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Abstract

Spray cooling is one of the most promising methods of cooling high heat flux electronics. De-

pending on the type of the nozzle, spray cooling can be categorized as single phase or two phase.

In the latter, which is known to be more effective, a secondary gas is used to further pressurize

the liquid and form smaller droplets at higher velocities. The gas is also assumed to assist the

spreading phase by imposing normal and tangential forces on the droplet free surface which adds

to the complicated hydrodynamics of the droplet impact. Moreover, the order of magnitude of

droplet size in spray cooling is 10−6
m thereby introducing a low Weber and Reynolds numbers im-

pact regime which heretofore has not been well understood. A 3D lattice Boltzmann method was

implemented to simulate the impact of a single micro-droplet on a dry surface in both ambient air

and under a stagnation gas flow. Two cases were closely compared and correlations were proposed

for the instantaneous spreading diameter. Contrary to recent findings at higher impact We and

Re, it was found that stagnation flow only significantly affects the spreading phase for Ca∗ ≥ 0.35

but has little influence on the receding physics.
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INTRODUCTION

Droplet impingement on solid and liquid surfaces have been extensively investigated due

to the numerous applications in ink-jet printing, paint coating, plasma spraying, metal

forming, internal combustion engines, microfabrication and spray cooling of high heat flux

surfaces. In the latter application, understanding the fundamental hydrodynamics is of

utmost importance in order to avoid dry out or excessive liquid accumulation. Vapor-assisted

spray cooling in which liquid droplets are atomized with a secondary pressurized gas phase

has more complicated physics and has not yet been fully investigated and understood. This

technique is known to have a higher heat transfer coefficient [1, 2] since smaller droplets at

higher velocities are formed and impact the surface under a stagnation jet flow. The gas

jet flow is also assumed to thin the liquid film by imposing shear stress forces. The current

investigation of which this work is a part is designed to experimentally and computationally

investigate the basic physics of droplet impingement under the influence of a propellant gas.

This paper presents the results of a lattice-Boltzmann numerical study that has allowed the

exploration of physics at micro-scale droplet diameters that are common in industrial spray

systems. Extension of the regime of investigation to micro scaled droplets augments the

previous investigations by the author’s team [3, 4] for meso-scale droplets.

Considerable experimental work has been carried out to investigate the hydrodynamics of

the impact of a liquid millimeter size droplet on a dry solid surface. [5–11]. Many parameters

were found to affect the dynamics of the impact, including: impact velocity, liquid properties

(density, viscosity, surface tension, and Newtonian or non-Newtonian rheology), surface

roughness and wettability, droplet size, angle of the impact, surrounding pressure, and

surface temperature. Depending on the impact condition, different outcomes can result

such as fine deposition, spreading splash, receding break up or bounce back [12]. It has been

observed that maximum spreading is augmented as impact velocity increases [7–9]. Viscous

droplets are found to spread less, and a noticeably slower receding phase was detected for

non-Newtonian droplets [8, 9, 11]. It is known that larger droplets and high surface roughness

increase the possibility of splashing [5, 6] while lower surrounding pressure suppresses the

droplet disintegration for the same impact conditions [10]. A review of the rich literature of

droplet impact on a dry solid surface can be found in [13].

For practical reasons, most of the investigations in the literature are performed on mil-
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limeter size droplets, whereas in spray cooling droplet sizes are three orders of magnitude

smaller [14, 15]. These micrometer size droplets result in an impact regime of low Weber

(We) number and low Reynolds (Re) number regardless of the magnitude of the impact

velocity. Son et al. [16] experimentally studied the impact of inkjet droplets at low We and

Re numbers. They found that the impact dynamics for low We numbers were different from

the moderate to high We numbers. Droplet impingement under a stagnation jet flow, as

occurs in the gas assisted spray cooling technique, has undergone little investigation and is

not fully understood. The interaction between the stagnation jet and droplet surface and

including especially the influence of the jet normal and shear forces on the hydrodynamics

of the impact add to the complexity of the problem. An experimental and numerical inves-

tigation on the impact of a gas propelled millimeter size water droplet on a heated surface

was performed by Diaz and Ortega [4, 17]. Enhancement was observed in the maximum

spreading factor of sub-millimeter droplets due to the stagnation pressure on the droplet

surface for Wegas/Wedrop > 0.1. Ebrahim and Ortega [3] investigated gas propelled droplet

impact at considerably higher We numbers (300 ≥ Wedrop ≥ 6000) and found that while the

propellant gas does not enhance spreading, it does retard both receding and the onset of

splash.

In the present work, a 3D lattice Boltzmann simulation is developed to study the impact

of a micro-sized droplet in the low We and Re numbers impact regime (We < 45, Re < 450).

