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ABSTRACT

The likelihood ratio (LR) is the “logically and legally correct” (Rose and Morrison 2009:143)
framework for the estimation of strength-of-evidence under two competing hypotheses. In forensic
voice comparison these considerations are reduced to the similarity and typicality of features across
a pair of suspect and offender samples. However, typicality can only be judged against patterns in
the relevant population (Aitken and Taroni 2004:206). In calculating numerical LRs typicality is

assessed relative to a sub-section of that population.

This study considers issues of variability relating to the delimitation of reference data with regard to
the number of speakers and number of tokens per speaker. Using polynomial estimations of F1 and
F2 trajectories from spontaneous GOOSE (Wells 1982), LR comparisons were performed against a
reference set of up to 120 speakers and up to 13 tokens per speaker. Results suggest that mean
same-speaker LRs are robust to such variation until the reference data is limited to small numbers of
speakers and tokens. However, variance and severity of error may be continually reduced with the

inclusion of more data.

The definition of the relevant population with regard to regional variety is also assessed. Results for
LRs are presented across four sets of test data where only one set matches the reference population
for accent. In the absence of differences in levels of within-speaker variation, the magnitude of
same-speaker LRs and severity of error are shown to be considerably higher for the ‘mismatch’ test
sets. However, results indicate that the removal of regionally-defining acoustic information may
reduce the effect of accent divergence between the evidential and reference data. This has positive

implications for the application of the numerical LR approach.
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1.0 INTRODUCTION

In the UK voice comparison (FVC) accounts for the vast proportion of casework undertaken by
forensic speech scientists (c.70%, French p.c.). Experts are typically presented with two samples (one
incriminating sample containing the voice of the offender, the other containing the voice of the
suspect) and asked to compare the speech patterns to assess the possibility that the same-speaker is

present in both.

However, the paradigm shift (Saks and Koehler 2005) across forensic disciplines reflects a move
towards the evaluation of such evidence within a framework which is more “scientific” (Morrison
2009a:1). The shift reflects the Court of Appeal’s concern over “the logically correct evaluation and
presentation” (Morrison 2009a:1) of expert evidence in R-v-Doheny and Adams [1996]. The court
ruled that DNA evidence presented as posterior probability, i.e. an assessment of the hypotheses
given the evidence p(H|E), committed the prosecutor’s fallacy (Thompson and Schumann 1987) and

gave undue weight to the expert’s testimony.

With DNA “setting the standard” (Baldwin 2005:55) in forensic science, the Doheny Court’s assertion
that “the scientist should not be asked his opinion on the likelihood that it was the Defendant who
left the crime stain” (Rose 2007a) emphasises the validity of considering the probability of the
evidence rather than the hypotheses. In line with the Court’s judgement, the Bayesian framework,
and specifically the likelihood ratio (LR), are now widely accepted as the “logically and legally
correct” (Rose and Morrison 2009:143) approach for the estimation of strength-of-evidence. Despite
the Court of Appeal ruling in R-v-T [2010], Bayes’ theorem forms “the model for a scientifically
defensible approach in forensic identification science” (Gonzalez-Rodriguez et al 2007:2104) towards

which the current shift is moving.

The Bayesian approach provides a framework for the assessment of evidence across a criminal trial
and its facility for the incorporation of “multiple piece(s) of evidence” makes it “a very attractive

measure for (FVC)” (Kinoshita 2002:300). The odds form of Bayes’ theorem is:



p(Hp) p(E|Hp) p(Hp|E)
p(Hq) p(E|Hg) p(H4E)

Prior Odds Likelihood Ratio Posterior Odds

adapted from Rose (2004:3)

Where p = probability
E =evidence
| =‘given’
H, = prosecution hypothesis (i.e. same-speaker)
Hq = defence hypothesis (i.e. different-speaker)

[] = trier-of-fact
] = expert

The prior odds reflect the trier-of-fact’s assessment of the probability of the hypotheses before the
introduction of evidence (see Cohen 1982; Redmayne 1998). The prior odds are modified by planks
of evidence expressed within a LR framework to establish posterior odds. The posterior odds are
concerned with what Lynch and McNally refer to as the “ultimate issue” (2003:96) of innocence or

guilt: an assessment of the probability of the hypotheses given the weight of evidence.

