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Abstract
A major challenge for machine learning is increasing the availability of data while respecting

the privacy of individuals. Here we combine the provable privacy guarantees of the Differential
Privacy framework with the flexibility of Gaussian processes (GPs). We propose a method using
GPs to provide Differentially Private (DP) regression. We then improve this method by crafting
the DP noise covariance structure to efficiently protect the training data, while minimising the
scale of the added noise. We find that, for the dataset used, this cloaking method achieves the
greatest accuracy, while still providing privacy guarantees, and offers practical DP for regression
over multi-dimensional inputs. Together these methods provide a starter toolkit for combining
differential privacy and GPs.

1 Introduction
As machine learning algorithms are applied to an increasing range of personal data types, interest is
increasing in mechanisms that allow individuals to retain their privacy while the wider population can
benefit from inferences drawn through assimilation of data. Simple ‘anonymisation’ through removing
names and addresses has been found to be insufficient[Sweeney, 1997, Ganta et al., 2008]. However,
randomisation-based privacy methods (such as differential privacy, DP) provide provable protection
against such attacks. A DP algorithm[Dwork et al., 2006, Dwork and Roth, 2014] allows privacy
preserving queries to be performed by adding noise to the result, to mask the influence of individual
data. This perturbation can be added at any of three stages in the learning process [Berlioz et al.,
2015]; to the (i) training data, prior to its use in the algorithm, (ii) to components of the calculation
(such as to the gradients or objective) or (iii) to the results of the algorithm. Considerable research
has been undertaken looking at the second of these options, in particular fitting parameters using
an objective function which has been perturbed to render it differentially private [e.g. Chaudhuri
et al., 2011, Zhang et al., 2012] with respect to the training data, or more recently, Song et al. [2013]
described how one might perform stochastic gradient descent with DP updates. Some attention has
also been paid to non-parametric models, such as histograms [Wasserman and Zhou, 2010] and other
density estimators, such as the method described in Hall et al. [2013] which performs kernel density
estimation (note that there are also parametric DP density estimators, such as Wu et al. [2016]
who use Gaussian mixtures to model density). For regression; besides using a perturbed objective
function, one can also perform parametric DP regression by using the subsample-and-aggregate
framework, as used in Dwork and Lei [2009, section 7], effectively protecting the parametric results
of the regression (option iii).

In this paper we also focus on (iii) (making the result private), and investigate corrupting a
Gaussian Process’s (GP’s) fit to the data. Importantly this paper addresses the problem of making
the outputs of GP regression private, not its inputs. Specifically we use the results in Hall et al. [2013]
to find bounds on the scale of perturbations of the mean function which allows appropriate Gaussian
DP noise to be added (Section 2). The added DP noise for this initial method is too large for many
problems. To ameliorate this we consider the situation in which we know a priori the locations of
the test points, and thus can reason about the specific correlation structure in the predictions for
given perturbations in the training outputs (Section 3). Assuming the Gaussian mechanism is used
to provide the DP noise, we are able to find the optimal noise covariance to protect training outputs.
∗Work completed while at the University of Sheffield.
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Finally we compare this strategy for inducing privacy with a DP query using the Laplace mechanism
on the bin means[Dwork and Roth, 2014, section 3.4], and show that it provides greater accuracy for
a given privacy guarantee, for the citibike dataset.

Combining the ubiquity of GP regression with the rigorous privacy guarantees offered by DP
allows us to build a toolkit to apply DP to a wide array of problems, amenable to GP regression.

2 Applying Differential Privacy to a Gaussian Process
The challenge is as follows; we have a dataset in which some variables (the inputs, X) are public, for
example the latitude and longitude of all homes in a country. We also have a variable we want to
keep secret (y, e.g. house price). We want to allow people to make a prediction about this variable
at a location, while still ensuring that the dataset’s secret variables remain private. In this section
we fit a standard GP model to a dataset and calculate the bound on the scale of the perturbation we
need to add to the posterior mean to provide a DP guarantee on the training outputs.

Hall et al. [2013] extend DP to functions. Consider a function, f , that we want to release
predictions from (with privacy guarantees on these outputs). If the family of functions from which
this function is sampled lies in a reproducing kernel Hilbert space (RKHS) then one can consider
the function as a point in the RKHS. We also consider another function, f ′, that’s been generated
using identical data except for the perturbation of one row. The distance, ||f − f ′||, between these
points is bounded by the sensitivity, ∆. The norm is defined to be ||g|| =

√
〈g, g〉H . Specifically the

sensitivity is written ∆ ≥ supD∼D′ ||fD − fD′ ||H . Hall et al. [2013] showed that one can ensure that a
version of f , function f̃ is (ε, δ)-DP by adding a scaled sample from the Gaussian process G (which
uses the same kernel as f). We scale the sample by ∆c(δ)

ε, where c(δ) ≥
√

2 log 1.25
δ . Relating this

to the definition of DP, finding ∆ allows us to know how much the function f can change between
neighbouring databases. We then choose the scale of the noise added by the randomised algorithm,
M , to mask these changes. In the GP case we have some data (at inputs X and outputs y). We
assume for this paper that the inputs are non-private (e.g. people’s ages), while the outputs are
private (e.g. number of medications).