The simulation is validated with the experimental data of Briones et al. [18]. The impact of

micro-sized droplets in free-fall in ambient air and under a stagnation air flow are modeled in

order to study the hydrodynamics of unassisted and gas assisted droplet impact, respectively,

at these very low droplet diameters.

LATTICE BOLTZMANN METHOD

Recently, the latice Boltzman method (LBM) has shown to be a powerful method for

the numerical simulation of complex flows such as porous media flows and multiphase flows.

The LBM is a mesoscopic method that covers the gap between the microscopic molecular

dynamics and the macroscopic fluid mechanics. The mesoscopic nature of LBM yields

a practical way of implementing microscopic dynamics between fluid-fluid and fluid-solid

interactions as it solves the discrete form of the Boltzmann equation in the bulk flow [19].
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In the LBM, the fluid field consists of similar particles that are allowed to move in specific

directions and the flow motion is captured by a set of distribution functions. The studies

of LBM are numerous and therefore here we only review and discuss the Multiphase LBM

suitable for current investigations.

Different methods for multiphase LBM simulations have been developed and can be

categorized as chromodynamic (Gunstensen et al. [20]), free energy (Swift et al. [21]), pseudo-

potential (Shan and Chen [22]) and finite density (He et al. [23]). The Shan and Chen

model is the most popular multiphase LB model because of its simplicity and computational

efficiency. A complete review of the pseudo-potential models can be found in Chen et al. [24].

The advantages of the He et al. model are its thermodynamic consistency and the ability

to vary densities and viscosities independently. Its use is restricted to nearly incompressible

single-component flows with two phases.

In the present work, the method of He et al. [23] is implemented to simulate the impact

of a free-falling droplet in ambient air and the impact of a droplet under a stagnation air

jet flow. This method is briefly explained in the following section. Further details of this

method can be found in [23].

Method of He et al.

Using the Bhatnagar-Gross-Krook single relaxation time approximation, the general

Boltzmann equation for non-ideal fluids can be written as [25]

∂f

∂t
+ e.∇f = −f − f eq

τ
+

(e− v).(F+G)

ρRT
f eq (1)

where F is the effective molecular interaction, G is the gravity force, R is the gas constant, T

is the temperature, e and v are the microscopic (i.e. molecular) and macroscopic velocities,

respectively, ρ is the macroscopic fluid density, and f(x, e, t) is the single-particle probability

distribution function, with local equilibrium value given by

f eq(v) =
ρ

(2πRT )
3
2

exp

(

−(e− v)2

2RT

)

(2)
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The effective molecular interaction force can be defined based on the mean-field approxima-

tion [23], as follows

F = −∇ψ + Fs (3)

where the first term on the right hand side of Eq. 3 represents the interaction due to the non-

ideal part of the equation of state (EOS) and the second term associated with the surface

tension force, as follows

ψ(ρ) = P − ρRT, Fs = κρ∇∇2ρ (4)

where κ determines the strength of surface tension force and in this work pressure, P , is

obtained from the Carnahan and Starling EOS [26]. Since the evolution of ∇ψ across the

interface is large, and hence evaluation of the inter molecular force can lead to instability,

He et al. [23] introduced an auxiliary pressure distribution function given by

g = fRT + ψ(ρ)Γ(0) (5)

where

Γ(v) =
f eq(v)

ρ
(6)

The macroscopic pressure and velocity can then be obtained by integrating the g distri-

bution function as follows

P =

∫

gde, ρRTu =

∫

egde (7)

He et al. [23] proposed a mass index function of φ =
∫

fde, where f is obtained from Eq.

1. The role of the φ is to keep track of the two separate phases, and hence the shape and

position of the interface between them. The densities and viscosities of the phases of interest

are mapped onto φ and are determined by a simple interpolation of the index function, given

by

ρ = ρg +
φ− φg

φl − φg

(ρl − ρg), ν = νg +
φ− φg

φl − φg

(νl − νg) (8)

where ρl and ρg are liquid and vapor densities, respectively. Similarly, νl and νg stand for

the liquid and vapor viscosities, and φl and φg are the minimum and maximum values of
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the index function [23].

To proceed with a numerical scheme, the above equations must be discretized to produce

the corresponding lattice Boltzmann equations. This involves discretizing the microscopic

velocity space into a set of discrete velocities, ei, and evaluating the moment integrals, Eq.