Central to Bayes’ theorem is the LR: an estimation of strength-of-evidence based on its probability of
occurrence given H, divided by the probability of its occurrence given Hqy. In FVC, the numerator is
equated to the similarity of samples, while the denominator is concerned with their typicality in the
relevant population (Aitken and Taroni 2004:206). Numerical LRs are calculated using acoustic data,
where suspect and offender samples are compared against a sampled sub-section of the relevant
population. The outcome is a value centred on one, such that LRs of >1 offer support for H, whilst
LRs of <1 offer support for Hy (Rose 2004:4). The magnitude of the LR determines how much more
likely the evidence would be given H, than H, (Evett et al 2000). A LR of five is interpreted as: ‘the
evidence is five times more likely assuming the hypothesis that the same-speaker was involved than

assuming the hypothesis that different-speakers were involved’.



Robertson and Vignaux maintain that “expert evidence should be restricted to the (LR) given by the
test or observation of its components” (1995:21). Similarly, Rose describes the role of Bayes’
Theorem in FVC as “non-negotiable” (2004:3). Logical and legal arguments for these claims are

numerous.

The distinction between assessing the hypotheses and the evidence ensures that the roles of trier-
of-fact and expert are separated. In restricting the expert to the LR, the ultimate issue remains the
preserve of judge and jury. This also prevents the expert from expressing “inappropriate” p(H|E)
conclusions based on “information and assumptions from sources other than an objective scientific
evaluation of the known and questioned samples” (Morrison 2009a:4). Moreover, it is not only
inappropriate but logically impossible for the expert to provide posterior probability. This is because
p(H|E) is dependent on prior odds, which are determined by the trier-of-fact and therefore
inaccessible. Finally, the LR conforms with the US Supreme Court ruling in Daubert [1993] which
requires that theories and techniques have been tested and “actual or potential error rates (...)

considered” (Rose 2002:121).

However, the LR approach itself does not ensure a reliable estimation of strength-of-evidence.
Numerical LRs are necessarily affected by the input data, such that the removal of an individual from
the reference population will vary the outcome. However, very little is known about the robustness
of LRs to systematic variability in the reference population and to truly satisfy Daubert, it is essential
that error, and LR performance more generally, are assessed under such conditions. Therefore, this
study presents an investigation into the issue of variability in the definition and delimitation of the

reference population with a focus on population size and accent mismatch.



2.0 BACKGROUND

2.1 Expression of conclusions in forensic speech science (FSS)

Gold (2011) surveyed 36 forensic speech scientists to investigate how experts frame
conclusions in FVC casework. Results reveal a lack of consensus. The highest proportion of experts
(39%) currently use a classical probability framework of the kind described in Baldwin and French
(1990:10). However, there has been an increasing impetus for FSS to move away from such p(H|E)
statements. Initial concerns over classical probability scales were raised in Broeders (1999) and
subsequently Champod and Evett (2000) and Champod and Meuwly (2000) argued for the
assessment of FVC evidence within a LR framework. In countries where probability scales are in

operation there is also growing support for the Bayesian approach (Jessen 2011).

However, contrary to the cross-disciplinary paradigm shift, just four experts in Gold (2011) have
adopted the numerical LR framework. This reflects concerns over the practical implementation of
numerical LRs (Nolan 2001). French and Harrison claim that a quantitative approach is primarily
precluded by “the lack of demographic data” (2007:142). This is emphasised by Rose as “one of the
main factors that make the accurate estimation of LRs problematic” (2004:4). As a solution, Rose

(2007a) proposes that experts collect reference data themselves.

To ensure reliable strength-of-evidence from such data two issues must be addressed. Firstly, the
relevant population needs to be defined and secondly, the sub-section of the population must be
delimited. However, the task of ensuring that reference data is representative, relevant and reliable
is not straightforward. Indeed, Morrison claims that “the only principled objections (to LRs) (...) (are)

related to defining the relevant population to sample in order to calculate (...) typicality” (2009a:13).

2.2 The ‘defence hypothesis’

According to the LR, the reference population is determined by the defence hypothesis (Hy).
However, where H,, is likely to be a straightforward submission that two samples contain the voice of
the same individual (the defendant), Hq is more complicated. Broeders claims that the LR approach is
only feasible “where one or more scientific alternative hypotheses can be formulated” (1999:239).

The implications are emphasised by Robertson and Vignaux who affirm that “it is often difficult if not



impossible to determine the probability of the evidence with a vague and ill-defined hypothesis”
(1995:31). In many jurisdictions the defence will offer simply a ‘different-speaker’ hypothesis or no
alternative at all. Rose claims that in such cases Hy may be assumed to be “another same-sex

speaker of the language” (2004:4).

