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ABSTRACT: Artificial heterostructures based on LaNiO3 (LNO) have been widely 

investigated with the aim to prove the insulating antiferromagnetic state of LNO. In 

this work, we have grown [(La0.7Sr0.3MnO3)5-(LaNiO3)n]12 superlattices on 

(001)-oriented SrTiO3 substrates by pulsed laser deposition and observed an 

unexpected exchange bias effect in field-cooled hysteresis loops. Through X-ray 

absorption spectroscopy and magnetic circular dichroism experiments, we found that 
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the charge transfer at the interfacial Mn and Ni ions can induce a localized magnetic 

moment. A remarkable increase of exchange bias field and a transition from metal to 

insulator were simultaneously observed upon decreasing the thickness of the LNO 

layer, indicating the antiferromagnetic insulator state in 2 unit cells (u.c.) LNO 

ultrathin layers. The robust exchange bias of 745 Oe in the superlattice is caused by 

an interfacial localized magnetic moment and an antiferromagnetic state in the 

ultrathin LNO layer pinning the ferromagnetic La0.7Sr0.3MnO3 layers together. Our 

results demonstrate that artificial interface engineering is a useful method to realize 

novel magnetic and transport properties. 

KEYWORDS: exchange bias, charge transfer, metal-insulator transition, LNO 

thickness, superlattices 

 

1. INTRODUCTION 

Transition metal-oxides interfaces exhibit a great amount of interesting phenomena 

such as high temperature superconductivity, metal-insulator transitions, exchange bias 

coupling, and magnetoelectric coupling1-4. These novel properties are considered to be 

closely related to the interfacial strong correlation between the charge, spin, orbital, 

and lattice degrees of freedom. The artificial deposition of heterostructures is an 

effective way to investigate the exceptional states which are completely different from 

those of the corresponding bulk materials5,6. The nickelate oxides of composition 

RNiO3 with smaller lanthanide ions (R≠La) exhibit a metal-insulator transition 

accompanied by the transition from paramagnetic to antiferromagnetic as a function 
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of temperature, except for LaNiO3 (LNO), which always behave as a paramagnetic 

metal at all temperatures in its bulk form7,8. In recent years, the metal-insulator 

transition has been observed in LaNiO3 ultrathin films and in LaNiO3/LaAlO3 

superlattices9-12. The unexpected exchange bias (EB) effect can be found in 

(111)-oriented superlattices structures and while it is not present in (001)-oriented 

structures, composed of ferromagnetic (FM) LaMnO3 and paramagnetic (PM) 

LaNiO3
13-18. It is well known that (001) oriented superlattices with lower energy are 

easily epitaxially deposited as opposed to the (111) oriented structures, and the 

interrelation between exchange bias and transport properties in (001)-oriented 

LNO-based superlattices still needs to be thoroughly understood. 

In this paper, we employed ferromagnetic half-metallicity La0.7Sr0.3MnO3 (LSMO) 

fixed as 5 u.c. and paramagnetic metallic LaNiO3 (LNO) materials varying from 2 u.c. 

to 7 u.c. to prepare the superlattices on (001) SrTiO3 substrates. In such superlattices, 

the charge transfer between Mn and Ni ions results in the localized super-exchange 

ferromagnetism at the interface. Upon decreasing the thickness of the LNO layer, the 

transition from metal to insulator and the remarkable increase in the exchange bias 

suggest that an insulating antiferromagnetic state appears in ultrathin LNO layer. The 

robust EB effect can be observed in LSMO (5)/LNO (2) superlattices due to the 

pinning of the ferromagnetic LSMO by the localized magnetic moment at the 

interface and the antiferromagnetic state in LNO layer, and this effect is almost one 

order of magnitude higher than in an (111)-oriented LMO/LNO superlattice13. 

2. EXPERIMENTAL  
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The epitaxial fabrication of [(La0.7Sr0.3MnO3)5-(LaNiO3)n]12 superlattices (SLs) were 

grown on atomically flat SrTiO3 (001) substrates (see Figure S1)19. Here, n is the 

number of LNO unit cells which can be set to 2, 4 or 7. The LSMO layer is always in 

an insulating ferromagnetic state20. The SLs were grown by a Pulsed Laser Deposition 

(PLD) apparatus equipped with in situ Reflection High Energy Electron Diffraction 

(RHEED) at 725°C at an oxygen pressure of 100 mTorr to avoid any change in 

oxygen vacancies density at the interface. After the growth, the samples were 

annealed in a 300 Torr oxygen atmosphere in situ for one hour in order to improve 

their quality and reduce their inherent oxygen deficit, then cooled down to room 

temperature. The crystal structure and epitaxy of three different SLs were determined 

by X-Ray Diffraction (XRD). To study the structure quality and the interfacial 

abruptness of the samples, a typical High-Angle Annular Dark Field Scanning 

Transmission Electron Microscope (HAADF-STEM) was employed, with atomic 

resolution and equipped with aberration corrections. X-ray Absorption Spectroscopy 