7, by quadrature [19, 23]. This discretization of velocity is linked to the discretization of

space by defining a lattice where the spacing between neighboring nodes is given by eiδt,

where δt is the time step. In this study, the standard D3Q19 lattice is used, in which each

node has links to its 18 nearest neighbors

Following the analysis of He et al [23], final discrete forms of the evolution equations with

the change of variables of f̄i = fi + F̃i and ḡi = gi + G̃i (to create an explicit scheme), are

given as

f̄i(x+ eiδt, eiδt)− f̄i(x, δt) = −1

τ
(f̄i(x, δt)− f eq

i (x, δt))− 2τ − 1

τ
F̃i (9)

ḡi(x+ eiδt, eiδt)− ḡi(x, δt) = −1

τ
(ḡi(x, δt)− geqi (x, δt))− 2τ − 1

τ
G̃i (10)

where

F̃i =
δt

2RT
(ei − v)∇ψ(φ)Γi(v) (11)

G̃i = −δt
2
(ei − v)[Γi(v)(Fs +G)− (Γi(v)− Γi(0)).∇ψ(ρ)] (12)

and

Γi(v) = ωi

(

1 +
3

c2
(ei.v) +

9

2c4
(ei.v)

2 − 3

2c2
v2

)

(13)

where c =
√
3RT and ωi are weights arising from the quadrature. The corresponding discrete

equilibrium distribution functions are given by f eq
i (v) = ρΓi(v) and g

eq
i (v) = ρRTΓi(v) +

ψ(ρ)Γi(0).

The macroscopic variables can be computed from

φ =
∑

i

f̄i (14)

P =
∑

i

ḡi −
1

2
v.∇ψ(ρ)δt (15)

ρRTu =
∑

i

eiḡi +
RT

2
(Fs +G)δt (16)
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where ρ is obtained by interpolating the index function through Eq. 8 and ψ(φ) is computed

from Eq. 4 using the Carnahan and Starling EOS, where b = 4:

ψ(φ) = P − φ

3
= φ2(

2RT (2− φ)

(1− φ)3
− 4) (17)

It should be noted that the choice of a in the EOS affects the φl and φg through the

coexistence curve and Maxwell’s equal area rule. ψ(ρ) is calculated using the numerically

obtained P from the simulation. Since fluid kinetic viscosity is coupled with the relaxation

time (ν = c2sδt(τ − 1
2
)) and the index function (Eq. 8), the relaxation time varies across

the interface. Moreover, a six point stencil finite difference approach with a second order

accuracy is used to calculate the gradient of ψ(ρ).

The Wettability of Wall

To model the fluid-solid interaction (wall wettability) in the He et al. [23], Davies et

al. [27] proposed a wetting boundary condition by applying the surface affinity concept [28]

to the index function. The surface affinity, χ is defined as

χ =
φ− 1

2
(φl + φg)

φl − φg

(18)

such that χ = −1 and χ = +1 represent hydrophobic and hydrophilic surfaces, respectively.

Iwahara et al. [28] related the equilibrium contact angle to the surface affinity through the

Young’s equation, as follows

cos(θeq) =
χ

2
(3− χ2) (19)

Therefore, the equilibrium contact angle, which is related to the wettability of the solid

surface, specifies the wall surface affinity. Then, this value of surface affinity prescribes the

index function of the wall (φs) that affects the ψ(φ) via Eq. 17. The gradient of ψ(φ) at

the solid wall can be numerically calculated using a non-equilibrium bounce back boundary

condition at the wall. This gradient is finally used in the force terms (Eq. 11 and 12) of

the lattice Boltzmann equations. Further details of the wetting boundary condition can be

found in [27].
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RESULTS AND DISCUSSION

Three-dimensional micro-meter size water droplets were simulated for a density ratio

of ρl/ρg = 10 and interface thickness of 1.5. Note that this density ratio is substantially

lower than the water/air ratio of the experiments used for validation. As with many diffuse

interface/LB models, setting the density ratio too high leads to numerical instability and

simulation failure. Here, a value is chosen at the upper end of the stable range for this

model, where predictions are found to become insensitive to the specific value of the density

ratio. In the first set of results, the droplet impingement in free-fall in ambient air was

investigated for different impact conditions. In the second set, the impingement under a

stagnation air flow was modeled and the two cases were compared.

Droplet impact in free-fall in ambient air

The simulations were initialized with a droplet positioned in the center of the domain with

a downward velocity of V0. Periodic boundary conditions were set for the side boundaries,

and the top and bottom were set to wetting wall boundary condition. The schematic of the

problem domain and boundary conditions are shown in Fig. 1.