The mean function of a GP posterior lies in an RKHS. We need to add the correctly scaled
sample to ensure its DP release. It will become clear that the covariance function does not need
perturbation as it does not contain direct reference to the output values. We first need to know the
possible values that the (training data’s) output y can take.

Using the notation of Williams and Rasmussen [2006], the predictive distribution from a GP
at a test point x∗ has mean, f̄∗ = k>∗

(
K ′ + σ2

nI
)−1

y, and covariance, V [f∗] = k(x∗,x∗) −
k>∗
(
K ′ + σ2

nI
)−1

k∗, where f̄∗ is the mean of the posterior, k(x∗,x∗) is the test point’s prior
variance, k∗ is the covariance between the test and training points, K ′ is the covariance between
(the latent function that describes) the training points, σ2

n is the variance of the iid noise added to
each observation and y are the outputs observed values of the training data.

We note that (ignoring any previous parameter selection) the covariance does not depend on the
training output values (in y) so we only need to make the mean function private. We also assume
for the following analysis that the kernel has a maximum value of one, and a minimum of zero.
This restricts us to using a subset of stationary kernels and normalising the output values prior to
prediction.

Concentrating then on the mean function, Williams and Rasmussen [2006] note that, using the
representer theorem, we can rewrite the above expression as the weighted sum of n kernel functions,
f̄(x∗) =

∑n
i=1 αik(xi,x∗), where α =

(
K ′ + σ2

nI
)−1

y. For simplicity in the following we replace
K ′ + σ2

nI with K. We are interested in finding,

||fD(x∗)− fD′(x∗)||2H =
〈
fD(x∗)− fD′(x∗), fD(x∗)− fD′(x∗)

〉
. (1)

In Hall et al. [2013, section 4.1], the vector x is identical to x′ with the exception of the last element
n. In our case the inputs are identical (we are not trying to protect this part of the data). Instead it
is to the values of y (and hence α) that we need to offer privacy.

fD(x∗)− fD′(x∗) =
n∑
i=1

αik(x∗,xi)−
n∑
i=1

α′ik(x∗,xi) =
n∑
i=1

k(x∗,xi) (αi − α′i) (2)
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In the kernel density estimation example, in Hall et al. [2013], all but the last term in the two
summations cancel as the α terms were absent. In our case however they remain and, generally,
αi 6= α′i. We therefore need to provide a bound on the difference between the values of α and α′. To
reiterate, α = K−1y. So the difference between the two vectors is, α−α′ = K−1 (y − y′)

As K doesn’t contain private information itself (it is dependent purely on the input and the
features of the kernel) we can find a value for the bound using a specific K. See the supplementary
material for a weaker, general, upper bound, for when the precise value of K is unknown.

The largest change we protect against is a perturbation in one entry of y. Therefore we assume
that all the values of y and y′ are equal except for the last element which differs by at most d.
Equation 2 is effectively adding up the values of the last column in K−1, each scaled by the kernel’s
value at that point, k(x∗,xi) and by the difference between y and y′. If we assume that the kernel
values are bound between -1 and 1 (not unreasonable, as many stationary kernels have this property,
if we normalise our data), and also note that the use of the last column is arbitrary, we can bound
equation 2 by the maximum possible sum of any column’s absolute values in K−1 (i.e. the infinity
norm), times d; i.e. ||K−1||∞ × d.

We finally introduce our additional restriction that the value of the kernel is non-negative (an
optional additional bound to further reduce the noise scale, which is true for many kernels, such as
the Exponentiated Quadratic (EQ) kernel). The bound is then calculated by finding the infinity
norm for the following two matrices, and taking the larger. In one K−1 is modified so that all
negative-values are ignored, in the other all values are initially inverted, before the negative-values
are discarded. We shall call this bound, b(K−1). Note that the two options described are necessary
to allow us to account for the uncertainty in the sign of y − y′, whose magnitude is bound by d but
in an unknown direction. Returning to the calculation of the sensitivity, we can expand equation 2
substituted into 1:

||fD(x∗)− fD′(x∗)||2 =
〈

n∑
i=1

(αi − α′i)k(x∗,xi),
n∑
i=1

(αi − α′i)k(x∗,xi)
〉

(3)

