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Appendix A 

Table S1: Bulk oxide composition of each powder formulation as determined by X-ray fluorescence 

analysis. An error of approximately 1 wt. % is expected. 

 Mol % (target) Mol % (measured) 

Sample  CaO  SiO2 Al2O3 MgO CaO  SiO2 Al2O3 MgO 

A 39.2 56.5 1.4 2.9 40.6 55.2 1.4 3.0 

B 37.1 53.3 1.3 8.3 37.7 52.6 1.3 8.5 

C 35.1 50.5 1.2 13.1 35.0 49.9 1.3 14.0 

D 39.7 53.5 3.9 3.0 39.3 54.0 3.8 3.0 

E 37.5 50.5 3.6 8.4 35.2 53.7 3.5 7.7 

F 35.5 47.8 3.5 13.2 36.9 46.1 3.5 13.6 

G 49.1 47.3 1.2 2.5 49.3 47.1 1.3 2.6 

H 46.8 45.1 1.1 7.0 46.9 45.0 1.2 7.1 

I 44.7 43.1 1.1 11.2 45.2 42.6 1.1 11.3 

J 49.6 44.7 3.2 2.5 50.1 44.0 3.3 2.7 

K 47.2 42.6 3.1 7.1 46.9 43.1 3.1 7.1 

L 45.1 40.7 2.9 11.3 45.2 40.7 3.0 11.3 

 



Appendix B: BSE images and SEM-EDX data for additional samples not shown in main text 

 

Figure S1: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample 

B cured for 180 days 

 

Figure S2: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample 

C cured for 180 days 

 

Figure S3: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample 

E cured for 180 days 



 

Figure S4: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample 

F cured for 180 days 

 

Figure S5: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample 

G cured for 180 days 

 

Figure S6: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample 

H cured for 180 days 



 

Figure S7: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample I 

cured for 180 days 

 

Figure S8: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample 

J cured for 180 days 

 

Figure S9: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample 

K cured for 180 days 



 

Figure S10: Projection of alkali-activated material chemistry onto the ternary CaO ʹ Al2O3 ʹ SiO2 

system (neglecting Na2O and MgO content) showing elemental composition of AAMs cured for 3, 28 

and 180 days for samples A, B and C (Ca/(Al+Si) = 0.67 and Al/Si = 0.05) as marked, as determined by 

ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm 

× 500 µm section of the sample were used for analysis. Approximate regions of C-S-H and C-(N)-A-S-

H determined from [1] and [2].  



 

Figure S11: Projection of alkali-activated material chemistry onto the ternary CaO ʹ Al2O3 ʹ SiO2 

system (neglecting Na2O and MgO content) showing elemental composition of AAMs cured for 3, 28 

and 180 days for samples D, E and F (Ca/(Al+Si) = 0.67 and Al/Si = 0.15) as marked, as determined by 

ESEM-EDX analysis. A random selection of points evenly distributed across a repre sentative 500 µm 

× 500 µm section of the sample were used for analysis. Approximate regions of C-S-H and C-(N)-A-S-

H determined from [1] and [2]. 



 

Figure S12: Projection of alkali-activated material chemistry onto the ternary CaO ʹ Al2O3 ʹ SiO2 

system (neglecting Na2O and MgO content) showing elemental composition of AAMs cured for 3, 28 

and 180 days for samples G, H and I (Ca/(Al+Si) = 1.00 and Al/Si = 0.05) as marked, as determined by 

ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm 

× 500 µm section of the sample were used for analysis. Approximate regions of C-S-H and C-(N)-A-S-

H determined from [1] and [2]. 



 

Figure S13: Projection of alkali-activated material chemistry onto the ternary CaO ʹ Al2O3 ʹ SiO2 

system (neglecting Na2O and MgO content) showing elemental composition of AAMs cured for 3, 28 

and 180 days for samples G, H and I (Ca/(Al+Si) = 1.00 and Al/Si = 0.15) as marked, as determined by 

ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm 

× 500 µm section of the sample were used for analysis. Approximate regions of C-S-H and C-(N)-A-S-

H determined from [1] and [2]. 



 

Figure S14: Projection of alkali-activated material chemistry onto the ternary MgO ʹ Al2O3 ʹ SiO2 

system (neglecting CaO and Na2O content) showing elemental composition of AAMs cured for 3, 28 

and 180 days for samples A, B and C (Ca/(Al+Si) = 0.67 and Al/Si = 0.05) as marked, as determined by 

ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm 

× 500 µm section of the sample were used for analysis.   



 

Figure S15: Projection of alkali-activated material chemistry onto the ternary MgO ʹ Al2O3 ʹ SiO2 

system (neglecting CaO and Na2O content showing elemental composition of AAMs cured for 3, 28 

and 180 days for samples D, E and F (Ca/(Al+Si) = 0.67 and Al/Si = 0.15) as marked, as determined by 

ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm 

× 500 µm section of the sample were used for analysis. 



 

Figure S16: Projection of alkali-activated material chemistry onto the MgO ʹ Al2O3 ʹ SiO2 system 

(neglecting CaO and Na2O content) showing elemental composition of AAMs cured for 3, 28 and 180 

days for samples G, H and I (Ca/(Al+Si) = 1.00 and Al/Si = 0.05) as marked, as determined by ESEM-

EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 

µm section of the sample were used for analysis. 



