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Low-complexity DCD-based sparse recovery

algorithms

Yuriy Zakharov†, Senior Member, IEEE, Vı́tor Nascimento††, Senior Member, IEEE,

Rodrigo de Lamare†‡, Senior Member, IEEE, and Fernando Goncalves de Almeida Neto⋆

Abstract— Sparse recovery techniques find applications in
many areas. Real-time implementation of such techniques has
been recently an important area for research. In this paper, we
propose computationally efficient techniques based on dichoto-
mous coordinate descent (DCD) iterations for recovery of sparse
complex-valued signals. We first consider ℓ2ℓ1 optimization that
can incorporate a priori information on the solution in the
form of a weight vector. We propose a DCD-based algorithm
for ℓ2ℓ1 optimization with a fixed ℓ1-regularization, and then
efficiently incorporate it in reweighting iterations using a warm
start at each iteration. We then exploit homotopy by sampling
the regularization parameter and arrive at an algorithm that,
in each homotopy iteration, performs the ℓ2ℓ1 optimization on
the current support with a fixed regularization parameter and
then updates the support by adding/removing elements. We
propose efficient rules for adding and removing the elements.
The performance of the homotopy algorithm is further improved
with the reweighting. We then propose an algorithm for ℓ2ℓ0

optimization that exploits homotopy for the ℓ0 regularization;
it alternates between the least-squares (LS) optimization on the
support and the support update, for which we also propose an
efficient rule. The algorithm complexity is reduced when DCD
iterations with a warm start are used for the LS optimization,
and, as most of the DCD operations are additions and bit-shifts,
it is especially suited to real time implementation. The proposed
algorithms are investigated in channel estimation scenarios and
compared with known sparse recovery techniques such as the
matching pursuit (MP) and YALL1 algorithms. The numerical
examples show that the proposed techniques achieve a mean-
squared error smaller than that of the YALL1 algorithm and
complexity comparable to that of the MP algorithm.

Index Terms— coordinate descent, DCD, homotopy, sparse
recovery

I. INTRODUCTION

Sparse recovery techniques find applications in many areas,

including channel estimation [1]–[8], array beamforming [9]–

[12], adaptive filtering [13]–[17], and many others that require

low-complexity algorithms suitable for real-time implementa-

tion. Real-time implementation of sparse recovery techniques,

particularly on Field Programmable Gate Arrays (FPGAs), has

been recently an important area for research [18]–[25]. There
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are two families of techniques for finding sparse represen-

tations: convex optimization and greedy methods. Generally,

greedy techniques have lower complexity and require lower

numerical precision [22]. Therefore, when it comes to hard-

ware (such as FPGA) implementation, the matching pursuit

(MP) algorithm [18], [20], [22] or other greedy algorithms

such as CoSaMP [21], [26] or OMP [23], [27] are considered

as the most suitable candidates. The MP is a popular greedy

technique that possesses especially low complexity and there-

fore finds many practical applications [3], [13], [22], [28]–

[30]. However, in the accuracy performance, it is inferior to

many other techniques.

In the family of convex optimization techniques, there are

many algorithms possessing high performance, and recently

the YALL1 algorithm implementing the alternating direction

method [31], has become popular due to its high accuracy [5],

[10]. We will consider the MP complexity and the YALL1

recovery performance as benchmarks when analyzing the algo-

rithms that we propose in this paper. The MP, YALL1 as well

as our algorithms can deal with complex-valued problems.

Often, applications such as channel estimation, beamforming,

equalization and many others also require solving complex-

valued problems [7], [11], [32]. The family of algorithms

capable of dealing with complex-valued problems is scarcer

than the family of algorithms for real-valued problems. Impor-

tantly, it is not always straightforward to transform real-valued

algorithms into complex-valued counterparts [7], [33]–[35]. A

complex-valued algorithm can exploit the coupling (common

support) of the real and imaginary parts of a signal [35] and

potential non circularity of a signal, whereas the real-valued

counterpart does not have such a feature. Here we will focus

on sparse recovery algorithms for complex-valued problems.

It has been previously recognized that the coordinate descent

(CD) search has an inherent property of being low complexity

when signals are sparse [36]–[40]. We derive our algorithms

applying CD iterations for solving ℓ2ℓ1 and ℓ2ℓ0 optimization

problems. Specifically, we exploit dichotomous CD (DCD)

iterations [36] that minimize the use of multiplications, thus

resulting in algorithms especially well suited to real-time

implementation, e.g. using FPGAs [41]–[44].

In the family of greedy techniques, algorithms based on

ℓ1-homotopy [45] demonstrate high accuracy for recovering

sparse signals and are of lower complexity in comparison

with many other techniques [7], [46], [47]. It is important

to note that even if the homotopy approach requires solving

a sequence of optimization problems for a corresponding

sequence of values of a regularization parameter, due to the
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iterative nature of the DCD algorithm, if we use the current

estimate as the initial condition for the next homotopy iteration

(warm initialization), the complexity is in fact reduced, since

only a few updates are necessary at each homotopy iteration.

We will be using this approach to derive our algorithms.

A priori information on the support of sparse signals can sig-

nificantly improve the algorithm performance. In the extreme

case, when the support is perfectly known, the performance

of the oracle algorithm is achieved. We will use the oracle

performance as another benchmark for comparison with the

performance of the proposed algorithms. However, such a

knowledge of the support is most often unavailable. There

have previously been proposed techniques for estimating and

further refining the information on the support in a set of

reweightening iterations and incorporating these estimates in

the cost function [48]–[51]. We will exploit this idea to

improve the recovery performance of the proposed algorithms.

In this paper, we first derive DCD-based algorithms for

the weighted ℓ1 penalized regression. The ℓ1-DCD algorithm

updates all elements of the unknown vector. As the vector

length can be high, the complexity can also be high. The

alternative is a greedy-like algorithm that only deals with

a relatively small number of elements within the currently

identified support. Therefore, we develop a greedy algorithm

that is based on homotopy with respect to the ℓ1 regularization,

and the ℓ1-DCD iterations are used for updating the solution

within the support. We formulate optimal rules for adding and

removing elements from the support. The performance of the

homotopy algorithm is further improved with the reweighting.

Note that after publishing the initial version of the ℓ2ℓ1
homotopy algorithm in the Asilomar conference [52], it was

further developed in [53]–[55] for application in radar imaging

and in [56] for application in adaptive filtering.

We then propose an algorithm for ℓ2ℓ0 minimization that

exploits homotopy for the ℓ0 regularization (denoted as Hℓ0
direct-LS algorithm). It alternates between the least-squares

(LS) optimization on the support and the support update, for

which we also propose efficient rules. We then apply the DCD

iterations to solve the sequence of LS problems and arrive at

a computationally efficient (Hℓ0-DCD) algorithm.