Coleman and Walls define the relevant population as “those persons who could have been involved
(ignoring other priors)” (1974:276). Smith and Charrow propose a modification, claiming that
typicality should be assessed against “the smallest population known to possess the culprit as a
member” (1975:556). Lenth (1986) justifies the need for a more specific hypothesis than ‘it was a
different speaker’, arguing that the LR model assumes that “the alleged source of the evidence is a
random selection from those persons having the required characteristics” (in Aitken 1991:58).
Therefore, only when “there is no evidence to separate the perpetrator from the (...) population” or
“results can be regarded as independent of variations in sub-groups” (Robertson and Vignaux
1995:36) should a ‘general’ population be used. Given the inferences which may be made about an
individual on the basis of his speech patterns, in most cases the relevant population may be defined
more narrowly than the default assumption in Rose (2004). Such inferences relate to regional

background, age and class amongst others.

However, in reality it is not possible to define the reference population on the basis of all social
groups to which the perpetrator belongs. In other areas of forensic science this issue may be
resolved by logical relevance (Kaye 2004). In DNA casework Hy is determined in part by ethnicity
since the frequency of certain strands is variable according to ethnic groupings. As offender ethnicity
cannot be inferred from DNA alone, a multiple-Hy approach is adopted in which the jury is presented
with LRs according to the ethnic grouping of the reference population (Kaye 2008). Since ethnicity

affects the magnitude of the LR it is considered logically relevant.

2.3 LR-based studies in FSS

Previous FSS research reveals a lack of consensus regarding the definition of the relevant
population. Kinoshita (2001, 2002) represent the first studies to consider the LR performance of
traditional phonetic features. In the (2002) study, intrinsic same-speaker (SS) and different-speaker
(DS) comparisons (where speakers function simultaneously as test and reference data) based on ten

speakers of Japanese were conducted using F1-F4 of five vowel phonemes. Results offered useful



strength-of-evidence, despite the small number of speakers. Rose, Osanai and Kinoshita (2003)
investigated LR performance based on a multivariate analysis of cepstral coefficients and formants
from a nasal, voiceless fricative and vowel. Again intrinsic testing was performed based on 60 male

Japanese speakers from 11 prefectures. The test data was also uncontrolled for age.

Alderman (2004) assessed the viability of the Bernard data (Bernard 1967, 1970) as a reference
distribution for FVC. By focussing on the role of the reference data, the study represents the first
step towards tackling this “deficiency in the (LR) method” (Rose 2002:320). Whilst the age of test
speakers is restricted, Alderman claims that three accent groupings based on ‘broadness’ in
Australian English are adequate “for a number of difference variations of (Hq) based on accent”
(2004:511). However, the viability of the Bernard data is determined on the strength-of-evidence
and LR (the ratio of SS pairs achieving LRs of >1 to DS pairs achieving LRs of <1) achieved for

individual phonemes, rather than the comparative performance of accent groupings.

Extrinsic testing, involving an independent reference set of 166 speakers was performed by Rose et
al (2006) based on formant trajectories of /a1 /. Sound change in the form of a lowering of F2 at the
onset and increase in F1 at the offset during the 30 years which separates the reference and test
recordings is claimed to be “important” (2006:330). However, no predictions are made as to the

expected effects of such change and no reference is made to this when discussing the results.

Morrison’s (2008) study of /a1r/ explicitly acknowledges potential sources of variation which may
affect LR output. Morrison highlights the age range of 19 to 64 years, small number of speakers
(intrinsic testing using 27 speakers) and the presence of “some dialect variation” (2008:251) as
potential shortcomings of the method employed. Zhang et al’s (2011) study of Chinese /iau/
displays a more active consideration of the issues in Morrison (2008). Despite the small reference
population (20 speakers), there is greater control over regional background and age. Therefore, the
speakers in Zhang et al are a more homogeneous set than those previously investigated in numerical
LR studies. Finally, regional variety is also raised by Rose as a factor which makes a “minimal
contribution to the good results” (2011:1721) based on formants and cepstral coefficients from two

tokens of five vowel phonemes in Japanese.