To reiterate, we use our constraint that the chosen kernel has a range of 0 to 1, so the summations
above will have a magnitude bounded by d × b(K−1). This means that an upper bound on the
sensitivity is,

||fD(x∗)− f ′D(x∗)||2 ≤ d2 b(K−1)2. (4)

!Kung San women example
We use, as a simple demonstration, the heights and ages of 287 women from a census of the !Kung
[Howell, N., 1967]. We are interested in protecting the privacy of their heights, but we are willing to
release their ages. We have set the lengthscale a priori, to 25 years as from our prior experience of
human development this is the timescale over which gradients vary1. We can find the empirical value
of our sensitivity bound on the inverse covariance matrix, b(K−1) and the value of c(δ). Substituting
in our given values we find that we should scale our GP samples by 28.53. Figure 1A illustrates that,
even with large ε the DP noise overwhelms the function we want to estimate. It is worth noting
before moving onto the next section that, if the sensitivity of the training data had been smaller (for
example count or histogram data, with ∆ = 1) then this method could produce usable predictions at
reasonable ε. The key advantage of this method over the following is that one need not specify the
test input locations in advance. We find however we are able to considerably reduce the scale of the
DP noise by insisting that we are given the test input points a priori.

3 The Cloaking Method
Both of the methods examined so far are limited to low-sensitivity datasets (such as histogram/count
data). We now introduce an alternative we refer to as cloaking, that allows a considerable reduction
in the DP noise added but at the cost of needing to know the test point inputs a priori. We approach
this new method by first reasoning about the direction (across test points) noise is added by the

1Hyperparameters are all set a priori, but appear precise as there is some normalisation which has taken place.
Kernel variance σ2 = 7.722cm2, Gaussian noise σ2

n = 142 cm2, DP: δ = 0.01, ε = 50.0, ∆ = 100cm (inforced by
rectifying all values to lie 50cm of the mean).

3



Figure 1: Heights and ages of female !Kung San. Figure A, standard GP method. Figure B, cloaking
method. Solid blue lines, posterior means of the GPs; grey lines, DP samples; Black and grey dashed
lines, SE and 1

4SE confidence intervals for DP noise respectively; blue area, GP posterior variance
(excluding noise). δ = 0.01, ∆ = 100cm.

earlier (Section 2) method, and comparing its effect to the effect of modifying a training point. The
sensitivity in the earlier methods needed to be quite high because the noise added (sampled from the
prior covariance) is not necessarily in the direction a perturbation in a training output would cause.

Consider the simple case of two training and two test points, illustrated in figure 2. Subfigures B
and D illustrate (with an ellipse) the shape of the noise added to the predictions if we sample from
the prior (as in section 2) and the changes caused by the perturbation of the training data. The
figure demonstrates that the prior doesn’t provide the most efficient source of noise. In particular
the large amount of correlated noise that is added in this example is not necessary. Perturbations
in individual training points cannot cause such correlated noise in the test outputs. To summarise;
there is no perturbation in a single training point’s output which could cause the predictions to move
in the direction of the prior’s covariance.

Differential Privacy for vectors of GP predictions
From Hall et al. [2013, proposition 3]: given a covariance matrix M and result vectors describing
neighbouring databases y∗ and y′∗, we define the bound,

sup
D∼D′

||M−1/2(y∗ − y′∗)||2 ≤ ∆ (5)

∆ is a bound on the scale of the output change, in term of its Mahalanobis distance with respect to
the added noise covariance. The algorithm outputs ỹ∗ = y∗+ c(δ)∆

ε Z where Z ∼ Nd(0,M). (ε, δ)-DP
is achieved if c(δ) ≥

√
2 log 2

δ . We want M to have the greatest covariance in those directions
most affected by changes in training points. We are able to compute K, the covariance between all
training points (incorporating sample variance) and K∗f the covariance between training and test
points. Given the training outputs y, we can find the predictions for all test points simultaneously,
y∗ = K∗fK

−1y. The cloaking matrix C = K∗fK
−1 describes how the test points change wrt changes

in training data. We use it to write the perturbed test values as y′∗ = y∗ + C (y′ − y) . We assume
one training item i has been perturbed, by at most d; y′i = yi + d. As yi is the only training output
value perturbed, we can see that the change in the predictions is dependent on only one column of
C, ci; y′∗ − y∗ = dci This can be substituted into the bound on ∆ in equation 5. Rearranging the
expression for the norm (and using M ’s symmetry);

||dM−1/2ci||2 = (dM−1/2ci)>(dM−1/2ci) = dc>i M−>/2M−1/2cid = d2c>i M−1ci

We want to find M such that the noise sample Z is small but also that ∆ is also minimised. A
common way of describing that noise scale is to consider the determinant (generalised variance),
the square root of the determinant (proportional to the volume of a confidence interval), or the
log of the determinant (proportional to the differential entropy of a normal distribution (plus a
constant) 1