The paper is organized as follows. Section II describes the

signal model. In Section III, we derive the ℓ1-DCD algorithm

for ℓ2ℓ1 minimization. In Section IV, we present the homotopy

DCD (Hℓ1-DCD) algorithm. Section V presents homotopy

algorithms for ℓ2ℓ0 minimization: Hℓ0 direct-LS and Hℓ0-

DCD algorithms. Section VI contains numerical examples and,

finally, Section VII presents conclusions.

Notation: We use capital and small bold fonts to denote

matrices and vectors, respectively; e.g. A is a matrix and x a

vector. Elements of the matrix and vector are denoted as An,p

and xn, respectively. We use I and Ic to denote a support

(indexes of non-zero elements) and its complement, respec-

tively; the cardinality of I is denoted as |I|. We also denote:

A(q) the qth column of A; AH the Hermitian transpose of

A; trace[R] the trace of R; AI the matrix obtained from A

keeping only columns corresponding to support I; RI,I the

|I|×|I| matrix obtained from R extracting elements from rows

and columns with indexes in the support I; xI the subset of

x that contains non-zero entries from x corresponding to the

support I; ℜ{·} and ℑ{·} are the real and imaginary parts of

a complex number, respectively.

II. SIGNAL MODEL

We consider the linear model

y = Ax+ n (1)

where A ∈ C
M×N is the observation matrix, n ∈ C

M×1 the

noise vector, y ∈ C
M×1 the observed signal, and x ∈ C

N×1

the unknown signal. We are especially interested in the case,

in which M < N and all variables in (1) are complex-valued.

We also assume that only K < M elements of vector x are

non-zero, i.e. the vector x is sparse, and the support (index

set of non-zeros) is unknown.

Applications of sparse recovery algorithms differ in the

possibility of precomputing the matrix R = AHA. If R

cannot be precomputed, the complexity of algorithms may be

dominated by the on-line computation of R or its submatrices.

In other applications, R can be precomputed or updated in

real-time with low complexity, e.g. as in adaptive filtering [3],

[14], [41], [57], channel estimation [22], beamforming [9]–

[11], etc. Here we are interested in applications where R is

available.

III. DCD ALGORITHM FOR ℓ2ℓ1 OPTIMIZATION WITH

FIXED REGULARIZATION

We consider the minimization of the ℓ2ℓ1 cost function

Jw,τ (x) =
1

2
||y −Ax||22 + τwT |x| (2)

with a fixed regularization parameter τ , where |x| is a vector

of element-wise magnitudes of entries in x, and w is a

weight vector. We now present a direct (non-homotopy) DCD

approach for minimization of the cost function in (2), starting

with the weight selection and support estimation.

If wk = 1 for k = 1, . . . , N , this problem is also known as

basis pursuit denoising (BPDN) [58]. We use as benchmark

in our simulations an oracle algorithm, which knows the true

location of the nonzero entries. The oracle algorithm can be

obtained by choosing wk = 0 for k within the support, wk = 1
otherwise, and with τ very large. See other examples of the

weight vector in [40], [48], [50].

The weight vector can also be updated in Ns reweighting

iterations and in each iteration, a new problem (2) is solved [7],

[49]. We will be using the following updating mechanism. In

every reweighting iteration with index s = 1, . . . , Ns, a weight

support Γw is identified using hard thresholding:

Γw =
{

k : |xk| > (µw)
sTw max

n
{|xn|}

}

(3)

where µw ∈ [0, 1] and Tw are adjusted parameters. Within the

support Γw, the weight entries are set to a value βs, where

β ∈ [0, 1) is an adjusted parameter. In the case of β = 0
and µw = 1, we arrive at the weights in [49]. In the case of

Tw = 1, β = 0 and µw = 1/2, we obtain the weights in [59].

The threshold is reduced with every reweighting iteration and

(if β > 0) the weights are also reduced. This is reasonable
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TABLE I

GENERAL STRUCTURE OF SPARSE RECOVERY ALGORITHMS BASED ON

ℓ2ℓ1 OPTIMIZATION WITH REWEIGHTING ITERATIONS

Initialization: c = b = AHy, x = 0, w = 1N , R = AHA

Cu = 0, Ci = 0, Tc = µc maxk |ck|
2

1: for s = 1, . . . , Ns do

2: Solve (2) using ℓ1-DCD or Hℓ1-DCD algorithm
3: For algorithms using i DCD iterations,

of which u iterations are successful, compute:
Cu ← Cu + u, Ci ← Ci + i

if Cu ≥ Nu then the algorithm stops
(Cu and Ci are used in the analysis of
the algorithm complexity)

4: Update the weight vector w on the support Γw using (3)
5: Debiasing according to (5)

since, in general, the estimation accuracy improves with every

reweighting iteration. The term (µw)
s provides an exponential

reduction of the threshold, while βs provides an exponential

reduction of the weights. The parameter µw defines the rate of

reducing the threshold, whereas the product µwTw defines the

initial threshold. Note that by choosing β = 1/2 and all initial

weights equal to one, the application of the weights does not

require multiplications, but only bit-shifts (that are much less

costly to implement in hardware).

We are interested in applications where the objective is

a low mean squared error (MSE) on the estimated support,

e.g. such as estimation of sparse multipath communication

channels [1]–[4], [7]. Therefore, after a sparse recovery al-

gorithm identifies the support and terminates, a debiasing on

the support should be done. The final support I can be the

output of the sparse recovery algorithm itself or it can be

identified, e.g. using hard thresholding, as a set of elements in

the solution x, satisfying the condition

I =
{

k : |xk| > µd max
n
{|xn|}

}

(4)

where µd ∈ [0, 1) is a predefined parameter. Using the

finally estimated support I , the debiasing stage computes the

minimum MSE (MMSE) estimate of the vector x as the

solution to the equation:

(RI,I + νI|I|)xI = AH
I y, (5)

where ν = σ2|I|/trace[RI,I ], σ
2 is the noise variance and I|I|

is the |I| × |I| identity matrix.

The general structure of sparse recovery algorithms pro-

posed in this paper is shown in Table I. For minimizing

the cost function (step 2) at each reweighting iteration s, i
DCD iterations are used among which there are u successful

iterations (that is, u iterations in which the solution vector

is updated, see [36], [42], [60]; note that the term successful

iterations was introduced in [60]). We set an upper limit Nu

to the total number Cu of successful iterations (considering

all reweighting iterations); the algorithm stops as soon as

Cu = Nu. The parameter Tc is used as a threshold to stop the

minimization at step 2; this is checked within the algorithm

performed at step 2 (see step 10 in Table II). The total number

of DCD iterations Ci and the total number of successful DCD

iterations Cu determine the algorithm complexity, as detailed

later in this section.