FIG. 1: Schematic of the problem domain and boundary conditions

The range of the parameters varied in the simulations are listed in Table I, including the

Weber number (We), Reynolds number (Re), Ohnesorge number (Oh), Capillary number

(Ca), droplet initial diameter (D0), droplet impact velocity (V0), and the equilibrium contact

angle (θeq). The We, Re, Oh and Ca numbers are defined as
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Re =
ρV0D0

µ
, We =

ρV 2
0 D0

σ
(20)

Oh =

√
We

Re
=

µ√
ρσD0

, Ca =
We

Re
=
µV0
σ

(21)

TABLE I: Variation of different parameters in the simulations

We Re Oh ×103 Ca D0[µm] V0[m/s] θeq[
◦]

min 1.4 40 8.3 0.035 2.7 1.2 30

max 42 410 70.7 0.102 200 11 98

Validation

The experimental data of Briones et al. [18] was used to validate the three-dimensional

LBM simulation of this study. Operating conditions for each impact case are listed in

Table II and were exactly matched in each simulation. The maximum spreading factor,

ξmax = Dmax/D0, of the LBM simulation is compared to the experimental data in Fig. 2

with respect to the dimensionless time τ = tV0/D0. It can be seen that the simulation results

agree well with the experiments to within ±5.5% error. The instantaneous dimensionless

droplet diameter during the spreading phase, ξ = D/D0, for the two impact cases B and

D, is illustrated in Fig. 3. Good agreement is observed for τ > 0.4. For very early times,

τ < 0.2, the LBM simulations strongly under-predict the data. The good agreement at later

times, and the ability to predict the maximum spreading diameter indicate that the LBM

approach can reveal droplet impact physics with a good degree of confidence during the

majority of the spreading regime.

Spreading Regime in Free Fall

As pointed out by Ebrahim and Ortega [3], immediately after impact, the droplet ex-

periences a collapsing regime, in which a spherical droplet begins to deform to a lamella
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TABLE II: Operating conditions of the experimental data [18]

droplet D0[µm] V0[m/s] We Re Oh ×103 θeq[
◦]

A 40.7 1.56 1.4 63.4 26 87.09

B 35.6 3.02 4.5 107.3 28 79.04

C 55.4 2.45 4.6 135.5 22 50.32

D 36.6 4.02 8.2 146.8 28 65.66

E 32.2 5.14 11.8 165.2 29 64.45

F 33.4 4.97 11.4 165.7 29 66.69

FIG. 2: Maximum spreading factor of LBM simulation vs. experimental data [18]

with a defined contact line. For moderate to high impact conditions, this regime has very

short duration and therefore is usually neglected. After the formation of the lamella, the

spreading phase continues until the droplet initial kinetic energy is completely converted

to surface tension energy of the stretched lamella and dissipated by the wall shear stress.

After the droplet reaches its maximum spreading diameter, the receding phase is initiated

by the surface tension force that induces the retraction of the initially stretched droplet

until it achieves a new static equilibrium state. Depending on the surface wettability and

temperature, the droplet may continue to recede until it rebounds completely or partially

from the surface. The equilibrium state is eventually achieved after experiencing a number

of oscillations between the spreading and receding phase. This paper focuses only on the

spreading phase. The continuing study is focusing on the receding phase. Figure 4 illus-

trates the time elapsed images of the simulations during the spreading phase for two impact

conditions.
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FIG. 3: Instantaneous spreading factor

FIG. 4: Time elapsed images of the LBM simulations

Numerous analytic models have been proposed to determine the maximum spreading

diameter for the moderate to high impact We and Re numbers [29–33]. There are however

few dynamic models to compute the instantaneous droplet diameter [34–36]. Several of

these models are presented in Table III and are compared against the experimental data
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of Briones et al. [18], Figure 5 presents the error in predicting the maximum spreading

diameter, ξmax, using these models. The correlation of Scheller and Bousfield [37] and the

model of Son et al. [16] are accurate for all case studies (1 < We < 12) to within ±25%.

The models of Attane et al. [34] and Pasandideh-Fard et al. [30] are reasonable for 8 <We.

The remaining models fail to adequately predict the behavior of these micro-droplets. One

possible reason for the failure of these models is that they are based on the energy balance

approach, in which a cylindrical shape droplet is assumed immediately after impact. Son

et al. [16] speculated that this assumption is not valid for micrometer size droplet impact,

because no lamella formation was observed in their experiments performed in the low We

and Re number impact regime. Those observations are confirmed in Fig. 4, where low and

high impact conditions are compared. Therefore a simple model or correlation to predict

the dynamic spreading diameter within the low We and Re numbers impact regimes must

acknowledge these physics and remains undeveloped to now.