2 ln
(
(2πe)k · |Σ|

)
. We use the latter but they will all have similar results. We show in the

supplementary material that the optimal M =
∑
i λicic>i with the λ found using gradient descent,

∂L
∂λj

= Tr
(
M−1cjc

>
j

)
+ 1.
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Figure 2: Figures A and C illustrate the perturbation of a pair of training points (circles) and the
effect on a pair of test points T1 and T2 (stars). Figures B and D illustrate the associated change in
the two test points, plotting them against each other (the posterior mean prediction indicated by the
central dots). The ellipses represent the shape of the DP noise added using the DP method devised in
section 2. One can see that in figure B, T1 remains largely unaffected by the perturbation in the
training point, while T2 experiences a large change. In figure D perturbation in the other training
point causes the posterior mean to move rightwards and downwards. Importantly, the covariance
of the DP noise added by previous methods is mostly not in either of these directions, but instead
adds correlated noise. This additional, correlated noise, isn’t useful in protecting the privacy of the
training data, as no perturbation in a single training data’s output could cause the test points to
move in a correlated way. The cloaking method instead adds noise illustrated in figure E, as small as
possible while still masking the possible perturbations.

We return to the example of the !Kung San women data to demonstrate the improvement in
privacy efficiency. Figure 1B illustrates the results for a reasonable value of ε = 12. The input domain
is deliberately extended to demonstrate some features of the method. First, where the data is most
concentrated the scale of the added noise is small. This is quite intuitive as the effect one training
point has there on the posterior prediction will be overwhelmed by its neighbours. A second and
potentially less intuitive finding is that the DP noise is greatest at about 110 years, well away from
the nearest data point. This, we believe, is because of the fulcrum and lever interaction between the
outliers and the data’s concentration. The figure 2A partly demonstrates this, with the test point
T2 being changed slightly more than the perturbation in the training point. The third observation
is that the added DP noise eventually approaches zero away from the training data; the posterior
mean will equal the prior mean regardless of the training data’s outputs. The RMSE without DP
was 6.8cm and with (1, 0.01)-DP, 12.2cm, suggesting that this provides quite large, but practical
levels of DP perturbation. Note that the 200 test point inputs that make up the graph’s predictions
are exactly those specified as part of the cloaking algorithm (X∗); a large number of nearby test
points doesn’t degrade the quality of the predictions as they are all very highly correlated. The noise
that is already added to ensure a test point does not breach DP, is almost exactly the noise that is
needed by its close neighbours.

As a further example we consider a spatial dataset of 4766 property sales since 2013 from the
Land Registry [2017] centred on London3. Figure 3 illustrates how the DP noise scale varies over the
city. Note how areas of high training data concentration the DP noise added was small, while in
sparse areas the noise added was high. Also areas towards the corners of the map where there are no
data, return to the GP prior’s mean, and have little DP noise added.

Hyperparameter optimisation
So far in this paper we have selected the values of the kernel hyperparameters a priori. To demonstrate
a DP method for their selection we evaluate the SSE of k-fold cross-validation iterations for each
hyperparameter configuration and select the optimum using the exponential mechanism. Details of
the method (including bounds on the sensitivity) can be found in the supplementary material.

2EQ kernel, δ = 0.01, lengthscale 25 years, gaussian noise 14cm
3The data was thresholded to lie between £100k and £500k (so the sensitivity could be bounded). ε = 1 and

δ = 0.01, lengthscale 15km, Gaussian variance £2400k2.
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Figure 3: 4766 property prices in a 10, 000km2 square around London (2013-16). Dots, property
locations; circles, DP price predictions. Predicted price indicated by circle area. The scale of the DP
noise indicated by transparency (Opaque: no DP noise. Transparent: DP noise std is at least 40% of
∆). Non-DP predictions indicated by contours from £215k to £437k. ε = 1 and δ = 0.01. Areas (A)
with high concentrations of training data provide predictions with little DP noise, areas with few
data have much more DP noise (B). Areas far from any data return to the GP’s prior mean, and have
little DP noise added (C). Interesting ‘bridging’ effects between data concentrations causes the DP
noise to remain low as the posterior is ‘supported’ at both sides of areas with low density (e.g. D).

4 Results
We finally compare cloaking with simple binning (with the bin means made DP using the Laplace
Mechanism4). We also fitted a GP to this binned data, using an ‘integral’ kernel. Briefly, this
kernel models a latent function which is then integrated across (between bin boundaries) to provide
predictions of the model’s observations. We found this often does better than simple binning when
the data is noisy. We did not include the standard GP method (from section 2) as we found it not
competitive.