The function in (2) is convex and we use DCD iterations

to minimize it. One difference between our DCD-based al-

gorithms and previously proposed CD algorithms [37]–[39],

[61] is that we do not optimize the step-size for every CD

iteration, but instead we use a set of step-sizes defined by the

fixed-point representation of the solution. Thus, our CD search

is an inexact line search [62], [63] as opposed to the exact line

search in most previously proposed CD algorithms. Although,

for a particular iteration, the exact line search achieves a higher

reduction of the cost function, with an inexact line search the

convergence to the true solution in a sequence of iterations

can be even faster. In [41] and [42], this was demonstrated

when comparing the exact CD search and the DCD search for

solving the LS problem. Importantly, the DCD search allows

a large reduction in the number of operations; in many cases,

the algorithm complexity is dominated by the complexity of

successful iterations, which typically represent a small part

of all DCD iterations, especially for sparse solutions [36].

Moreover, most of the operations are additions and bit-shifts

which, together with the fixed-point representation of the

solution, make DCD iterations attractive for implementation

on real-time design platforms, such as FPGAs [42].

Consider DCD iterations for minimizing the cost func-

tion (2). At every iteration, only the p-th element of the

solution vector x may be updated as x̃ = x + αep, where

α is a complex-valued scalar and the vector ep has the p-th

element equal to one and the others zero. The update should

only be done if the cost function is reduced, i.e. if

∆J = Jw,τ (x+ αep)− Jw,τ (x) < 0

This can be written in the form

∆J =
1

2
|α|2Rp,p − ℜ{α∗(bp −R(p)Hx)}

+ τwp(|xp + α| − |xp|) (6)

where b = AHy. Defining the residual vector c = b −Rx,

we obtain

∆J =
1

2
|α|2Rp,p −ℜ{α∗cp}+ τwp(|xp + α| − |xp|) (7)

Starting from x = 0 and c = b, the residual vector can be

recursively updated at every coordinate descent iteration as

c← c−αR(p). If α is a power-of-two number, the update of

c requires M complex additions and no multiplications. Note

also that if ∆J ≥ 0, then no update is necessary - we call this

low-cost case an unsuccessful iteration. If ∆J < 0, an update

is necessary - this is a successful iteration.

When using DCD iterations, it is assumed that elements of

the solution vector have a fixed-point representation with Mb

bits within an amplitude interval [−H,H]. The choice of H
may be defined from the maximum magnitude of elements in

x. Note that the choice of H is not unique for DCD; in any

system with fixed-point representation of signals, one has to

decide on the maximum possible amplitude of the signals. It is

preferable to choose H as the smallest power-of-two number

satisfying H ≥ maxq{|ℜ[xq]|, |ℑ[xq]|}. However, the choice

is not very critical; see discussion on the choice of H in [42].

The DCD iterations start updates from the most significant bits
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TABLE II

ℓ1-DCD ALGORITHM

Input: c, R, x, H , Nu, Mb, Tc

Initialization: δ = H , u = 0, i = 0
1: for m = 1, . . . ,Mb do

2: δ = δ/2, α = [δ, −δ, jδ,−jδ], Flag = 0
3: for p = 1, . . . , N do

4: for k = 1, . . . , 4 do

5: ∆J = 1
2
δ2Rp,p −ℜ{α∗

k
cp}+ τwp(|xp + αk| − |xp|)

i← i+ 1
6: if ∆J < 0 then

7: xp ← xp + αk , c← c− αkR
(p)

8: Flag = 1, u← u+ 1
if u = Nu then the algorithm stops

9: if Flag = 1, go to step 3

10: if maxk |ck|
2 < Tc then the algorithm stops

Output: c, x, u, i

of coordinates towards less significant bits. This is controlled

by a step-size δ > 0 that starts with δ = H and is reduced as

δ ← δ/2 for less significant bits.

In a DCD algorithm for complex-valued problems, for every

coordinate, there are four possible directions on the complex

plane for updating: 1, −1, j and −j, where j =
√
−1.

Consequently, there are four values by which a coordinate

can be updated. These are the scalar values αk, k = 1, . . . , 4,

defined by these four directions and the step-size δ as elements

of the vector α = [δ, −δ, jδ, −jδ].
There can be different strategies for selecting coordinates for

updates. The most often used are cyclic and leading [41] (also

called greedy [61]) selections. Leading CD iterations require

costly computations for selection of the best coordinate for

updating. With cyclic DCD iterations, we do not need to find

the minimum of the cost function over all possible updates.

The cyclic DCD algorithm for minimizing Jw,τ is shown in

Table II. [We have also developed a leading DCD algorithm for

minimizing the cost function in (2) that provides an accuracy

similar to that of the cyclic DCD algorithm. However, its

complexity is somewhat higher than the complexity of the

cyclic DCD algorithm. Therefore, here, we only present the

cyclic DCD algorithm.] In addition to the parameters of the

algorithm described above (Mb and H), we also introduce

the maximum number of successful iterations (i.e. iterations

where the solution is updated) Nu and a parameter µc that

defines the threshold Tc for residual magnitudes; µc ∈ [0, 1)
is a predefined parameter (see Table I). If all the magnitudes

are smaller than the threshold, the algorithm stops.

The complexity of the cyclic DCD (we call it ℓ1-DCD)

algorithm in (real-valued) flops is given by

Pℓ1-DCD ≈ 8MN + 4N + 11Ci + 2NCu

+ 4NMb + 2NdebLg (8)

The first and second terms in (8) are for computing c and

Tc at the initialization stage (see Table I); these operations are

multiplications and additions. The term 11Ci is the complexity

of Ci tests at steps 5 and 6 in Table II; each computation

involves analysis of one direction on the complex plane for one

element, which can be done with 11 real-valued operations,

including multiplications, additions, and square-roots (required

to compute the absolute values |xp| and |xp+αk|). The exact

value of Ci, the number of times the test at step 6 is evaluated,

is difficult to predict; Ci ≥ Nu and tends to increase as the

vector length N increases. The term 2NCu is for updating

c in the overall Cu successful (i.e. when ∆J < 0) DCD

iterations (step 7); each update requires only 2N real-valued

additions, as multiplications by αk are bit-shift operations.

The next term in (8), 4NMb, is the complexity of computing

square magnitudes |ck|2 of the residual vector and search for

the maximum to check the termination condition at step 10;

this is done for every bit m, thus the factor Mb, and involves

multiplications and additions. The debiasing (last term) can

be efficiently done by using extra Ndeb DCD iterations at the

finally fixed support of cardinality Lg using the previously

found estimate of x as a warm start. The DCD iterations

for debiasing are similar to that in Table VI below and only

involve additions.

The complexity for the ℓ1-DCD algorithm in (8) and other

algorithms below are given in terms of flops. We are using this

measure because of the difficulty in estimating complexity for

the YALL1 algorithm (which we use here as a benchmark)

and the proposed ℓ0 direct-LS algorithm, and because the

true complexity will depend on the particular hardware imple-

mentation (e.g., DSPs, which have one-cycle multiplication

units, or FPGAs). This way of measuring complexity tends

to overestimate the complexity for DCD-based algorithms in

FPGA implementations, because DCD avoids multiplications

and divisions, which are complicated to implement in hard-

ware [64].