(XAS) measurements in Total Electron Yield mode (TEY), were performed ex situ 

(E//a) at Beamline BL12B-a of the National Synchrotron Radiation Laboratory 

(NSRL), China21, as a surface sensitive technique at room temperature. X-ray 

Magnetic Circular Dichroism (XMCD) measurements in Florescence Yield mode 

(FY), were performed at 1.6 K on Beamline 106 at the Diamond Light Source22,  as 

a bulk sensitive technique, in grazing incidence conditions (E//c) with a 30° angle 

between the X-ray beam direction and the sample. Magnetic measurements were 

performed with a Vibrating Sample Magnetometer in PPMS (PPMS-VSM) with 
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in-plan applied magnetic field, and hysteresis curves were obtained after subtracting 

the diamagnetic background. Transport measurements were performed in the Van der 

Pauw four-point probe configuration with a Quantum Design Physical Properties 

Measurement System (PPMS). 

3. RESULTS AND DISCUSSION 

Typical XRD patterns are shown in Figure 1a, revealing a high quality growth in the 

expected (001) orientation for all the samples. Moreover, the observation of satellite 

peaks in the SLs suggests a high degree of interface abruptness between the LSMO 

and LNO layers. The distance between adjacent satellite peaks increases as the LNO 

thickness decrease, as expected for Bragg reflections23. Figure 1b, displays the result 

of a typical HAADF-STEM image in order to directly illustrate the structural quality 

and interfacial abruptness of the samples. The image intensity in the HAADF image is 

proportional to ~Z1.7, where Z is the atomic number. Therefore, the brighter features 

indicate the heavier elements. Due to the strontium atom substituting a lanthanum 

atom in its lattice site, La atoms (Z=57) are brighter than La/Sr atoms (Z=57/38), 

while the weaker spots in between indicate Ni (Z=28) and Mn (Z=25) atoms columns 

with similar intensities (see Figure S2). The total thickness of the SL is measured to 

be 31.2 nm, which is close to the expected value of 32.4 nm and within the expected 

uncertainty of the measurement. The image demonstrates the high quality of the 

superlattices, due to the excellent epitaxial registry across interfaces and to the 

absence of secondary phases or amorphous layers. 
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Figure 1. (a) XRD patterns for three different SLs, LNO and LSMO single layer on 

STO substrate. (b) Typical HAADF-STEM image of the (5-2) SL. 

Figure 2a displays the magnetic hysteresis loops of (5-2) SL, obtained at 5 K after a 

+0.5 T field-cooling (FC) and zero filed cooling (ZFC) procedure from room 

temperature. The hysteresis loop after the FC process exhibits a significant shift along 

the magnetic field axis towards negative field values, compared with the zero 

field-cooling. This feature indicates that the presence of the exchange bias effect in 

the (5-2) SL. According to previous research, the coercivity increases when the 

exchange bias effect appears24. The values of the EB field (HEB) and of the coercivity 

(HC) are respectively given by HEB=|H+ +H-|/2 and HC=|H+-H-|/2, where H+ and H- 



7 

denote the right and left values of coercivity as the magnetization goes to zero. Our 

measured values for H+ and H- are -2673 Oe and 1183 Oe, respectively. In this loop, 

the value of HEB is 745 Oe and HC is 1865 Oe, which is several orders of magnitude 

higher than what previous reported for LSMO/LNO bilayers25,26. The temperature 

dependence of exchange bias field and coercivity for the (5-2) SL is illustrated in the 

inset of Figure 2a. HEB rapidly decreases as the temperature increases, finally 

becoming zero at 18 K, which is known as the conventional blocking temperature (TB) 

27. The coercivity also exhibits a continuous decrease with increasing temperature, in 

agreement with similar results obtained on other manganite superlattice28. Figure 2b 

summarizes the results of the coercivity and exchange bias field measurements for 

(5-2), (5-4), and (5-7) SLs, performed at 5 K after a +0.5 T field cooling. HC decreases 

from 1865 Oe to 896 Oe and HEB reduces from 745 Oe to 64 Oe as the LNO layer 

increases from 2 u.c. to 7 u.c., respectively. The origin of the interfacial exchange bias 

and its dependence on the LNO thickness are discussed in the following sections. 
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Figure 2. (a) Magnetic hysteresis loops at 5 K for a (5-2)12 SL after field-cooling from 

room temperature in a +0.5 T field (black) and with zero field cooling (red). Inset: the 

temperature dependence of HEB and HC for the (5-2)12 superlattices. (b) Coercivity 

and exchange bias as a function of the number of unit cells for (5-2), (5-4), and (5-7) 

SLs. 

