This is a repository copy of Structural evolution of synthetic alkali-activated CaO-MgO-Na2O-Al2O3-SiO2 materials is influenced by Mg content.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/117704/

Version: Supplemental Material

Article:
Walkley, B. orcid.org/0000-0003-1069-1362, San Nicolas, R., Sani, M.A. et al. (3 more authors) (2017) Structural evolution of synthetic alkali-activated CaO-MgO-Na2O-Al2O3-SiO2 materials is influenced by Mg content. Cement and Concrete Research, 99. pp. 155-171. ISSN 0008-8846

https://doi.org/10.1016/j.cemconres.2017.05.006

Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Supporting information for:

Structural evolution of synthetic alkali-activated CaO-MgO-Na$_2$O-Al$_2$O$_3$-SiO$_2$

materials is influenced by Mg content

Brant Walkley1,5*, Rackel San Nicolas2, Marc-Antoine Sani3, Susan A. Bernal5, Jannie S.J. van Deventer1,4, John L. Provis5

1Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia

2Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia

3School of Chemistry and Bio21 Institute, The University of Melbourne, Victoria 3010, Australia

4Zeobond Pty Ltd, P.O. Box 23450, Docklands, Victoria 8012, Australia

5Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD, United Kingdom

* Corresponding author. Email: b.walkley@sheffield.ac.uk
Appendix A

Table S1: Bulk oxide composition of each powder formulation as determined by X-ray fluorescence analysis. An error of approximately 1 wt. % is expected.

<table>
<thead>
<tr>
<th>Sample</th>
<th>CaO</th>
<th>SiO$_2$</th>
<th>Al$_2$O$_3$</th>
<th>MgO</th>
<th>CaO</th>
<th>SiO$_2$</th>
<th>Al$_2$O$_3$</th>
<th>MgO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>39.2</td>
<td>56.5</td>
<td>1.4</td>
<td>2.9</td>
<td>40.6</td>
<td>55.2</td>
<td>1.4</td>
<td>3.0</td>
</tr>
<tr>
<td>B</td>
<td>37.1</td>
<td>53.3</td>
<td>1.3</td>
<td>8.3</td>
<td>37.7</td>
<td>52.6</td>
<td>1.3</td>
<td>8.5</td>
</tr>
<tr>
<td>C</td>
<td>35.1</td>
<td>50.5</td>
<td>1.2</td>
<td>13.1</td>
<td>35.0</td>
<td>49.9</td>
<td>1.3</td>
<td>14.0</td>
</tr>
<tr>
<td>D</td>
<td>39.7</td>
<td>53.5</td>
<td>3.9</td>
<td>3.0</td>
<td>39.3</td>
<td>54.0</td>
<td>3.8</td>
<td>3.0</td>
</tr>
<tr>
<td>E</td>
<td>37.5</td>
<td>50.5</td>
<td>3.6</td>
<td>8.4</td>
<td>35.2</td>
<td>53.7</td>
<td>3.5</td>
<td>7.7</td>
</tr>
<tr>
<td>F</td>
<td>35.5</td>
<td>47.8</td>
<td>3.5</td>
<td>13.2</td>
<td>36.9</td>
<td>46.1</td>
<td>3.5</td>
<td>13.6</td>
</tr>
<tr>
<td>G</td>
<td>49.1</td>
<td>47.3</td>
<td>1.2</td>
<td>2.5</td>
<td>49.3</td>
<td>47.1</td>
<td>1.3</td>
<td>2.6</td>
</tr>
<tr>
<td>H</td>
<td>46.8</td>
<td>45.1</td>
<td>1.1</td>
<td>7.0</td>
<td>46.9</td>
<td>45.0</td>
<td>1.2</td>
<td>7.1</td>
</tr>
<tr>
<td>I</td>
<td>44.7</td>
<td>43.1</td>
<td>1.1</td>
<td>11.2</td>
<td>45.2</td>
<td>42.6</td>
<td>1.1</td>
<td>11.3</td>
</tr>
<tr>
<td>J</td>
<td>49.6</td>
<td>44.7</td>
<td>3.2</td>
<td>2.5</td>
<td>50.1</td>
<td>44.0</td>
<td>3.3</td>
<td>2.7</td>
</tr>
<tr>
<td>K</td>
<td>47.2</td>
<td>42.6</td>
<td>3.1</td>
<td>7.1</td>
<td>46.9</td>
<td>43.1</td>
<td>3.1</td>
<td>7.1</td>
</tr>
<tr>
<td>L</td>
<td>45.1</td>
<td>40.7</td>
<td>2.9</td>
<td>11.3</td>
<td>45.2</td>
<td>40.7</td>
<td>3.0</td>
<td>11.3</td>
</tr>
</tbody>
</table>
Appendix B: BSE images and SEM-EDX data for additional samples not shown in main text