Previous studies reveal largely only an implicit awareness of the sources of variation which may
affect the reliability of strength-of-evidence. However, increasingly researchers are acknowledging

these issues and occasionally controlling for them. Loakes (2006) represents the most forceful call



for greater controls over the definition of the reference population. Loakes claims that if the sample
is not representative, “the resulting LR will in turn be misrepresentative” (2006:197) and suggests
that along with “speaker sex and accent (...) tighter constraints on social variables might also need to

be applied to population selection” (2006:198).

Systematic research into the effect of variability in the reference data is offered by Ishihara and
Kinoshita (2008) and Hawkins and Clermont (2009). Both found that the number of reference
speakers can dramatically affect LR output, especially when this number is limited. Further, Hawkins
and Clermont (2009) show a broadening of 99% confidence intervals as the number of reference
speakers is reduced. In automatic FVC, regional variety has also received some limited attention.
Harrison and French (2010) assessed the outcome of LRs generated by BATVOX as a function of the
make-up of the reference data. Results reveal that whilst the system is not accent dependent, there
is “sensitivity to regional accents”. Such sensitivity is likely to be exacerbated in the calculation of LRs
based on traditional phonetic features which are expected to contain higher levels of accent-

defining information than long-term spectral characteristics.

2.4 The present study

Despite the body of research in FSS conducted within a numerical LR framework, questions
relating to the definition of the relevant population remain largely unanswered. Therefore, this
study offers a preliminary exploration into the logical relevance of certain sources of variation on the
outcome of LRs. The results of two studies into the effect of population size are presented. The first
concerns the number of speakers and the second concerns the number of tokens per speaker. To
address issues of the relevance of the population, this study also investigates the effect of mismatch
between suspect and offender data and the reference data with regard to regional variety. SS and
DS LRs are calculated on quadratic and cubic polynomial coefficients of F1 and F2 trajectories for

GOOSE.

Given that variable input necessarily affects the numerical output, the primary concern here is the
magnitude of LR differences as a consequence of variability and whether such patterns are
systematic. The results are not intended to categorically determine how the reference population
should be defined and sampled, but rather to highlight issues of logical relevance in FVC. The

limitations of the study are discussed at §3.7.



3.0 METHODOLOGY

Extrinsic LR testing is adopted, whereby mock suspect and offender samples (test) are assessed
against separate reference data. Extrinsic evaluation allows factors in test and reference sets to be
varied independently and “generally provide(s) more realistic and defensible data” (Rose et al

2006:329).

3.1 Segmental material

GOOSE was analysed due to the availability of existing acoustic data. The limitation of
GOOSE is that the four test varieties (New Zealand (NZE) (Canterbury), Manchester, Newcastle and
York) are predicted to display regionally-defined variation. Hughes et al (2011) found GOOSE-
fronting at the onset in Manchester English while Easton and Bauer (2000) claim that GOOSE in NZE
is undergoing change involving fronting and diphthongisation. Watt’s (1998) auditory analysis of
Newcastle GOOSE suggests a maximally-fronted realisation of [a#], but that more commonly
Ju/~>[u: ,OAl Such differences mean that the impact of accent mismatch is, to an extent,

predictable.

However, GOOSE is not a ‘stereotype’ (Labov 1971) of any of the varieties investigated. Individuals
are expected to display within-group variation, such that the patterns predicted by the literature are
unlikely to be consistent across all speakers. Since GOOSE-fronting in English varieties (RP: Torgersen
and Kerswill 2004, Hawkins and Midgley 2005; American English: Clarke et al 1995, Fridland 2008) is
closely correlated with age, the use of younger speakers was intended to reduce regionally-defined
F2 variation (acoustic correlate of fronting). Further, phonological patterns of increased F2 following
/j/ and reduced F2 preceding /1/ (Ash 1996, Hall-Lew 2005, Flynn 2011) are expected to be
consistent across test sets. Jones claims that in RP a “diphthongal pronunciation is particularly
noticeable in final position” (1966:42). Therefore, tokens were coded for adjacent /j / and /1/ and

open or closed syllable status allowing greater control over within- and between-speaker variation.



3.1.1 The dynamic approach

Research suggests that a ‘dynamic’ approach characterising spectral properties of
vowels across their duration offers greater speaker-discriminatory potential than ‘static’
measurements from the steady-state of formant trajectories (Greisbach et al 1995; Ingram et al
1996; Rodman et al 2002; Eriksson et al 2004). Nolan claims that whilst phonetic targets are defined
by the speech community, transitions are “acquired through a process of trial and error” (1997:749).
Formant trajectories have been investigated extensively within a numerical LR framework (Morrison

and Kinoshita 2008; Morrison 2009b).