Although the ℓ1-DCD algorithm demonstrates a high recov-

ery performance and relatively low complexity (as will be seen

in Section VI), the complexity can be further reduced. Note

that for high N , Ci can be high, and in this case the main

contribution to the ℓ1-DCD complexity are computations at

step 5 in Table II, which are repeated Ci times. Moreover,

these (and only these) computations involve the square-root

operation. Although such an operation can be efficiently imple-

mented using DCD iterations [65], it is still more complicated

for hardware implementation than addition and multiplication.

The number of these computations can be significantly reduced

if they are only performed on the currently identified support

with a size |I| that is typically significantly lower than N .

This can be done using the homotopy approach as described

in the next section.

IV. HOMOTOPY DCD ALGORITHM FOR ℓ2ℓ1
OPTIMIZATION

For minimization of Jw,τ in (2) with further reduced com-

plexity, we now use homotopy with respect to the regulariza-

tion parameter τ . If τ is high, the second term in (2) dominates

the cost function and forces the cardinality of the presumed

support to zero. The strategy is to select the minimum possible

value (τmax) for the regularization parameter τ , for which the

solution is still all-zeros, and, in homotopy iterations, generate

a decreasing sequence of values of τ using uniform sampling

in the log scale; this is similar to the strategy in [40]. We

will start with τ = τmax and empty support I = ∅. For every
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τ , we will update the support and, on the updated support,

minimize the cost function Jw,τ . The algorithm will terminate

if τ ≤ τmin, where τmin = µτ τmax and µτ ∈ [0, 1] is a

predefined parameter, or if another termination condition is

met. Starting with zero support enables us to work always

with a small support, keeping the dimension of the problem

at each step low and significantly reducing the complexity.

We need to find rules for adding and removing elements

into/from the support.

Proposition 1: Let I be the support at some homotopy

iteration and the current solution to the ℓ2ℓ1 minimization be

x. Let b = AHy, R = AHA, and c = b−Rx. Adding the

t-th element, t ∈ Ic, into the support according to the rule

t = argmax
k∈Ic

(|ck| − τwk)
2

Rk,k

s.t. |ct| > τwt (9)

leads to reduction of the cost function (2) for a properly chosen

xt. The value

xt =
ct
Rt,t

(

1− τwt

|ct|

)

(10)

minimizes the cost function.

Proof. To prove this proposition, we analyze the change

of the cost function due to the update x̃ = x + αet, where

t ∈ Ic, i.e. xt = 0. The cost function will be changed by

∆J = Jw,τ (x + αet) − Jw,τ (x). We need to check if an α
exists that results in ∆J < 0. We rewrite ∆J as

∆J =
1

2
|α|2Rt,t −ℜ{α∗ct}+ τ |α|wt

=
1

2
|α|2Rt,t − |α|ℜ{e−jarg(α)ct}+ τ |α|wt

It is seen that a minimum of ∆J over arg(α) is achieved if

arg(α) = arg(ct) and, in this case, we have

∆J =
1

2
|α|2Rt,t − |α||ct|+ τ |α|wt (11)

To find |α| minimizing (11), we solve

∂∆J

∂|α| = |α|Rt,t − |ct|+ τwt = 0 (12)

and obtain that the minimum of ∆J over |α| is achieved at

|α| = (|ct| − τwt)/Rt,t > 0. Thus, ∆J is minimized and

negative if |ct| > τwt and

α =
1

Rt,t

(|ct| − τwt)e
jarg(ct) =

ct
Rt,t

(

1− τwt

|ct|

)

In this case, the largest decrement of the cost function Jw,τ

is given by ∆J = −(1/2)(|ct| − τwt)
2/Rt,t. Thus, the rule

for adding a new element into the support can be formulated

as in (9) and (10). �

Note that we are computing the minimum here just to show

that adding a new element to the support would lead to a

reduction of the cost function. In order to keep computational

complexity low, and to keep the fixed-point structure of the

solution, we do not actually update the solution using the

optimal value of xt in (10); see Table III and the discussion

further below.

This proposition also determines the starting value τmax of

TABLE III

Hℓ1-DCD ALGORITHM

Initialization: x = 0, I = ∅, c = b = AHy, R = AHA
1: Choose the first element t into the support: I = {t}; compute τmax

2: Repeat until a termination condition is met:

3: Solve minxI
||y −AIxI ||

2
2 + τwT

I
|xI | on the support I

and update c using ℓ1-DCD iterations
4: Update the regularization parameter: τ ← γτ
5: Remove an index t from the support I according to rule (14)
6: If the tth element is removed then

c← c+ xtR
(t)

7: Add an index t into the support I according to rule (9),
but keep the corresponding element xt equal to zero

the regularization parameter τ . If I = ∅, the first element to

be added into the support should be the one that maximizes

(|bt| − τwt)
2/Rt,t over t = 1, . . . , N . If wt = const > 0 and

Rt,t = 1, we arrive at the rule: t = argmaxk |bk|2. In the

general case, τmax is chosen according to:

τmax = max
k∈Γw

|bk|
wk

, where Γw = {k : wk > 0} (13)

Proposition 2: Let I be the support at some homotopy

iteration and the current solution to the ℓ2ℓ1 minimization be

x. Let b = AHy, R = AHA, and c = b −Rx. Removing

the t-th element, t ∈ I , from the support according to the rule

t = argmin
k∈I

1

2
|xk|2Rk,k + ℜ{x∗

kck} − τwk|xk|

s.t.
1

2
|xt|2Rt,t + ℜ{x∗

t ct} − τwt|xt| < 0 (14)

reduces the cost function.

Proof. To prove this proposition, we note that when remov-

ing an element xt from the support, the solution is updated

as x̃ = x − xtet. The change of the cost function ∆J =
Jw,τ (x̃)− Jw,τ (x) due to this update can be written as

∆J =
1

2
|xt|2Rt,t + ℜ{x∗

t ct} − τwt|xt| (15)

With the condition that ∆J < 0, from (15), the rule (14)

follows. �

The homotopy DCD (we call it Hℓ1-DCD) algorithm for

solving the ℓ2ℓ1 minimization problem is now presented in

Table III. This algorithm is similar to the algorithm presented

in [11] with the difference that the algorithm in [11] does not

have a mechanism for removing elements from the support. At

each homotopy iteration, the Hℓ1-DCD algorithm first mini-

mizes the cost function on the support I for the current value

of the regularization parameter τ . Then the algorithm updates

the support by removing and/or adding elements from/into the

support with further reduction of the cost function.

The order of first removing and then adding elements is

chosen due to the following reasons. The intention here is to

keep the fixed-point Mb-bit format of elements in the solution

vector x. If we first add an element into the support, we

have to update the element as defined in (10), and this would

change the format as there is no guarantee that the update will

provide exactly an Mb-bit word. If we do the adding last, then

we do not need to do the assignment (10) and we can keep

the element equal to zero since afterward we solve the ℓ2ℓ1
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minimization on the support by using DCD iterations and this

element will be properly updated within the fixed-point format.