Figure S1: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample B cured for 180 days

Figure S2: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample C cured for 180 days

Figure S3: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample E cured for 180 days
Figure S4: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample F cured for 180 days.

Figure S5: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample G cured for 180 days.

Figure S6: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample H cured for 180 days.
Figure S7: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample I cured for 180 days

Figure S8: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample J cured for 180 days

Figure S9: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample K cured for 180 days
Figure S10: Projection of alkali-activated material chemistry onto the ternary CaO – Al₂O₃ – SiO₂ system (neglecting Na₂O and MgO content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples A, B and C (Ca/(Al+Si) = 0.67 and Al/Si = 0.05) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis. Approximate regions of C-S-H and C-(N)-A-S-H determined from [1] and [2].
Figure S11: Projection of alkali-activated material chemistry onto the ternary CaO – Al₂O₃ – SiO₂ system (neglecting Na₂O and MgO content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples D, E and F (Ca/(Al+Si) = 0.67 and Al/Si = 0.15) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis. Approximate regions of C-S-H and C-(N)-A-S-H determined from [1] and [2].
Figure S12: Projection of alkali-activated material chemistry onto the ternary CaO – Al₂O₃ – SiO₂ system (neglecting Na₂O and MgO content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples G, H and I (Ca/(Al+Si) = 1.00 and Al/Si = 0.05) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis. Approximate regions of C-S-H and C-(N)-A-S-H determined from [1] and [2].
Figure S13: Projection of alkali-activated material chemistry onto the ternary CaO – Al₂O₃ – SiO₂ system (neglecting Na₂O and MgO content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples G, H and I (Ca/(Al+Si) = 1.00 and Al/Si = 0.15) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis. Approximate regions of C-S-H and C-(N)-A-S-H determined from [1] and [2].
Figure S14: Projection of alkali-activated material chemistry onto the ternary MgO – Al₂O₃ – SiO₂ system (neglecting CaO and Na₂O content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples A, B and C (Ca/(Al+Si) = 0.67 and Al/Si = 0.05) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis.
Figure S15: Projection of alkali-activated material chemistry onto the ternary MgO – Al₂O₃ – SiO₂ system (neglecting CaO and Na₂O content showing elemental composition of AAMs cured for 3, 28 and 180 days for samples D, E and F (Ca/(Al+Si) = 0.67 and Al/Si = 0.15) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis.
Figure S16: Projection of alkali-activated material chemistry onto the MgO – Al₂O₃ – SiO₂ system (neglecting CaO and Na₂O content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples G, H and I (Ca/(Al+Si) = 1.00 and Al/Si = 0.05) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis.
Figure S17: Projection of alkali-activated material chemistry onto the ternary MgO – Al₂O₃ – SiO₂ system (neglecting CaO and Na₂O content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples G, H and I (Ca/(Al+Si) = 1.00 and Al/Si = 0.15) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis.
Figure S18: Projection of alkali-activated material chemistry onto the ternary Na$_2$O – Al$_2$O$_3$ – SiO$_2$ system (neglecting CaO and MgO content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples A, B and C (Ca/(Al+Si) = 0.67 and Al/Si = 0.05) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis.
Figure S19: Projection of alkali-activated material chemistry onto the ternary Na₂O – Al₂O₃ – SiO₂ system (neglecting CaO and MgO content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples D, E and F (Ca/(Al+Si) = 0.67 and Al/Si = 0.15) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis.
Figure S20: Projection of alkali-activated material chemistry onto the ternary Na₂O – Al₂O₃ – SiO₂ system (neglecting CaO and MgO content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples G, H and I (Ca/(Al+Si) = 1.00 and Al/Si = 0.05) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis.
Figure S21: Projection of alkali-activated material chemistry onto the ternary Na$_2$O – Al$_2$O$_3$ – SiO$_2$ system (neglecting CaO and MgO content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples J, K and L (Ca/(Al+Si) = 1.00 and Al/Si = 0.15) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis.
Figure S22: Summary of bulk atomic ratios Ca/Si versus Si/Al (60 measurements per sample) for the alkali-activated material for samples A – L cured for 3, 28 and 180 days as indicated.
Figure S23: Summary of bulk atomic ratios Mg/Si versus Si/Al (60 measurements per sample) for the alkali-activated material for samples A – L cured for 3, 28 and 180 days as indicated
Appendix C: Attenuated total reflectance Fourier transform infrared spectroscopy.