For the !Kung dataset, we applied the hyperparameter selection technique to the cloaking
mechanism’s outputs and compared it to the results of binning. We found that hyperparameter
selection, for one or two parameters, caused a reduction in RMSE accuracy that was noticeable but
not impractical. Specifically we used the exponential mechanism with the negative-SSE of 100-fold
monte-carlo cross-validation runs to select hyperparameter combinations (testing lengthscales of
between 3 and 81 years, and Gaussian noise variance of between 1.12 cm2 and 12.72 cm2), which we
tested against a validation set to provide the expected RMSE. We fixed the DP ε to 1 for both the
exponential mechanism and the cloaking and binning stages. The simple binning method (depending
on bin size) had a RMSE of 23.4-50.7cm, the integral method improved this to 14.2-20.8cm. With
no DP on parameter selection the cloaking method’s RMSE would be 14.3cm (comparable to the
integral kernel’s best bin size result). If we however select its hyperparameters using the exponential
mechanism, the RMSE worsens to 17.4cm. Thus there is a small, but managable cost to the selection.

A final interesting result is in the effect of the level of privacy in the regression stage on the
selection of the lengthscale. This is demonstrated in the distribution of probabilities over the
lengthscales when we adjust ε. Figure 4 demonstrates this effect. Each column is for a different level
of privacy (from none to high) and each tile shows the probability of selecting that lengthscale. For
low privacy, short lengthscales are acceptable, but as the privacy increases, averaging over more data
allows us to give more accurate answers.

4We used Laplace noise as it causes a lower RMSE than the Gaussian noise alternative (with δ = 0.01).
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Figure 4: Effect of varying the differential privacy parameter, ε, on the likelihood of selecting each
lengthscale. Colour indicates probability of parameter selection. With low privacy, a short lengthscale
is appropriate which allows the GP to describe details in the data. With high privacy, a longer
lengthscale is required, which will average over large numbers of individual data points.

Using data from the New York City bike sharing scheme, Citibike [2013]5 we predict journey time,
give the latitude and longitude of the start and finish stations. The 4d EQ kernel had lengthscales
of between 0.02 and 0.781 degrees (latitude or longitude, equivalent to roughly 1.8km to 75km.
σ = 15812s2, l = 0.05◦, σn = 16052 s2. Durations above 2000s were thresholded.

We tested values of ε of between 0.2 and 1.0 (with δ fixed at 0.01) and with DP disabled. Monte
Carlo cross-validation was used to make predictions using the DP framework (4900 training, 100
test journeys). For comparison we binned the training data into between 81 and 10,000 bins, then
computed DP means for these bins. These DP values were used as predictions for the test points
that fell within that bin (those bins without training data were set to the population mean). Table 1
summarises the experimental results. The new cloaking function achieves the lowest RMSE, unless
both ε and the lengthscales are small. With no DP the short-lengthscale cloaking method provides
the most accurate predictions, as this isn’t affected by the binning and is capable of describing the
most detail in the spatial structure of the dataset. The simple binning becomes less accurate with
more bins, probably due to low occupancy rate (in a random training example, with 10,000 bins, only
11% were occupied, and of those 40% only had one point) and a form of overfitting. As (1, 0.01)-DP
noise is added the simple-binning degrades quickly due to high DP noise added to low-occupancy
bins. Xu et al. [2013] also describes a similar phenomenon. Predictions using the GP with an integral
kernel fitted to these DP bin counts appears to provide some robustness to the addition of DP noise.
As ε is further reduced, the cloaking method does better at longer lengthscales which allow more
averaging over the training data. Simple binning becomes increasingly compromised by the DP noise.

5 Discussion
The cloaking method performs well, providing reasonably constrained levels of DP noise for realistic
levels of privacy and provides intuitive features such as less DP-noise in those areas with the greatest
concentration of training data. The earlier method, described in section 2, required much more DP
perturbation, but didn’t require that test point locations be known a priori. For the cloaking method
the lengthscale provides a powerful way of trading off precision in modelling spatial structure with
the costs of increasing DP-noise. We could exploit this effect by using non-stationary lengthscales
[e.g. Snoek et al., 2014, Herlands et al., 2015], incorporating fine lengthscales where data is common
and expansive scales where data is rarified. This could lead to DP noise which remains largely
constant across the feature space. Another interesting effect of the cloaking mechanism is that
the precision one gains about one location depends on where other test points are. So if you are
particularly interested in predictions in one part of the input domain, one should avoid including
other test points at uninteresting locations. To further reduce the DP noise, we could manipulate
the sample noise for individual output values. For the initial method, by adjusting the sample noise
for individual elements we can control the infinity-norm. For the cloaking method, outlying training

5163,000 subscribers, 600 stations located in a box bounded between latitudes 40.6794 and 40.7872, and longitudes
−74.0171 and −73.9299. Unlike the house-price data we kept the locations in these global coordinates. Each fold of
the Monte Carlo cross validation sampled 5000 rows from the 1,460,317 journeys in June 2016.
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lengthscale or bins No DP ε = 1 ε = 0.5 ε = 0.2
cloaking 0.781◦ 490± 14 493± 13 498± 13 525± 19