X-ray Absorption Spectra were measured in TEY mode with photon polarization 

parallel (E//a) to the samples, in order to determine the valence states of Mn and Ni 

ions near the interface. The information on the unoccupied Mn 3d state and the related 

Mn valence state can be deduced by the Mn L-edge in the absorption spectra, of 

resulting from Mn 2p3/2,1/2→3d dipole transitions29. Due to the spin-orbital interaction 

of Mn 2p states, the spectrum is split into two broad multiplets, the L3 (Mn 2p3/2→3d) 

edge at ~642 eV and the L2 (Mn 2p1/2→3d) edge at ~653 eV. Figure 3a displays the 
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XAS spectra measured at Mn L3, 2 edges for (5-2), (5-4) and (5-7) SLs, and the single 

LSMO for comparison. According to the results of XAS, we find that the L3 peak of 

the SLs is shifted towards higher energy values with respect to the single LSMO, 

indicating a stronger Mn4+ character in the superlattices25. Conversely, the L3 peak of 

Mn does not shift among the three different SLs. XAS spectra were also acquired at 

the Ni L3, 2 edges (see Figure S3), nevertheless, the L2 edge intensity of Ni is too weak 

to resolve energy shifts, and the L3 edge overlaps with the La M4 edge17. In order to 

characterize the chemical state of Ni, X-ray photoelectron spectroscopy (XPS) was 

employed and the results are shown in Figure 3b. The peak1 around 854 eV is 

identified as the Ni 2p3/2 peak, and its shift towards lower energies in SLs points at a 

lower Ni valence states at the interface. Combining the increase of Mn valence at the 

interface as deduced by the position of the Mn L-edge XAS with this decrease of Ni 

valence, it is quite natural to hypothesize that charge transfer occurs from Mn ions to 

Ni ions at the SLs interface. 

In the interfacial coupling, the hybridization between the Mn and Ni 3d orbitals 

provides useful information on the O 2p orbitals variation30. The O K-edge is mainly 

influenced by the unoccupied O 2p states via O 1s→2p transitions. According to 

results available in the literature31, the origin of the broad peak at 544 eV is attributed 

to electronic bands of Mn 4sp and La 6sp, while the one at 536 eV is related to a La 

5d orbital. In particular, the peak marked by a thick arrow at 533 eV that is primarily 

illustrating the O 2p hybridized with mixed electrons of Mn or Ni ions32. As shown in 

Figure 3c, the peak at 533 eV is distinctly visible in the SLs and its intensity increases 
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monotonically as the LNO thickness decreases, indicating the rising degree of 

hybridization between Mn and Ni ions as Mn3+-Ni3+→Mn4+-Ni2+ occurring in 

La2NiMnO6 double perovskite33. As the Fermi level of LSMO is higher than that of 

the LNO layer15, electrons transfer from Mn to Ni sites as depicted in Figure 3d. 

 

Figure 3. (a) XAS curves of the Mn L edge for (5-2), (5-4), and (5-7) SLs. The 

spectrum for a single LSMO reference sample is shown for comparison (black line). 

The vertical line marks the position of the XAS peaks and has been shifted for clarity. 

(b) Ni 2p XPS spectra of different samples. The peak labeled as “peak1” is composed 

of Ni 2p3/2. (c) Oxygen K-edge absorption spectra of different samples measured in 

TEY mode with photon polarization perpendicular to the sample plane. The vertical 

offset in all spectra is applied to allow better visualization. (d) Schematic view of the 

interfacial charge transfer mechanism from Mn to Ni ions. 

In order to measure the interfacial magnetic signal, we employed the FY mode with 
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photon polarization at 30° grazing incidence to the sample (with E//c) to measure the 

(5-2) SL in an applied field of 6 T at 1.6 K. Figure 4a and 4b present the measured 

XMCD at the Mn and Ni L edges, respectively. The XMCD signal is obtained from 

the discrepancy with the XAS signal in right (μ+) and left (μ-) applied field along the 

X-ray propagation direction. The Mn and Ni L2 edges have the same sign, which 

demonstrates that the net spin moments of both layers are aligned parallel to each 

other. This is expected to be a ferromagnetic configuration arising either from 

double-exchange or super exchange interaction34. If double-exchange ferromagnetism 

is observed in the SLs, an increase of metallicity as a function of temperature is 

expected, which cannot occur in this superlattice as illustrated in Figure 5. According 

to the Goodenough-Kanamori rules35, the coupling between Mn4+ and Ni2+ cations is 

expected to be mediated by ferromagnetic super-exchange. By simultaneously 

considering the XAS and XMCD spectra characters, we can state that charge transfer 

between Mn and Ni ions at the interface favors the super-exchange ferromagnetic 

coupling to reveal the localized magnetic moment. As a result, the interfacial 

exchange bias is due to the pinning of the ferromagnetic LSMO layer by the localized 

magnetic moment. However, the exchange bias drastically changes from 745 Oe to 64 

Oe as the LNO thickness increases from 2 u.c. to 7 u.c., and no significant shifts of 

the Mn L3 edge absorption peak and of the Ni 2p3/2 edge are observed in different SLs. 