TABLE III: Analytic models to predict maximum spreading diameter

Model Equation

Chandra and Avedisian [29] 3
2
We
Re
ξ4max + (1− cosθ)ξ2max −

(

We
3
+ 4
)

= 0

Yang [31] We
2

= 3
2
ξ2max

(

1 + 3We
Re

(

ξ2maxlnξmax − ξ2max−1
2

)(

µdrop

µwall

)0.14
)

− 6

Jones [32] ξmax =
(

We
6

)0.5

Madejski [33] 3ξ2max

We
+ 1

Re

(

ξmax

1.2941

)5
= 1

Pasandideh-Fard et al. [30] ξmax =
√

We+12

3(1−cosθ)+4
(

We√
Re

)

Attane et al. [34] 1
2

d
dt
(
(

[1
2
+ 1

27
1
r6
]
(

dr
dt

)2
)

+ 1
dt
[r2(1− cosθeq) +

1
3r
] + Λ

2
Ohr2

(

dr
dt

)2

Son et al. [16] ξmax =
√

We+12

3(fs−cosθ)+4
(

We√
Re

) , fs = 1 + [1− cosθ
cos(90−θ)

]2

Scheller and Bousfield [37] ξmax = 0.61(Re2Oh)0.133
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FIG. 5: Comparison of analytical models in Table III with the experimental data of
Briones et al. [18], model of Yang [31] does not have real roots for these case studies

Correlation for spreading phase

In order to propose a correlation for the spreading phase it is essential to distinguish

the correct time and length scales to properly collapse and normalize data. Therefore,

the first step is to find and study the major dimensionless groups and parameters that

individually affect the spreading dynamics. As mention previously, the main dimensionless

groups describing the hydrodynamics of the droplet impact are Re, We, Oh and Ca numbers.

Note that Oh and Ca are not independent; the key dimensionless numbers are clearly We and

Re. In comparing micro (micrometer size) and macro (millimeter size) droplet impingement

it is necessary to match any two of these dimensionless groups. It is possible to match

impact We number of micro and macro size droplets by varying the impact velocity, but the

Re number of a micro droplet will be at least one order of magnitude smaller than that of

the macro droplet, regardless of the impact velocity. The flow therefore will be dominated

by low Re number physics which would tend towards creeping flow rather than collapsing

and flattening to a lamella. This is substantiated in the experiments of Son et al. [16] and

likely contributes to the failure of most of the analytic models.

Surface wettability, which is commonly defined in terms of equilibrium contact angle,

can also independently affect impact dynamics. This phenomenon depends on the chemical
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properties of the surface and the liquid [38, 39] and therefore the wettability of a pure liquid

varies on different surfaces. It should be noted that, surface wettability is often confused

with surface tension modification. The effect of surface tension modification is captured in

We number.

The individual effects of We and Re numbers obtained from lattice Boltzmann simulations

are shown in Figs. 6a and 6b . Droplet diameter and impact velocity are adjusted such as

to maintain one dimensionless number constant while varying the other. The separate

influences of We and Re numbers illustrate the distinct effects of droplet surface tension and

viscosity on the spreading phase. The effect of We number is illustrated in Fig.6a. When We

number is increased, the rate of the spreading phase is not significantly affected because the

enhancement in We number is primarily due to the decrease in surface tension. Therefore,

for a given kinetic energy and viscous dissipation, a weakened opposing surface tension force

will cause the spreading phase to continue longer without significant change in the rate and

lead to a larger spreading diameter. Figure 6b demonstrates the significant influence of Re

number on the dynamics of the impact due primarily to the influence of the initial droplet

kinetic energy. Rioboo et al. [7] made similar observations for the individual effects of We

and Re numbers for millimeter-size droplet impact. The influence of surface wettability is

illustrated in Fig. 6c. It is clear that as equilibrium contact angle decreases or as the surface

becomes more hydrophilic, the rate and the extent of the maximum spreading diameter are

enhanced.

Further study of Fig. 6 shows that the dimensionless time, τ = t× V0

D0
, fails to normalize

the time of the spreading dynamics, except for cases where Re number is varied. Therefore,

a more appropriate time scale to normalize the dynamic time must depend on We number

and surface wettability, which are both incorporated in the surface tension force. Using the

surface tension force and the acceleration it causes during the spreading phase, the spreading

time scale, ts, can be approximated as follows:

FsurfaceTension ∝Md

(

V0
ts

)

(22)

σD0(1− cos θ) ∝ ρD3
0

V0
ts

−→ ts ∝
(

We

1− cos θ

)

D0

V0
(23)

where Md and V0 are the mass and initial velocity of the droplet. The time scale, ts, was
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(a) (b)

(c)

FIG. 6: Instantaneous spreading factor for different impact (a)-We numbers, (b)-Re
numbers and (c)- Contact angle

empirically modified based on Eq. 23 to scale the spreading dynamics more accurately as

follow

ts =

(

We

1− cos θ

)( 1
4
)
D0

V0
(24)

The new dimensionless time for spreading phase, τ ∗, is then defined as

τ ∗ =
t

ts
= τ

(

1− cos θ

We

)
1
4

(25)

where τ = tV0/D0 is the common dimensionless time previously used in the literature. It
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is also clear in Fig. 6 that the non-dimensional length, ξ = D
D0