0.312◦ 492± 15 497± 12 502± 17 545± 26
0.125◦ 402± 7 437± 21 476± 17 758± 94
0.050◦ 333± 11 434± 27 612± 78 1163± 147
0.020◦ 314± 12 478± 22 854± 54 1868± 106

integral binning 104 bins 581± 5 586± 7 597± 12 627± 23
64 bins 641± 6 640± 9 658± 17 736± 41
34 bins 643± 6 649± 13 677± 22 770± 51

simple binning 104 bins 596± 12 1064± 69 1927± 191 4402± 434
64 bins 587± 11 768± 58 1202± 206 2373± 358
34 bins 550± 12 575± 24 629± 58 809± 110

Table 1: RMSE (in seconds, averaged over 30-fold X-validation, ± 95% CIs) for DP predictions of
citibike journey durations. Five lengthscales (in degrees latitude/longitude) and three bin resolutions
were tested for the cloaking and binning experiments respectively. The cloaking method, with the
right lengthscale, makes more accurate predictions than either of the binning methods. As we increase
ε, cloaking needs longer lengthscales to remain competitive. These longer lengthscales effectively
allow the predictions to ‘average’ over more training data.

points, around the ‘edge’ of a cluster, could have their sample noise increased. One important issue
is how to make DP GP predictions if we want to protect the values of the training inputs. This could
be approached by considering a bound on the inverse-covariance function, a suggestion is provided in
the supplementary material.

Future work is also needed to address how one optimises the hyperparameters of these models in
a DP way. The method described in section 3 works but is far from optimal. It may be possible to
extend methods that use DP Bayesian optimisation to estimate values for hyperparameters [Kusner
et al., 2015], or approximate the likelihood function to work with the method described in Han et al.
[2014]. It would also be interesting to investigate how to modify the objective function to incorporate
the cost of DP noise.

The actual method for releasing the corrupted mean function for the output-noise methods has
not been discussed. Options include releasing a set of samples from the mean and covariance functions
(a necessary step for the cloaking method, as the test-points need specifying in advance), or providing
a server which responds with precise predictions given arbitrary input queries, sampling from the
same Gaussian. The examples given here all use the EQ kernel but the cloaking method works
with arbitrarily complex kernel structures and it has no requirement that the covariance function be
stationary. GP Classification is also an obvious next step, using a logistic link function, or similar.

Finally, in unpublished work, we have found evidence that the use of inducing inputs can
significantly reduce the sensitivity, and thus DP noise required, for the initial DP GP model. Future
work should be undertaken to investigate the potential for further reducing the DP noise through
the use of inducing inputs.

We have presented novel methods for combining DP and GPs. GPs are a highly flexible approach
for a range of challenges in machine learning. In the longer term we believe a comprehensive set
of methodologies could be developed to enhance their applicability in privacy preserving learning.
We have applied DP for functions to GPs and given a set of known test points we were able to
massively reduce the scale of perturbation for these points by considering the structure of the
perturbation sensitivity across these points. In particular we found that the cloaking method
performed considerably more accurately than the binning alternatives.
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Supplementary Material
Deriving and optimising the cloaking variables
Note that when solving for M , we put an arbitrary (positive) bound on ∆ of 1, as any scaling of ∆
caused by manipulating M , will scale the determinant of M by the inverse amount6.

We will express our problem as trying to maximise the entropy of a k-dimensional Gaussian
distribution with covariance P = M−1;

Maximise ln (|P |), subject to n constraints, 0 ≤ c>i Pci ≤ 1.

Considering just the upper bounds and expressing this as a constraint satisfaction problem using
Lagrange multipliers we have L = ln |P |+

∑
i λi(1− c>i Pci). Differentiating (and setting to zero),

∂L
∂P = P−1 −

∑
i λicic>i = 0. We also have the slackness conditions (for all i), λi(c>i Pci − 1) = 0 and

we also require that λi ≥ 0. Rearranging the derivative, we have, P−1 =
∑
i λicic>i . Note that as

λi ≥ 0, P−1 is positive semi-definite (psd)7, thus the initial lower bound (that c>i Pci ≥ 0) is met.
The upper bound (that c>i Pci ≤ 1) is achieved if the λi are correctly chosen, such that the Lagrange
and slackness conditions are met.