This phenomenon suggests there is another driving mechanism behind the larger 

exchange bias value in ultrathin SLs, which needs to be investigated by further 

research. 
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Figure 4. XAS and XMCD spectra with photon polarization at 30° grazing incidence 

to the sample plane in FY mode for (5-2) SL at (a) Mn and (b) Ni L3, 2 edges measured 

at 6 T and 1.6 K.  

Figure 5 presents the in-plane resistance curves of three different SLs as a function 

of temperature. The SLs undergo a metal-insulator transition as the thickness of LNO 

layers decreases. The difference in resistance as a result of this transition is as large as 

six orders of magnitude. At the same time, the exchange bias sharply increases from 

64 Oe to 745 Oe as the number of LNO layers decreases. According to the previous 

literature36, the insulating ground state of all perovskite nickelates RNiO3 is in an 

antiferromagnetic configuration, which makes LNO an exception within the 

perovskite family, failing to exhibit this order in its bulk. Similarly, the correlation 

magnetic and transport properties in LSMO/LNO superlattices are also affected by the 

thickness of the LNO layer, which provides a useful evidence to support the 
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antiferromagnetic order in ultrathin LNO layers as other nickelates. Gibert et al. have 

recently reported a dimensionality-induced magnetic order, in LaMnO3/LaNiO3 

superlattices, as an antiferromagnetic structure emerged in an LNO layer18. Therefore, 

the larger exchange bias in (5-2) superlattices is attributed to the localized magnetic 

moment at the interface and to the antiferromagnetic order in the ultrathin LNO layer 

pinning the ferromagnetic LSMO layer together. 

 

Figure 5. Temperature dependence of the resistance for a series of LNO thickness 

ranging from 2 to 7 u.c..  

4. CONCLUSIONS 

To summarize, an unexpected exchange bias is observed in (001)-oriented 

LSMO/LNO superlattices. XAS and XMCD experiments suggest the occurrence of 

charge transfer and the presence of a localized magnetic moment at interfacial Mn and 

Ni ions. The exchange bias sharply increases from 64 Oe to 745 Oe, and the electrical 

transport properties accordingly change from a metal-like to insulating behavior as the 

thickness of LNO layer decrease from 7 u.c. to 2 u.c.. This competition between 

magnetic and transport properties in superlattices indicates that the antiferromagnetic 

insulating state exists in ultrathin LNO layers. This novel phenomenon occurring at 
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the interfaces between paramagnetic and ferromagnetic material, opens the way for 

tailoring the properties of complex oxides via artificial interface engineering.  
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Supplementary Information 

 

Robust interfacial exchange bias and metal-insulator 

transition influenced by the LaNiO3 layer thickness in 

La0.7Sr0.3MnO3/LaNiO3 superlattices 

 

Sample preparation and characterization 

 

Fig. S1. (a) The partial oscillating curve of RHEED during the preparation of the 

LSMO (5 u.c.)/LNO (2 u.c.) superlattices and the surface topography of the STO (001) 

substrate as measured by contact mode atomic force microscopy. (b) The RHEED 

patterns before and after growth of (5-2)12 SLs. 

The atomically flat surface of STO substrate was carried out by chemical etching 

and thermal annealing. First, the substrate was cleaned by soaking in deionized water 

for 5 minutes. Then the surface was etched in a buffered hydrogen fluoride solution 

for 15 minutes and the remaining chemical fluid on the substrate was removed by 

deionized water for 5 minutes. After chemical etching, the substrate was annealed at 

980℃ in oxygen for 6 hours to pursue a smooth step-and-terrace structure. In Fig. S1 

(a), the surface of substrate measured by atomic force microscopy and the roughness 
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was 0.195 nm. The in situ RHEED of the pulsed laser deposition was used to monitor 

atomic layer by layer growth. The Fig.S1 was shown the partial oscillating curve 

during the process of growth, the images of diffraction patterns at bare substrate and 

the after growth of (5-2)12 SLs. The clear oscillation and diffraction spots and streaks 

of the SLs illustrated growth in layer by layer during the whole process. 

 

Fig. S2. Integral HAADF-STEM image with distinct dividing line for the (5-2)12 SL. 

XAS spectra of Ni L-edge 

 

Fig. S3. XAS scans at the Ni L3,2 edge for the different samples at room temperature 

in TEY mode. The Ni L3 edge and the La M4 edge overlap at 850 eV.  

 

 