ATR-FTIR spectra collected for precursor powders are presented in Figure S24. A broad, intense band is observed at 894 cm\(^{-1}\) and a shoulder can also be observed at 995 cm\(^{-1}\) in the spectra of all precursors. These bands are attributed to stretching vibrations of Si-O-T bonds (T = Si or Al) due to a highly depolymerised silica network and consistent with that observed in GGBFS [3-6]. A small band at approximately 465 cm\(^{-1}\) is also observed in the spectra of all precursors and is attributed to symmetrical bending of Si-O-T bonds, respectively [7].

The spectra of all precursors exhibit bands at approximately 1460 cm\(^{-1}\) and 1415 cm\(^{-1}\) which are attributed to asymmetric stretching of O-C-O bonds in CO\(_3^{2−}\) present in different polymorphs of CaCO\(_3\) (vaterite and calcite, respectively) which has formed as a consequence of reaction of free lime with CO\(_2\) during calcination [3, 6, 8]. A shoulder at 850 cm\(^{-1}\) is also observed in the spectra of the precursor for all samples and is likely due to the presence of HCO\(_3^−\) formed via reaction of adsorbed water and CO\(_2\) [9].

The sharp band at 875 cm\(^{-1}\) in the spectra of all precursors is attributed to asymmetric stretching of AlO\(_4^−\) groups in Al-O-Si bonds within the polymerised aluminosilicate phase [3, 4]. A small bands at 713 cm\(^{-1}\) is also observed in the precursor for all samples and is associated with bending vibrations of internal oxygen bridges Si-O-Al are [10] as well as pseudo-lattice vibrations occurring within 3- and 4-unit aluminosilicate rings comprised of TO\(_4\) tetrahedra [10-14]. A small bands observed at 508 cm\(^{-1}\) in the spectra of all precursors is attributed to O-Si-O bending vibrations [15] and 5 membered single rings and 6 membered double rings comprising of TO\(_4\) tetrahedral units [10].

The vibration modes present in the ATR-FTIR spectra of the precursor for all samples are consistent with calcium, silicon and aluminium bonding environments commonly observed in GGBFS [3, 9], calcium aluminosilicate glasses [4, 13] and Mg-free synthetic calcium aluminosilicate powders synthesised using the same method [6]. These modes are also consistent with a heterogeneous
mixture of a depolymerised calcium silicate phase and a polymerised aluminosilicate phase within the amorphous phase identified by XRD [6, 16].

Figure S24: ATR-FTIR spectra of the precursor powder and alkali-activated material for samples A – L cured for 3, 28 and 180 days as indicated
References