We now must maximise the expression for L wrt λj . To assist with this we rewrite our ex-
pression for P−1 =

∑
i λicic>i = CΛC>, where C = [c1, c2...cn] = K∗fK

−1 and Λ is a diagonal
matrix of the values of λi. The summation in the expression for L,

∑
i λi(1− c>i Pci) can be

written as Tr
(
Λ + C>PCΛ

)
. Substituting in our definition of P , we can write the summation as:

Tr
(
Λ + C>(CΛC>)−1CΛ

)
= Tr

(
Λ + C>C−>Λ−1C−1CΛ

)
. Assuming C is invertible, the summa-

tion becomes Tr
(
Λ + Λ−1Λ

)
. Differentiating this wrt λj equals one. We can use this result to find

the gradient of L wrt λj :

∂L

∂λj
= ∂L

∂|P |
× ∂|P |
∂λj

+ ∂

∂λj

∑
i

λi(1− c>i Pci)

= |P |−1 × |P |Tr
(
P−1P 2cjc

>
j

)
+ 1

= Tr
(
Pcjc

>
j

)
+ 1

(6)

This can be solved using a gradient descent method, to give us those values of λi which minimise
log |M | while ensuring ∆ ≤ 1.

Citibike duration distribution
Figure 5 illustrates the distribution of journey times and the effect of thresholding.

Algorithms
Algorithm 1 describes the Cloaking method.

Hyperparamter selection
So far in this paper we have selected the values of the kernel hyperparameters a priori. Normally
one may maximise the marginal likelihood to select the values or potentially integrates over the
hyperparameters. In differential privacy we must take care when using private data to make these
choices. Previous work exists to perform this selection, for example Kusner et al. [2015] describes a
method for performing Differentially Private Bayesian optimisation, however their method assumes
the training data isn’t private. Kusner et al. [2015] do suggest that the work of Chaudhuri and
Vinterbo [2013] may allow Bayesian Optimisation to work in the situation in which the training data
also needs to be private.

6For example if we write a new ∆′ with M as mM , we see that we can take out the m term from ∆′’s inequality,
leaving ∆′ = m−1/2∆. When we scale Z, which has covariance mM by this new value of ∆′ the covariance of the
scaled Z equals (∆′)2mM = (m−1/2∆)2mM = ∆2M , the magnitude change cancels, so any positive value of ∆ (e.g.
1) will suffice for the optimisation. Also: in the following we ignore d and reintroduce it at the end of the derivation by
defining ∆ = d instead of it equalling 1.

7the summation is of a list of positive semi-definite rank-one matrices. One can see that such a sum is also positive
semi-definite (to see this, consider distributing z> and z over the summation).
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Algorithm 1 Using the cloaking algorithm
Require: M, the GP model (the kernel, hyperparameters and training inputs and normalised*

outputs)
Require: X∗ ∈ RP×D, (the matrix of test inputs)
Require: d > 0, data sensitivity (maximum change possible)
Require: ε > 0, δ ≥ 0, the DP parameters

1: function DifferentiallyPrivateCloakingRegression(X∗, M , d, ε, δ)
2: C ← M.get_C(X∗) . Compute the value of the cloaking matrix (K∗fK−1)
3: λ ← findLambdas(C)
4: M ← calcM(λ, C) . Calculate the DP noise covariance matrix
5: ∆ ← calcDelta(λ, C)†

6: c ←
√

2log 2
δ

7: y∗, σ
2
∗ ← M.get_predictions(X∗) . Calculate non-DP predictions

8: z ∼ N (0,M)
9: ỹ∗ ← y∗ + (∆dc/ε)z
10: return ỹ∗, σ2

∗
11: end function

12: function M.get_C(X∗)
13: FromM compute K∗f and K−1 . Compute covariances between training and test points
14: C ← K∗fK

−1

15: return C
16: end function

17: function findLambdas(C)
18: λ ← Uniform(0.1, 0.9) . Initialise randomly‡
19: α ← 0.05 . Learning rate
20: do
21: dL

dλ ← CalcGradient(λ, C)
22: ∆λ ← −dLdλα
23: λ ← λ+ ∆λ

24: while ∆λ > 10−5

25: return λ
26: end function

27: function calcGradient(λ, C)
28: M ← calcM(λ, C)
29: for 0 ≤ j < N do . N, number of columns in cloaking matrix, C.
30: [ dLdλ ]j ← −Tr

(
M+C:jC

>
:j
)

+ 1
31: end for
32: return dL

dλ
33: end function

34: function calcM(λ, C)
35: M ←

∑
i λiC:iC

>
:i

36: return M
37: end function

38: function calcDelta(λ, C)
39: M ← calcM(λ, C)
40: ∆ ← maxj C>:jM+C:j
41: return ∆
42: end function

*We assume the user will handle normalisation.
†Although we should have optimised M such that ∆ ≤ 1, it may not have completely converged, so we compute the ∆
bound for the value of M we have actually achieved.
‡We have found that occasionally the algorithm fails to converge. To confirm convergence we have found it useful to
reinitialise and run the algorithm a few times.
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Figure 5: The duration of 5000 citibike journeys. Note the effect caused by thresholding at 2000s.