, fails to normalize spreading

diameter. Since the dynamic diameter is affected by both the initial droplet size, D0, and

impact velocity, V0, the maximum spreading diameter, would be a more appropriate length

scale because it captures the effects of both initial diameter and velocity. It is also evident

from Fig. 6 that the droplet diameter during the spreading phase is more significantly affected

by the Re number or viscosity. Hence the dominant terms in approximating the length scale

are viscous dissipation and initial kinetic energy. The new length scale, Ds, can be estimated

from the time in which all the initial kinetic energy is dissipated and the droplet reaches its

maximum spreading diameter, as follows

1

2
MdV

2
0 ∝ µ

(

dv

dr

)2

D3
0ts (26)

ρD3
0V

2
0 ∝ µ

(

Dmax/ts
D0

)2

tsD
3
0 (27)

Introducing Eq. 24 will lead to

Ds ∝ D0Re
1
2

(

We

1− cos θ

)
1
8

(28)

It was empirically observed that reducing the power of Re number in Eq. 28 to 1
8
in order

to group the dimensionless numbers together will not significantly affect the normalization

results. Therefore, in order to have a neater and simpler curve fit results, Eq. 28 was

empirically modified to

Ds = D0

(

ReWe

1− cos θ

)
1
8

(29)

The dimensionless length for the spreading phase will thus be

ξ∗ = ξ

(

(1− cos θ)

WeRe

)
1
8

(30)

The effectiveness of the introduced dimensionless length, ξ∗, and the dimensionless time,

τ ∗, is presented in Fig. 7 where the same simulation data of Fig. 6 are normalized using

Eqs. 25 and 30. It is clear that the new length and time scale can significantly improve

normalizing the impact dynamics. It is also evident that the spreading phase ends at τ ∗max ≈
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0.79 for all case studies.

(a) (b)

(c)

FIG. 7: The effect of new dimensionless length and time in normalizing spreading
dynamics for different impact (a)-We numbers, (b)-Re numbers and (c)- Contact angle

The normalized instantaneous spreading phase for numerous impact conditions is illus-

trated in Fig. 8. A curve fit of the normalized data, given as Eq. 31, is reasonably accurate

to predict the instantaneous spreading diameter to within ±16% for low We and Re num-

bers and for 0.02 ≤ τ ∗. It should be noted that the error is higher for early spreading

(τ ∗ ≤ 0.02), because the collapsing process that is usually neglected has different physics

and scaling characteristics.

ξ∗ = (τ ∗)
1
2 (e−0.46τ∗) (31)
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for 2.5 ≤ We ≤ 41.8, 40 ≤ Re ≤ 410, and 0 ≤ τ ∗ ≤ 0.79. Figure 8 also further confirms that

the normalized spreading phase ends at the dimensionless time of τ ∗max ≈ 0.79 and therefore

time to the maximum spreading diameter of any impact condition can be determined as

tmax = τ ∗maxts = 0.79
D0

V0

(

We

1− cos θ

)
1
4

(32)

Since ξ∗max is gained at τ ∗max = 0.79, the maximum spreading factor is given as

ξmax = 0.6180

(

WeRe

1− cos θeq

)
1
8

(33)

The instantaneous spreading factor can be calculated by substituting Eq. 30 and Eq. 25 in

Eq.31, as follows

ξ = Re
1
8 τ

1
2 exp

(

−0.46τ

(

1− cos θ

We

)
1
4

)

(34)

The error in predicting the maximum spreading diameter using Eq. 33 with respect to the

experimental data is shown in Fig. 9 and compared against the previous analytical models

that were introduced in Table III. Figure 9 further demonstrates the ability of the proposed

correlation to reasonably predict the maximum spreading diameter in low impact regimes.

The proposed correlations, Eq. 33 and Eq. 34, can be used to reasonably approximate

the instantaneous droplet diameter and the maximum spreading diameter, respectively for a

droplet impact within the unassisted spray cooling scale, 10 ≤ D ≤ 100 µm and 1 ≤ V0 ≤ 25

m/s [14, 15, 40, 41].

Droplet impact under a stagnation air jet

As previously mentioned, vapor assisted spray cooling is known to be more efficient in

heat removal than the regular unassisted spray cooling. In this technique, gas-atomizing

nozzles with pressurized gas are used to create smaller droplets with higher velocities in a

gas stagnation flow field. The gas is hypothesized to thin the liquid film that is formed after

the impact of each droplet by imposing shear stress on the droplet surface. Therefore, the

heat transfer is speculated to be enhanced due to the formation of a larger contact area

and thinner liquid film on the target surface. However, the effect of the gas jet flow on the
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FIG. 8: Normalized Instantaneous spreading diameter for free
falling droplet in ambient air

Simulation Data variation:

2.5 ≤ We ≤ 42

40 ≤ Re ≤ 410

30◦ ≤ θeq ≤ 98◦

FIG. 9: Comparison of Eq. 33 and analytical models in Table III with the experimental
data of Briones et al. [18]

dynamics of the droplet impact is not fully understood.