 

Figure S17: Projection of alkali-activated material chemistry onto the ternary MgO ʹ Al2O3 ʹ SiO2 

system (neglecting CaO and Na2O content) showing elemental composition of AAMs cured for 3, 28 

and 180 days for samples G, H and I (Ca/(Al+Si) = 1.00 and Al/Si = 0.15) as marked, as determined by 

ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm 

× 500 µm section of the sample were used for analysis. 



 

Figure S18: Projection of alkali-activated material chemistry onto the ternary Na2O ʹ Al2O3 ʹ SiO2 

system (neglecting CaO and MgO content) showing elemental composition of AAMs cured for 3, 28 

and 180 days for samples A, B and C (Ca/(Al+Si) = 0.67 and Al/Si = 0.05) as marked, as determined by 

ESEM-EDX analysis. A random selection of points evenly distributed across a representative  500 µm 

× 500 µm section of the sample were used for analysis. 



 

Figure S19: Projection of alkali-activated material chemistry onto the ternary Na2O ʹ Al2O3 ʹ SiO2 

system (neglecting CaO and MgO content) showing elemental composition of AAMs cured for 3, 28 

and 180 days for samples D, E and F (Ca/(Al+Si) = 0.67 and Al/Si = 0.15) as marked, as determined by 

ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm 

× 500 µm section of the sample were used for analysis. 



 

Figure S20: Projection of alkali-activated material chemistry onto the ternary Na2O ʹ Al2O3 ʹ SiO2 

system (neglecting CaO and MgO content) showing elemental composition of AAMs cured for 3, 28 

and 180 days for samples G, H and I (Ca/(Al+Si) = 1.00 and Al/Si = 0.05) as marked, as determined by 

ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm 

× 500 µm section of the sample were used for analysis. 



 

Figure S21: Projection of alkali-activated material chemistry onto the ternary Na2O ʹ Al2O3 ʹ SiO2 

system (neglecting CaO and MgO content) showing elemental composition of AAMs cured for 3, 28 

and 180 days for samples J, K and L (Ca/(Al+Si) = 1.00 and Al/Si = 0.15) as marked, as determined by 

ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm 

× 500 µm section of the sample were used for analysis. 



 

Figure S22: Summary of bulk atomic ratios Ca/Si versus Si/Al (60 measurements per sample) for the 

alkali-activated material for samples A ʹ L cured for 3, 28 and 180 days as indicated 



 

Figure S23: Summary of bulk atomic ratios Mg/Si versus Si/Al (60 measurements per sample) for the 

alkali-activated material for samples A ʹ L cured for 3, 28 and 180 days as indicated  



Appendix C: Attenuated total reflectance Fourier transform infrared spectroscopy. 

ATR-FTIR spectra collected for precursor powders are presented in Figure S24. A broad, intense band 

is observed at 894 cm
-1

 and a shoulder can also be observed at 995 cm
-1

 in the spectra of in the 

spectra of all precursors. These bands are attributed to stretching vibrations of Si-O-T bonds (T = Si 

or Al) due to a highly depolymerised silica network and consistent with that observed in GGBFS [3-6]. 

A small band at approximately 465 cm
-1

 is also observed in the spectra of all precursors and is 

attributed to symmetrical bending of Si-O-T bonds, respectively [7].  

The spectra of all precursors exhibit bands at approximately 1460 cm
-1

 and 1415 cm
-1

 which are 

attributed to asymmetric stretching of O-C-O bonds in CO3
2- 

present in different polymorphs of 

CaCO3 (vaterite and calcite, respectively) which has formed as a consequence of reaction of free lime 

with CO2 during calcination [3, 6, 8]. A shoulder at 850 cm
-1

 is also observed in the spectra of the 

precursor for all samples and is likely due to the presence of HCO3
-
 formed via reaction of adsorbed 

water and CO2 [9]. 

The sharp band at 875 cm
-1

 in the spectra of all precursors is attributed to asymmetric stretching of 

AlO4
-
 groups in Al-O-Si bonds within the polymerised aluminosilicate phase [3, 4]. A small bands at 

713 cm
-1

 is also observed in the precursor for all samples and is associated with bending vibrations of 

internal oxygen bridges Si-O-Al are [10] as well as pseudo-lattice vibrations occurring within 3- and 4-

unit aluminosilicate rings comprised of TO4 tetrahedra [10-14]. A small bands observed at 508 cm
-1

 in 

the spectra of all precursors is attributed to O-Si-O bending vibrations [15] and 5 membered single 

rings and 6 membered double rings comprising of TO4 tetrahedral units [10]. 

The vibration modes present in the ATR-FTIR spectra of the precursor for all samples are consistent 

with calcium, silicon and aluminium bonding environments commonly observed in GGBFS [3, 9], 

calcium aluminosilicate glasses [4, 13] and Mg-free synthetic calcium aluminosilicate powders 

synthesised using the same method [6]. These modes are also consistent with a heterogeneous 



mixture of a depolymerised calcium silicate phase and a polymerised aluminosilicate phase within 

the amorphous phase identified by XRD [6, 16]. 

 

Figure S24: ATR-FTIR spectra of the precursor powder and alkali-activated material for samples A ʹ L 

cured for 3, 28 and 180 days as indicated  
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