When removing an element from the support, we assign to

this element a zero-value which is exactly described within

the Mb-bit fixed-point format. Moreover, with this order of

updating the support, we avoid the division operations in (10)

that are complicated for hardware implementation. Note that

computations in (9) do require division by Rk,k. However, if

the dictionary A is normalized so that Rk,k = 1 or if 1/Rk,k

is precomputed, the divisions are avoided.

The regularization parameter τ is reduced at each homotopy

iteration starting from the maximum value τmax found at step 1

down to a predefined value τmin using the update τ ← γτ .

The parameter γ ∈ (0, 1) determines how finely we sample

the regularization parameter. The closer γ to one, the more

accurate the sampling is, but more computations will be

required. The algorithm will terminate if τ ≤ τmin, where

τmin = µτ τmax and µτ ∈ [0, 1] is a predefined parameter. We

will also set a limit Lmax to the number of homotopy iterations

after which the algorithm terminates.

In this algorithm, we have to solve the minimization prob-

lem at every homotopy iteration as the parameter τ affects the

optimization result. For this purpose we can use the ℓ1-DCD

algorithm as described above with the following modification.

The optimization is now performed on the currently identified

support I only (and not the entire vector x). This significantly

speeds up the computation as the support size is usually

smaller than N . However, we keep updating all elements of

the residual vector c as they are required for updating the

support after the ℓ2ℓ1 optimization step is finished.

The complexity of the Hℓ1-DCD algorithm in terms of real-

valued flops is given by

PHℓ1-DCD = 8MN + 4N + 11Ci + 2NCu

+ 4NL+ 2NdebLg (16)

This is similar to the complexity of the ℓ1-DCD algorithm

given by (8), but there are two differences. The term 4NL is

the complexity of computing square magnitudes |ck|2 of the

residual vector for checking for termination of DCD iterations;

now this is checked for every homotopy iteration, thus the

factor L (L is the total number of homotopy iterations). The

total number of DCD iterations Ci (with the complexity 11Ci)

is now significantly reduced since solving the problem in (2)

in each homotopy iteration is performed only on the currently

identified support that in general is significantly smaller than

the problem size N . The difference in complexity will be

demonstrated in Section VI.

V. HOMOTOPY DIRECT-LS ALGORITHM AND HOMOTOPY

DCD ALGORITHM FOR ℓ2ℓ0 OPTIMIZATION

Consider the minimization of the cost function

Jλ(x) =
1

2
||y −Ax||22 + λ||x||0 (17)

This is a non-convex problem and its solution is NP-hard. For

finding an approximate solution to this problem, we will use

homotopy in the regularization parameter λ. If λ is high, the

second term in (17) dominates the cost function and, at very

high λ, the support I of the solution must be empty, i.e., I = ∅.
Therefore, it is intuitive to start the homotopy iterations with

a high λ and zero support. We need to find a minimum value

λmax of the regularization parameter λ for which still I = ∅.
Starting from λ = λmax in the homotopy iterations, λ will be

gradually reduced using the update λ← γλ, where γ ∈ [0, 1),
so that new elements can be added into the support and/or

removed from the support. Thus we need to derive rules for

updating the support.

For fixed λ and I , the second term of the cost function

Jλ(x) in (17) is also fixed as λ|I|, and minimizing Jλ(x) is

equivalent to minimizing the first term, i.e., solving the LS

problem on the support I . We can alternate between updating

the support, which affects the second term in (17), and solving

the LS problem on the fixed support, which affects the first

term in (17). Adopting this strategy will allow arriving at a

low complexity greedy algorithm.

Proposition 3: Let I be the support at some homotopy

iteration and the current solution to the ℓ2ℓ0 minimization be

x. Let b = AHy, R = AHA, and c = b−Rx. Adding the

t-th element, t ∈ Ic, into the support according to the rule

t = argmax
k∈Ic

|ck|2
Rk,k

s.t. |ct|2 > 2λRt,t (18)

and assigning to xt the value ct/Rt,t reduces the cost

function (17). The value of the regularization parameter λ
for starting the homotopy iterations is given by λmax =
(1/2)maxk |bk|2/Rk,k.

Proof. (The proof is similar to the proof of Proposition 1)

We notice that xt = 0 and we want to assign to this element a

new value x̃t = α, i.e., obtain a new solution x̃ = x+αet, so

that the cost function is reduced. Denoting ∆Jλ = Jλ(x̃) −
Jλ(x), we need to check if an α exists that can reduce the

cost function, i.e., make ∆Jλ < 0. We can write

∆Jλ =
1

2
|α|2Rt,t − |α|ℜ{e−jarg(α)ct}+ λ (19)

The minimum of ∆Jλ over arg(α) is achieved at arg(α) =
arg(ct). The value of the minimum is given by

∆Jλ =
1

2
|α|2Rt,t − |α||ct|+ λ (20)

Minimizing (20) over |α| we arrive at |α| = |ct|/Rt,t. Thus,

∆Jλ is minimized at α = ct/Rt,t and the minimum is given

by

∆Jλ = − |ct|
2

2Rt,t

+ λ (21)

Rule (18) follows from the greedy strategy of adding to the

support only the entry for which the cost reduction is biggest.

�

This is not the optimal way of finding an element to be

added into the support, however it is simple and efficient as

shown below.

This rule also determines the starting value of λ. At the start

of the homotopy iterations, the support is empty, i.e., I = ∅,
and x = 0. Therefore, the first element to be added into I is
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TABLE IV

ℓ0 HOMOTOPY ALGORITHM

Initialization: x = 0, I = ∅, b = AHy, R = AHA

1: t = argmaxk |bk|
2/Rk,k , λ = 0.5|bt|2/Rt,t, I = {t}

2: Repeat until a termination condition is met:
3: If the support I has been updated then

4: Solve RIxI = fI , where RI = AH
I
AI and fI = AH

I
y

5: c← b−RIxI

6: Update the regularization parameter: λ← γλ
7: Remove from I elements satisfying the rule (23) and, for every

removed element, update c← c+ xtR
(t) and set xt = 0

8: Add into I elements satisfying the rule (18) and
(in the ℓ0 direct-LS algorithm) set xt = ct/Rt,t and update

c← c− xtR
(t) or (in the Hℓ0-DCD algorithm) set xt = 0

defined as

t = argmax
k

|bk|2
Rk,k

and |bt|2 = 2λmaxRt,t (22)

Thus, the maximum value of λ at the start of the homotopy

iterations is given by λmax = (1/2)maxk |bk|2/Rk,k. The

optimal value of the first added element is xt = bt/Rt,t.