Effect of the stagnation jet flow

In this section, the impact of a water droplet under an air jet flow is simulated and

hence a stagnation jet is added to the spreading phase and boundary conditions are changed
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FIG. 10: Schematic of the droplet impact under stagnation jet flow

accordingly. The boundary condition method proposed by Chang et al. [42] and Liu et

al. [43] was applied to change the boundaries into inlet-velocity or pressure-outlet boundary

conditions. At each boundary, the unknown distribution functions are estimated based on

their equilibrium distribution function with an additional correction factor, as follows

f̄i = f̄ eq
i + ωiQf (35)

ḡi = ḡeqi + ωiei.Qg (36)

where Qf and Qg are the correction factors for each boundary and can be determined by

satisfying the conservation of mass and momentum, respectively. The top boundary was

changed to inlet-velocity, where the density and all the velocity components are known and

the pressure is unknown. All the side boundaries were modified to pressure-outlet boundary

condition, where the density and pressure are known, velocity components parallel to the

boundary are considered zero, and the velocity component perpendicular to the boundary is

unknown. Jet-to-surface distance was considered H/D0 = 2.5 and the droplet was initially

positioned in the middle of the domain with an initial velocity, V0. The effect of the jet

on the droplet acceleration was neglected due to the fact that the distance travelled by the

droplet before the impact is too short. A schematic of the problem domain and boundary

conditions is shown in Fig.10.

The effect of jet average velocity is demonstrated in Fig. 11 for the droplet impact condi-

tion of Re = 135, θeq = 71.1◦, and We = 4.5 and 14.5, where the gas We number is defined

as Weg = ρgV
2
g D0/σ where Vg is the jet velocity and ρg is the gas density. It can be seen in
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(a) (b)

FIG. 11: Instantaneous spreading factor for different Weg for impact condition of
Re = 245, and θeq = 71.1◦ (a)- We = 4.9 and (b)-We = 14.9

Fig. 11a that the stagnation jet does not significantly affect the maximum spreading diame-

ter for Weg < 0.09, while considerable enhancement is observed in both the rate and extent

of the spreading for Weg ≥ 0.09. It should be noted that, the gas affects the early spreading

phase for Weg < 0.09, however, this phase is usually neglected due to its complicated physics

and rapid behavior. The same influence can be seen in Fig. 11b, with the exception that

the stagnation jet starts to affect the spreading phase for Weg ≥ 0.13. It is clear that jet

shear stress on the droplet surface increases as Weg is augmented. However, jet normal and

tangential forces have to be sufficiently strong compared to the droplet spreading kinetic

energy in order to affect and assist the maximum spreading diameter.

It is necessary to determine the critical Weg at which the stagnation jet flow starts

to influence the spreading phase and further stretches the maximum spreading diameter.

Figure 12 represents the normalized results of various impact conditions. It is evident that

for Ca∗ ≥ 0.35, a more significant effect is observed in the maximum spreading diameter

ξmax−withjet/ξmax > 1 and therefore we define Ca∗ as the critical effective point given as

Ca∗ =
We∗

Re∗
≥ 0.35 (37)

where We∗ = Weg
We

=
ρgV

2
g

ρV 2
0

, Re∗ = Reg
Re

= ρgVgµ

ρV0µg
, and Ca∗ = Cag

Ca
= µgVg

µV0
.

Note that the stagnation jet imposes both normal and tangential forces on the droplet

surface during the spreading phase. The normal force is induced by the dynamic pressure
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of the jet and the ratio of the dynamic pressure of the jet to the droplet is captured by We∗.

The jet viscous force produces the shear or tangential force of the jet and Ca∗ shows the ratio

of jet viscous force to the droplet. For low impact regime, Ca∗ is two order of magnitudes

greater than the We∗, indicating that the jet shear force on the droplet surface is stronger

and affects the spreading phase more than the jet normal force. Ebrahim and Ortega [3]

experimentally observed that the spreading phase was not influenced by the stagnation jet in

high to moderate impact regimes, in which both We∗ and Ca∗ (Ca∗ ≤ 0.02) are negligible.

Hence, it could be speculated that for the stagnation jet flow to influence the spreading

phase and form a thinner liquid film on the surface, Eq. 37 has to be satisfied.