We decided instead that, due to the low-dimensionality of many hyperparameter problems, a
simple grid search, combined with the exponential mechanism may allow the selection of an acceptable
set of hyperparameters. For the utility function we considered using the log marginal likelihood, with
additional noise in the data-fit term to capture the effect of the DP noise. However for simplicity in
estimating the bound and to avoid overfitting we simply used the sum square error (SSE) over a
series of K-fold cross-validation runs, which for a given fold is

∑N
i=1 (y∗i − yti)2, with predictions y∗

and test values yt.
Before proceeding we need to compute a bound on the sensitivity of the SSE. To briefly recap,

the DP assumption is that one data point has been perturbed by at most d. We need to bound the
effect of this perturbation on the SSE. First we realise that this data point will only be in the test
set in one of the K folds. In the remaining folds it will be in the training data.

If the perturbed data point is in the training data (y), then we can compute the sensitivity of
the SSE. The perturbation this would cause to the predictions (y∗) is described using standard GP
regression (and the cloaking matrix). Specifically a change of d in training point j will cause a dcjk
change in the test point predictions, where cjk is the jth column of the cloaking matrix for the kth
fold.

To compute the perturbation caused by the change in the training data, we note that the SSE
is effectively the square of the euclidean distance between the prediction and the test data. We
are moving the prediction by dcjk. The largest effect that this movement of the prediction point
could have on the distance between prediction and test locations is if it moves the prediction in the
opposite direction to the test points. Thus it can increase (or decrease) the distance between the test
and predictions by the largest length of dcjk over training points. Hence for one of the folds, the
largest change in the SSE is d2 maxj |cjk|22.

If the perturbed data point, j, was in the test data then the SSE will change by (y∗j + d− ytj)2−
(y∗j − ytj)2 = d2 + 2d(y∗j − ytj). The last part of the expression (the error in the prediction for point
j) is unbounded. To allow us to constrain the sensitivity we enforce a completely arbitrary bound of
being no larger than ±4d, thresholding the value if it exceeds this. Thus a bound on the effect of the
perturbation is d2 + 2d× 4d = d2 + 8d2 = 9d2.

The SSE of each fold is added together to give an overall SSE for the cross-validation exercise.
We sum the K− 1 largest sensitivities and add 9d2 to account for the effect of the single fold in which
the perturbing datapoint, j, will be in the test set. The perturbation could have been in the test
data in any of the folds. We assumed it was in the fold with the smallest training-data sensitivity
to allow us to make the result a lower bound on the sensitivity of the SSE to the perturbation. If
it had been in any other fold the sensitivity would have been less (as more sensitivity would be
contributed by the sum over the training sensitivities). Thus the sensitivity of the SSE over the K
folds is; 9d2 +

∑K−1
k=1 d2 maxj |cjk|22 (where the k folds are ordered by decreasing sensitivity)

We compute the SSE and the SSE’s sensitivity for each of the hyperparameter combinations we
want to test. We then use the computed sensitivity bound with the exponential mechanism to select
the hyperparameters. To summarise, to use the exponential mechanism one evaluates the utility
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u(x, r) for a given database x and for elements r, from a range. One also computes the sensitivity of
this utility function by picking the highest sensitivity of any of the utilities; in this case each utility
corresponds to a negative SSE, and each sensitivity corresponds to the sum described above.

∆u , max
r∈R

max
x,y
|u(x, r)− u(y, r)|

(where x and y are neighbouring databases).
The exponential mechanism selects an element r with probability proportional to:

exp
(
εu(x, r)

2∆u

)
Note that for a given privacy budget, some will need to be expended on this selection problem,

and the rest expended on the actual regression.

Privacy on the training inputs
To release the mean function such that the training inputs remain private, we need a general bound
on the infinity norm of the covariance function, that doesn’t depend explicitly on the values of X.

Varah [1975] show that if J is strictly diagonally dominant8 then:

||J−1||∞ ≤ max
1≤i≤n

1
∆i(J) = b(J)

where we’ve defined this bound as b(J−1). We also define ∆i(J) = |Jii| −
∑
j 6=i |Jij |, i.e. the sum

of the off diagonal elements in row i subtracted from the diagonal element.
So if K is strictly diagonally dominant (which is achieved if the inputs are sufficiently far apart,

and/or if sufficient uncertainty exists on the outputs), then we have a bound on the sums of its rows.
The above bound means that,

n∑
i=1

αi − α′i ≤ ∆yb(J−1) (7)

To ensure sufficient distance between inputs, we could use inducing variables, which can be
arbitrarily placed, so that the above constraints on the covariance matrix are observed.

8A matrix, J , is strictly diagonally dominant if ∆i(J) > 0 for all 1 ≤ i ≤ n.
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