This rule is similar to the rule of adding new elements

into the support in the MP and OMP algorithms, except that

in these two algorithms the condition |ct| > 2λRt,t is not

checked, as if it had been assumed that λ = 0. Besides, in

the MP and OMP algorithms, elements cannot be removed

from the support. We now introduce a rule for removing an

element from the support, which can be important to improve

performance in some situations.

Proposition 4: Let I be the support at some homotopy

iteration and the current solution to the ℓ2ℓ0 minimization be

x. Let b = AHy, R = AHA, and c = b −Rx. Removing

the t-th element, t ∈ I , from the support according to the rule

t = argmin
k∈I

[

1

2
|xk|2Rk,k + ℜ{x∗

kck}
]

s.t.
1

2
|xt|2Rt,t + ℜ{x∗

t ct} < λ (23)

reduces the cost function.

Proof. To prove Proposition 4, we notice that when remov-

ing the t-th element xt from the support and making it zero,

the cost function changes by the value

∆Jλ =
1

2
|xt|2Rt,t + ℜ{x∗

t ct} − λ (24)

From (24), we obtain that the condition ∆Jλ < 0 and the

highest decrement of the cost function is achieved for the

element defined in (23). �

Note that when adding and removing elements from the

support, several elements can satisfy the conditions in (18)

and (23). Thus, several elements can be simultaneously added

and/or removed from the support.

The general structure of the proposed algorithm for solving

the ℓ2ℓ0 minimization problem is now presented in Table IV.

For comparison purposes, we present two options for solving

the least-squares problems that appear in Table IV: recursive

matrix inversion, as described in Table V, and DCD iterations,

as described in Table VI. As our simulations show, the per-

formance of the two algorithms is similar, but the complexity

TABLE V

SOLVING THE k-TH LS PROBLEM

Input: xk−1, Pk−1 = R−1
k−1, [ra; rb] = R

(k)
I,I

, [ba; bb] = bI

1: z = Pk−1ra
2: q = 1/(rb − rHa z)
3: v = zHba

4: xb = q(bb − v)
5: xa = xk−1 − xbz

6: Compute Pk = R−1
k

using (28)

Output: xk = [xa, xb]
T and Pk

TABLE VI

DCD ITERATIONS FOR LS MINIMIZATION

Input: x, c, I , R
Initialization: s = 0, δ = H

1: for for m = 1, . . . ,Mb do until s = Nu:
2: δ = δ/2, α = [δ, −δ, jδ,−jδ], Flag = 0
3: for n = 1, . . . , |I| do: p = I(n)
4: for k = 1, . . . , 4 do

5: if ℜ{αkc
∗
p} > Rp,pδ2/2 then

6: xp ← xp + αk , c← c− αkR
(p)

7: Flag = 1, s← s+ 1
8: if Flag = 1 go to step 3

of the latter is much smaller.

The complexity of the ℓ0 homotopy algorithm in terms of

real-valued operations is given by

Pℓ2ℓ0 ≈ 8MN + 4N + PLS + 4NLg(Lg + 1)

+ 12NLg + 4L3
g (25)

The first and second terms in (25) are the complexity of

computing the vector b and selecting the first element into

the support at step 1 in Table IV. The term PLS is for solving

the LS problems at step 4. The LS problem can be solved

using a direct approach that would result in a complexity of

O(L4). This can be reduced using the Cholesky factorization

or conjugate-gradient iterations [33], [66], [67]. A low com-

plexity can also be achieved using a recursive inversion of

the matrix RI,I ; in this case, we have PLS ≈ 4L3
g , where

Lg denotes the cardinality of the finally identified support.

Details of the LS recursion are given in Appendix and the

recursion is summarized in Table V; here, it is assumed that

Rk = RI,I . The term 4NLg(Lg + 1) is for updating the

residual c at step 5 in Table IV. Adding new elements into

the support (step 8) has the complexity 12NLg . The last term

in (25) is the complexity of the debiasing after the support

is identified. Removing elements from the support does not

involve significant computations and it is not included in Pℓ2ℓ0 .

Similarly with the Hℓ1-DCD algorithm, the ℓ0 homotopy

algorithms have a combination of stopping criteria. The algo-

rithms will terminate if λ ≤ λmin, where λmin = µλλmax and

µλ ∈ [0, 1] is a predefined parameter. We will also set a limit

Lmax to the number of homotopy iterations after which the

algorithm terminates.

For a computationally efficient solution for the sequence of

LS problems in the ℓ0 homotopy algorithm we can use DCD

iterations as shown in Table VI. The algorithm in Table VI

should replace steps 3, 4 and 5 in Table IV. With a limited
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number of DCD iterations, one cannot guarantee obtaining

the exact LS solution at each homotopy iteration. Therefore,

the DCD iterations will be used even when the support is

not updated, i.e., step 4 and 5 in Table IV are performed in

all homotopy iterations. See more discussion on this matter

in [67]. When the DCD iterations start, the vectors x and c

are not zeros; here, a warm start of the iterations is used.

It is beneficial to use the LS solution found at the previous

homotopy iteration as initialization of the DCD algorithm

at the current homotopy iteration. As a result, a few DCD

iterations may be enough to obtain an accurate LS solution

at each homotopy iteration. Elements of x are only updated

within the support, whereas all elements of c are updated. This

is necessary for the support update stage of the ℓ0 homotopy

to decide on new elements to be added into the support. The

algorithm requires a parameter Nu defining the maximum

number of successful DCD iterations, i.e., iterations where

the solution is updated. This is necessary for controlling the

complexity since the main contribution to the complexity is

due to the successful iterations.

The complexity of the resulting Hl0-DCD algorithm, per-

forming the ℓ0 homotopy and using DCD iterations for solving

the LS problems, is given by

PHl0-DCD ≈ 8MN + 4N + 2CuN + Ci

+ 4NLg + 2NdebLg (26)

The first and second terms are for computation of the vector

b and selection of the first element in the support at step 1

in Table IV. The term 2CuN is for updating c in the Cu

successful DCD iterations (step 6 in Table VI). The term Ci

takes into account Ci (total number of DCD iterations) tests at

step 5 of Table VI to decide if the DCD iteration is successful.

Adding new elements into the support (step 8 in Table IV)

has a complexity given by the term 4NLg . Note that, in the

ℓ0-DCD algorithm, we do not set xt = ct/Rt,t to keep the

fixed-point representation of the solution, but instead set xt to

zero; thus, the complexity of this step is reduced comparing to

the case of the ℓ0 direct-LS algorithm. The debiasing (the last

term) is now done by using extra Ndeb DCD iterations at the

finally identified support. Note that, in the ℓ0-DCD algorithm,

solving the LS problems, which is the most computationally

demanding part of the algorithm, is performed using only

addition operations. This makes the ℓ0-DCD algorithm very

attractive for hardware design, e.g. on FPGA.

