations of slow consistency as strong
as the usual consistency statement:

Proposition 3.9. We have

IΣ1 ⊢ Con†ω(PA) → Con(PA).

Proof. By Proposition 3.3 the assumption Con†ω(PA) implies ∀n<ω Con†n(PA).
Thus it suffices to prove

IΣ1 ⊢ ∀n(Con
†
n+1(PA) → ∀m≤n Con(IΣm+1 +Con†

n−m
(PA))).

Note that n−m refers to the dot notation. Working in IΣ1, consider an ar-
bitrary n and assume Con†n+1(PA). We show the conclusion by induction

on m. For the base case m = 0, note that the assumption Con†n+1(PA) im-

plies Con†(PA + Con†ṅ(PA)). In view of (17) and Fε0(0) ↓ we get the desired

Con(IΣ1+Con†ṅ(PA)). In the stepm � m+1 the induction hypothesis provides

Con(IΣm+1 +Con†
n−m

(PA)). Invoking (12) this implies

Con(IΣm+1 +Con†(PA+Con†
n−(m+1)

(PA))).

Crucially, Lemma 1.5 provides IΣm+1 ⊢ Fε0(m) ↓. In view of (17) we can
conclude

Con(IΣm+1 +Con(IΣṁ+2 +Con†
n−(m+1)

(PA))).

The desired Con(IΣm+2 +Con†
n−(m+1)

(PA)) follows by Σ1-completeness.
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Finally, we consider parameter-free slow reflection. Notationally, we switch
back to the ⋄-variant, but it is easy to see that the same arguments apply to the
other versions of slow consistency. Parameter-free slow reflection for a closed
formula ϕ is defined as

Rfn⋄
PA

(ϕ) :≡ Pr⋄
PA

(ϕ) → ϕ.

It will be useful to know that slow provability behaves, in important respects,
like the usual provability predicate:

Lemma 3.10 (Slow Hilbert-Bernays conditions; [7, Lemma 5.3]). If ϕ is prov-
able in Peano Arithmetic then so is Pr⋄

PA
(ϕ). Furthermore the following holds:

IΣ1 ⊢ ∀ϕ(Pr
⋄
PA

(ϕ) → Pr⋄PA
(Pr⋄PA

(ϕ̇))),

IΣ1 ⊢ ∀ϕ,ψ(Pr
⋄
PA

(ϕ → ψ) ∧ Pr⋄
PA

(ϕ) → Pr⋄
PA

(ψ)).

Additionally, Rathjen in [7, Lemma 5.3] proves a slow version of the form-
alized Löb theorem.

Proof. If Peano Arithmetic proves ϕ then we have IΣk+1 ⊢ ϕ for some k. By the
usual provability condition we get PA ⊢ Prk+1(ϕ). Together with PA ⊢ Fε0(k)↓
we can conclude PA ⊢ Pr⋄

PA
(ϕ) by (2). Next, work in IΣ1 and assume Pr⋄

PA
(ϕ).

By Σ1-completeness we obtain PrIΣ1(Pr
⋄
PA

(ϕ̇)), and in view of Fε0(0) ↓ equi-
valence (2) yields Pr⋄

PA
(Pr⋄

PA
(ϕ̇)). For the last claim we again work in IΣ1.

Assume Pr⋄
PA

(ϕ → ψ) and Pr⋄
PA

(ϕ). By (2) we get numbers x and y with
PrIΣx+1(ϕ → ψ) and PrIΣy+1(ϕ), as well as Fε0(x) ↓ and Fε0(y) ↓. We assume
x ≥ y, the other case being symmetric. Then the usual provability condition
provides PrIΣx+1(ψ), and Pr⋄

PA
(ψ) follows by (2).

The following consequence is due to a hint by Michael Rathjen:

Proposition 3.11 (Slow Goryachev’s Theorem). We have

PA+ {Rfn⋄
PA

(ϕ) |ϕ a closed formula} ≡Π1 PA+ {Con⋄n(PA) |n < ω},

i.e. the two theories prove the same Π1-sentences.

Proof. Concerning the inclusion ⊇, the contrapositive of the local reflection
principle Rfn⋄

PA
(¬Con⋄n(PA)) is the implication

Con⋄n(PA) → Con⋄(PA+Con⋄n(PA)).

So inductively all iterations Con⋄n(PA) can be deduced from the local reflection
principles. Using slow Σ1-completeness (see Lemma 3.1) the inclusion ⊆Π1 is
easily reduced to the following claim: For any closed formulas ϕ1, . . . , ϕn we
have

PA ⊢ Con⋄n+1(PA) → Con⋄

⎛
⎝PA+

∧

i=1,...,n

Rfn⋄
PA

(ϕi)

⎞
⎠ .
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This claim is established as in the case of ordinary provability: A detailed argu-
ment can be found in [21, Section 14.1]. Since it only uses the Hilbert-Bernays
conditions it immediately applies to slow provability. Another syntactical proof
of Goryachev’s theorem can be found in [22, Theorem IV.5]. Alternatively,
Goryachev’s theorem can be established by a semantical argument, using the
completeness of Gödel-Löb provability logic for Kripke models: Such a proof
can be found in [23, Lemma 4.2]. By [7, Theorem 5.4] slow provability models
Gödel-Löb logic, so the semantical proof of Goryachev’s theorem applies to slow
provability as well.

It is easy to check that the same result holds for the †-variant of slow provabil-
ity. Together with Proposition 3.8 it follows that the usual consistency statement
for Peano Arithmetic is not provable in PA+ {Rfn†

PA
(ϕ) |ϕ a closed formula}.

Thus, as opposed to the situation for uniform reflection, the index shift does
not make parameter-free slow reflection trivial.
The relationship between parameter-free (i.e. local) reflection for formulas of
different complexities has been investigated by Beklemishev [24] (I am grateful
to the referee for this hint): First, it is important to observe that for n ≥ 2 the
theories

PA+RfnPA(Πn) :≡ PA+ {RfnPA(ϕ) |ϕ a closed Πn-formula}

are not finite extensions of Peano Arithmetic (as opposed to the case of uniform
reflection). Thus we use RfnPA(Πn) to denote an infinite set of formulas, rather
than a single instance of parameter-free reflection. Beklemishev shows that the
theories PA+RfnPA(Πn) and PA+RfnPA(Σn) are incomparable if n ≥ 2. In
particular the hierarchy of parameter-free reflection principles is strict. On the
other hand, there are stronger conservation results than in the uniform case: For
example, the theory PA+RfnPA(Πn+1) is conservative over PA+RfnPA(Πn)
for Πn-formulas (in case n ≥ 2). It is straightforward to check that the proofs
from [24] apply to slow parameter-free reflection as well.
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