FIG. 12: Ratio of maximum spreading diameter under the
stagnation jet flow to maximum spreading diameter in ambient

air

Simulation Data variation:

2.5 ≤ We ≤ 42

40 ≤ Re ≤ 410

0.014 ≤ Weg ≤ 0.23

Correlation for spreading phase under stagnation flow

For Ca∗ < 0.35, where the stagnation jet does not considerably influence the droplet

dynamics, Eq. 31 or 34 are still valid. For Ca∗ ≥ 0.35, the main additional physics is the jet

viscous force acting on the droplet surface. As discussed previously, Ca∗ captures the ratio

of jet viscous force to the droplet. Hence, the dimensionless time and length (Eqs. 25 and

30) found for the impact in free-fall were modified to account for the effects of the stagnation

jet or Ca∗. The new dimensionless time and length for the impat under the stagnation jet
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were found empirically by simply adding the Ca∗ to the group of dimensionless numbers in

Eqs. 25 and 30:

τ̂ = τ ∗(Ca∗)
1
4 = τ

(

(1− cos θ)Ca∗

We

)
1
4

(38)

ξ̂ = ξ∗(Ca∗)−
1
8 = ξ

(

1− cos θ

WeReCa∗

)
1
8

(39)

Normalized instantaneous droplet diameter under a stagnation jet is shown in Fig. 13

for Ca∗ ≥ 0.35. A curve fit of the data, given as Eq. 40, predicts the instantaneous droplet

diameter in the spreading phase accurately up to 15% for τ̂ ≥ 0.15. This correlation also has

higher error for early spreading, because of the collapse process that has different physics

and scaling. The error is also more severe for the impact under the stagnation jet, because

the jet flow also affects the collapsing process.

ξ̂ = 0.90τ̂ 0.33e−0.17τ̂ (40)

for 2.5 ≤ We ≤ 41.8, 40 ≤ Re ≤ 410, 0.03 ≤ Weg ≤ 0.2, and Ca∗ ≥ 0.35.

It is clear in Fig. 13 that the dimensionless time to the maximum spreading diameter

under the stagnation jet is τ̂max ≈ 0.7. Thus, time to the maximum spreading diameter of

a droplet under a stagnation jet can be determined as

tmax = 0.7
D0

V0

(

We

(1− cos θ)Ca∗

)

(41)

Consequently, the maximum spreading factor is determined as

ξmax = 0.72

(

WeReCa∗

1− cos θ

)
1
8

(42)

The instantaneous spreading factor for Ca∗ ≥ 0.35 can be computed by substituting Eq. 38

and 39 into Eq. 40, resulting in

ξ = 0.90τ 0.33
(

1− cos θ

We

)−0.04

Ca∗0.2Re
1
8 exp

(

−0.17τ

(

(1− cos θ)Ca∗

We

)
1
4

)

(43)

The above proposed correlations, Eq.43 and Eq. 42 can be used to approximate the instan-

23



taneous droplet diameter and the maximum spreading factor in a gas assisted spray cooling

regime 10 ≤ D ≤ 40 µm and 10 ≤ V0 ≤ 50 m/s, respectively [44].

FIG. 13: Normalized Instantaneous spreading diameter for
droplet impact under stagnation air jet for Ca∗ ≥ 0.35

TABLE IV: Simulation
Data includes:

We Re Weg

4.5 135 0.032

4.5 135 0.090

4.5 135 0.130

8.9 190 0.058

8.9 190 0.090

8.9 190 0.130

14.9 245 0.090

14.9 245 0.130

22.3 300 0.130

31.3 355 0.170

CONCLUSIONS

Micrometer droplet impingement was simulated using a 3D lattice Boltzmann method in

the low Re and We number regimes. Droplet impact was modeled in the ambient air as well

as under a stagnation jet air flow to represent the hydrodynamics of single phase and gas

atomized spray cooling, respectively. Numerical data for the impact in the ambient air was

verified by the experimental data provided by Briones et al. [18].

The most relevant conclusions can be summarized as follows:

1. We, Re number and surface wettability individually affect the hydrodynamics of the

impact and therefore these three parameters must be matched in comparing different

situations.

2. Micro-scale droplet impingement which leads to a low impact We and Re regime was

found to be distinct from the millimeter-sized or moderate to high impact conditions.

Most of the analytic models derived for moderate to high impact regimes fail for the

low impact regimes.
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3. Simulation data for the impact in ambient air and under a stagnation jet were success-

fully normalized and correlations for the instantaneous droplet spreading phase of both

of the cases were proposed. The correlation for the impact in ambient air can be used

to approximate the spreading phase in unassisted spray cooling in which the sprayed

liquid droplets impact the surface in the ambient air. However, the spreading phase in

gas-assisted spray cooling in which the droplets impact the surface while a stagnation

jet flow is imposing normal and tangential forces on them, can be approximated using

the correlation for the impact under a stagnation jet.

4. Stagnation jet flow was found to influence the hydrodynamics of the spreading regime

when the parameter Ca∗ = µgVg

µV0
≥ 0.35, where µg

µ
is the gas to liquid viscosity ratio,

Vg is the jet velocity and V0 is the initial droplet impact velocity.
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