VI. NUMERICAL RESULTS

In this section, we compare the MSE performance and

complexity of the proposed ℓ1-DCD, Hℓ1-DCD, direct-LS ℓ0-

homotopy, and Hℓ0-DCD algorithms with the MP and YALL1

algorithms.

In the YALL1 algorithm, we adjust parameters to guarantee

the highest performance and low complexity. The complexity

of the YALL1 algorithm is counted based on the number of

matrix-vector products, assuming that these are general-type

products without using fast transforms, i.e., every such product

involves 8MN real-valued operations; when implementing

algorithms on FPGAs, it is sometimes preferable to avoid
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Fig. 1. MSE performance of the ℓ1-DCD algorithm. Parameters of the
scenario: M = 64, N = 256, σ = 0.01. Parameters of the algorithms:
Lmax = 80, µd = 0.02, µc = 0.02, µτ = 0.02, γ = 0.9, β = 0.5,
Tw = 1, µw = 0.5, Mb = 8, H = 4, Nu = 4096.

using FFTs, but instead directly compute the products [22].

However, we will also present an example when the FFT

can be used. The MP algorithm terminates on achieving the

maximum residual magnitude equal to µc maxk |bk|, where

µc ∈ [0, 1], or a maximum number of greedy iterations Lmax.

For both the YALL1 and MP algorithms, the threshold for

debiasing is set to µd = 0.02 [see equation (4)]. On all the

plots below, we will also show the MSE performance of an

oracle algorithm that, in each simulation trial, performs the

debiasing on the true support.

We consider simulation scenarios corresponding to channel

estimation in communication systems. The channel output is

given by y = Ax0 + n, where A is a matrix defined by

pilot symbols and x0 is the channel impulse response. The

matrix A is an M × N circulant matrix generated from an

N × 1 vector of pilot symbols; for more details on generating

the matrix A in channel estimation scenarios see e.g. [1], [4],

[7]. The pilot symbols are independent zero-mean Gaussian

random numbers. In each simulation trial, a new pilot signal,

new channel impulse response x0, and new realization of noise

are generated. The positions of the K non-zero elements in

x0 are chosen randomly, the non-zero elements are generated

as independent complex-valued Gaussian zero-mean random

numbers of unit variance and then x0 is normalized to energy

K. The noise vector n contains complex-valued random

Gaussian entries of variance σ2. For a fixed K, we run 1000
simulation trials and average the MSE

MSE =
||x− x0||22
||x0||22

obtained in the trials, where x0 is the true vector (channel

impulse response to be estimated) and x is its estimate.

In the proposed DCD-based algorithms, for debiasing, we

use extra Ndeb = 256 DCD iterations.

We consider the case of N = 256 and M = 64. Fig. 1 and

Fig. 2 show the MSE performance and complexity of the pro-
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Fig. 2. Complexity of the ℓ1-DCD algorithm. Parameters of the scenario:
M = 64, N = 256, σ = 0.01. Parameters of the algorithms: Lmax = 80,
µd = 0.02, µc = 0.02, µτ = 0.02, γ = 0.9, β = 0.5, Tw = 1, µw = 0.5,
Mb = 8, H = 4, Nu = 4096.
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Fig. 3. MSE performance of the Hℓ1-DCD algorithm. Parameters of the
scenario: M = 64, N = 256, σ = 0.01. Parameters of the algorithms:
Lmax = 80, µd = 0.02, µc = 0.02, µτ = 0, γ = 0.9, Ns = 1, Mb = 8,
H = 4.

posed ℓ1-DCD algorithm. When solving the BPDN problem

(i.e., wk = 1 for k = 1, . . . , N , and Ns = 1), the YALL1

algorithm outperforms the ℓ1-DCD algorithm. However, the

reweighting iterations allow significant improvement in the

ℓ1-DCD performance. With one weight update (Ns = 2), the

ℓ1-DCD performance matches the YALL1 performance. With

extra reweighting iterations up to Ns = 4, the performance is

further improved almost reaching its best at Ns = 4; additional

iterations do not bring significant improvement. Note that

the ℓ1-DCD complexity does not increase considerably with

increasing Ns (due to the warm start of the reweighting itera-

tions) and it is considerably lower than the YALL1 complexity.

However, the complexity of sparse recovery can be reduced

when using the Hℓ1-DCD algorithm, as shown in Fig. 4.

Fig. 3 and Fig. 4 show the MSE performance and com-

plexity of the Hℓ1-DCD algorithm without reweighting for
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Fig. 4. Complexity of the Hℓ1-DCD algorithm. Parameters of the scenario:
M = 64, N = 256, σ = 0.01. Parameters of the algorithms: Lmax = 80,
µd = 0.02, µc = 0.02, µτ = 0, γ = 0.9, Ns = 1, Mb = 8, H = 4.
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Fig. 5. Complexity of the Hℓ1-DCD algorithm. Here, it is assumed that
the FFT is used for fast computation of the matrix-vector products in all the
algorithms. In the MP and Hℓ1-DCD algorithms, there is one such a product
at the initialization stage. Parameters of the scenario: M = 64, N = 256,
σ = 0.01. Parameters of the algorithms: Lmax = 80, µd = 0.02, µc = 0.02,
µτ = 0, γ = 0.9, Ns = 1, Mb = 8, H = 4.

different limits Nu to the number of successful DCD iterations.

It is seen that the Hℓ1-DCD algorithm achieves the YALL1

performance with as few as Nu = 2 successful DCD iterations

per one homotopy iteration. In this case, the complexity of the

Hℓ1-DCD algorithm is close to the MP complexity or even

lower. With Nu > 2, the Hℓ1-DCD algorithm outperforms the

YALL1 algorithm and its complexity is significantly lower

than the YALL1 complexity. It is interesting to notice that

the ℓ1-DCD algorithm (which is a member of the convex

optimization family as all elements of the solution vector are

updated) could not achieve the YALL1 performance without

the reweighting iterations, whereas the Hℓ1-DCD algorithm

(which belongs to the family of greedy algorithms) can. Fig. 5

shows complexity of the algorithms when the FFT is used

for computation of the matrix-vector products. It can be seen
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scenario: M = 64, N = 256, σ = 0.01. Parameters of the algorithms:
Lmax = 80, µd = 0.02, µc = 0.02, µτ = 0, γ = 0.9, Ns = 1, Mb = 8,
H = 4.
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Fig. 7. Complexity of the Hℓ1-DCD algorithm with and without the
procedure for removal of elements from the support. Parameters of the
scenario: M = 64, N = 256, σ = 0.01. Parameters of the algorithms:
Lmax = 80, µd = 0.02, µc = 0.02, µτ = 0, γ = 0.9, Ns = 1, Mb = 8,
H = 4.

that the difference in complexity is now smaller, but still the

Hℓ1-DCD algorithm is significantly faster than the YALL1

algorithm.

Fig. 6 and Fig. 7 compare two versions of the homotopy al-

gorithm. The first one is the Hℓ1-DCD algorithm as described

in Table III, and the other one is the Hℓ1-DCD algorithm,

but without removing elements from the support, i.e., without

steps 5 and 6 in Table III. It is seen that, for Nu = 2,

the effect of removing the elements is significant in both

the improvement in the MSE performance and reducing the

complexity. This can be explained by the fact that, with a small

number of DCD iterations, due to inaccurate solving the ℓ2ℓ1
problem in every homotopy iteration, there are wrong elements

added into the support, which, when removed, improve the
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Fig. 8. MSE performance of the Hℓ1-DCD algorithm with reweighting
iterations. Parameters of the scenario: M = 64, N = 256, σ = 0.01.
Parameters of the algorithms: Lmax = 80, µd = 0.02, µc = 0.02, µτ = 0,
γ = 0.9, β = 0.5, Tw = 1, µw = 0.5, Mb = 8, H = 4, Nu = 8.
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Fig. 9. Complexity of the Hℓ1-DCD algorithm with reweighting iterations.
Parameters of the scenario: M = 64, N = 256, σ = 0.01. Parameters of the
algorithms: Lmax = 80, µd = 0.02, µc = 0.02, µτ = 0, γ = 0.9, β = 0.5,
Tw = 1, µw = 0.5, Mb = 8, H = 4, Nu = 8.

performance. With the larger Nu (Nu = 32 in this case), the

ℓ2ℓ1 problem is accurately solved at every homotopy iterations

and the removal is not that necessary; even if some wrong

elements are added into the support, the large number of DCD

iterations would drive them to zero and they are removed at

the hard thresholding of the debiasing stage.

The reweighting iterations (see Fig. 8 and Fig. 9) result in

further improvement of the MSE performance of the Hℓ1-DCD

algorithm and the final performance is close to that achieved

by the ℓ1-DCD algorithm (compare with Fig. 1). Notice that

with increase in Ns beyond Ns = 3, the Hℓ1-DCD MSE curve

departs from the oracle MSE curve. This can be explained

by the less reliable support detection with higher Ns as the

threshold for support detection is reduced and thus wrong

elements are picked up in the support. Comparing Fig. 9 with
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Fig. 10. MSE performance of the ℓ0 direct-LS and Hℓ0-DCD algorithms.
Parameters of the scenario: M = 64, N = 256, σ = 0.01. Parameters of the
algorithms: Lmax = 80, µd = 0.02, µc = 0.02, µλ = 0, γ = 0.9, Mb = 8,
H = 4.
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algorithms: Lmax = 80, µd = 0.02, µc = 0.02, µλ = 0, γ = 0.9, Mb = 8,
H = 4.

Fig. 2, it is seen that the complexity of the Hℓ1-DCD algorithm

is significantly lower than that of the ℓ1-DCD algorithm.

Fig. 10 and Fig. 11 show MSE performance and complexity

of the Hℓ0 direct-LS and Hℓ0-DCD algorithms. The Hℓ0
direct-LS algorithm shows an MSE performance similar to that

of the YALL1 algorithm. The Hℓ0-DCD algorithm matches the

YALL1 performance and the Hℓ0 direct-LS performance with

Nu = 8, i.e., with at most 8 DCD iterations per one homotopy

iteration. The complexity of the Hℓ0-DCD algorithm is lower

than complexities of the other proposed algorithms. It is

comparable to the MP complexity or even lower. Note that

the LS optimization in the Hℓ0-DCD algorithm and debiasing

are multiplication-free. Thus the number of multiplications is

only a small part of the whole complexity. E.g., for Nu = 8,

only about 20% of operations are multiplications. Thus, this

algorithm is well suited to hardware implementation, e.g. on

FPGAs.

VII. CONCLUSIONS

In this paper, we have proposed a family of computationally

efficient algorithms for recovery of complex-valued sparse

signals. The algorithms are based on solving either the ℓ2ℓ1
or ℓ2ℓ0 optimization problem using dichotomous coordinate

descent (DCD) iterations. We have first derived an algorithm

(ℓ1-DCD algorithm) for solving the ℓ2ℓ1 optimization problem

with a fixed ℓ1-regularization term. This algorithm has shown

a high recovery performance and relatively low complexity;

specifically, its performance is better and the complexity is

lower than that of the YALL1 algorithm. The complexity

has been further reduced when combining this algorithm

with homotopy with respect to the regularization term. The

combined algorithm (Hℓ1-DCD algorithm) has demonstrated a

performance similar to that of the ℓ1-DCD algorithm. We have

then derived an algorithm (direct-LS homotopy algorithm) for

solving the ℓ2ℓ0 optimization problem using homotopy with

respect to the ℓ0 regularization term. Although the recovery

performance of the algorithm is somewhat inferior to that

of the ℓ2ℓ1 based algorithms, its complexity is lower and

comparable to that of the matching pursuit (MP) algorithm.

We have then incorporated DCD iterations into the direct-LS

ℓ0 homotopy algorithm and arrived at another algorithm (Hℓ0-

DCD algorithm) that has especially low complexity that is

comparable or even lower that that of the MP complexity.

Moreover, most operations required for implementation of

the Hℓ0-DCD algorithm are additions, which makes it very

attractive for real-time implementation, e.g. on FPGAs.

APPENDIX I

RECURSIVE SOLUTION OF THE SEQUENCE

OF LS PROBLEMS

Let at (k − 1)-th iteration a system of equations

Rk−1xk−1 = ba be solved and the solution be xk−1 =
R−1

k−1ba, where Rk−1 ∈ C
(k−1)×(k−1) and xk−1,ba ∈

C
(k−1)×1. At the k-th iteration, we need to solve an augmented

system Rkxk = b, where

Rk =

[

Rk−1 ra
rHa rb

]

and b =

[

ba

bb

]

(27)

The solution can be found using the formula for inversion of

a block matrix as follows:

xk = R−1
k b =

[

R−1
k−1 + qzzH −qz
−qzH q

] [

ba

bb

]

(28)

where z = R−1
k−1ra and q = 1/(rb − rHa z). We represent the

solution in the form:

xk =

[

xa

xb

]

(29)

Then, noticing that xk−1 = R−1
k−1ba, we can write:

xa = xk−1 + qzzHba − qzbb

xb = − qzHba + qbb (30)
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Thus, we arrive at the algorithm presented in Table V.

Complexity of the technique is mostly defined by steps 1

and 6, each of complexity O(k2). The matrix-vector multipli-

cation at step 1 involves about 8(k−1)2 real-valued operations,

and generating Pk = R−1
k at step 6, taking into account that

the matrix Rk is Hermitian, involves about 2(2k + 1)(k − 1)
operations. Complexity of the other steps is O(k). Thus, the

complexity of the LS solution update at the k-th iteration is

approximately 6(2k − 1)(k − 1) real-valued operations. If k
varies from 1 to Lg , the total complexity of the Lg updates is

about 4L3
g real-valued operations.
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