Data consisted of time-normalised measurements at +10% steps of F1 and F2 for GOOSE (McDougall

2004, 2006; Hughes et al 2009). As such, formant contours were defined by nine raw Hz values.
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Figure 1 — TextGrid of the word ‘moved’ with GOOSE delimited on tier 1 produced by speaker 1 in the

Manchester test set (06:37) (A_D_ethno.wav)



604.735338

v T L T

H ( 10% 20% 30% 40% 50% 60% 70% 80% 90%

T 'B._ A X | |

3000 Hz

604.588615 Visible part 0.146723 seconds 604.735338

Figure 2 — Spectrogram of GOOSE isolated from the lexical item ‘doing’ produced by speaker 1 in the
Manchester test set (10:04) (A_D_ethno.wav) showing the location of +10% step markers at which F1

and F2 measurements were taken

Manual extraction of formant data for Manchester, Newcastle and York was performed using a Praat
script. Two-tiered TextGrids were created with tokens and words isolated on separate tiers.
Procedures were employed to define the onset and offset of vocalic segments (appendix 1) and
boundaries were moved to the nearest zero crossing. Errors were reduced by varying the maximum

number of tracked formants (between 5.0-6.0 below 5.5kHz) and hand-correction.

For the NZE test and reference samples, formant data was auto-generated by running an adapted
version of the script on force aligned (Sjélander 2003) audio and TextGrid files. However, the author

had no access to these files, rendering visual inspection and manual error correction impossible.



3.2 Test sets

Four sets containing eight male speakers aged between 17 and 30 formed the test data. Sets
were defined according to regional variety: NZE-Canterbury (ONZE), Manchester, Newcastle and
York. LR comparisons were performed on SS and DS pairs, where the ‘correct’ outcome was known.

The acoustic data used in this study is extracted from spontaneous speech.

3.2.1 Manchester

Manchester data was collected as part of the ‘Comparative Study of Language
Change in Northern Englishes’ project (Haddican 2008-2013). The eight male speakers (aged 19-
30/mean=21) were recorded in peer-group pairs for between 12 and 33 minutes (23-37
tokens/mean=31). The recordings had been digitised at a sampling rate of 44.1kHz and a 16-bit
depth. Due to memory issues re-sampling at a rate of 11.025kHz was performed by the author using

Sony Sound Forge 9.0.

3.2.2 Newcastle

Four recordings from the ‘Phonological Variation and Change in Contemporary
British English’ project (Milroy, Milroy and Docherty 1994-1997) were used as Newcastle data. The
recordings contained 48 to 64 minutes of conversation between pairs of young male speakers and
had been digitised at a sampling rate of 16kHz and a 16-bit depth. Between 37 and 44 tokens per

speaker (mean=41) were extracted to a separate audio file using Audacity 1.2.6 to avoid re-sampling.

3.2.3 York

The York data consisted of five speakers recorded in 1998 as part of the ‘Roots of
Identity’ project (Tagliamonte 1996-1998) (York98) and three speakers from Haddican’s (2008-2013)
corpus (York08). The speakers were aged between 17 and 26 (mean=20). The author was provided

with edited audio files containing isolated GOOSE tokens (37-40 tokens/mean=39). The York98



recordings had been digitised at a sampling rate of 22.05kHz and a 16-bit depth. The York08 data

was sampled at 44.1kHz.

3.2.4 ONZE

The Origins of New Zealand English project (ONZE) consists of three corpora
containing recordings of speakers born between 1850 and 1987. The present study utilises the
Canterbury Corpus (CC) (Maclagan and Gordon 1999; Gordon et al 2007) which has been collected
since 1994. CC contains 169 males from the Canterbury region grouped as younger (20-30) or older

(45+) speakers.

Dynamic formant data for spontaneous GOOSE was auto-generated for all speakers in CC. As only
date of birth information was provided, a lower cut-off for inclusion in the test set of 1970 was
chosen to ensure that all speakers were between 20 and 30 years old when recorded. With this
restriction in place, 74 speakers were eligible (10-92 tokens/mean=32). A screening process was
developed to remove formant tracking errors and to identify the eight speakers with the lowest

between-speaker variation.

In order to include a range of phonological conditions, speakers with fewer than 20 tokens after
each screening-stage were omitted. A pass-band of between 250Hz-600Hz was implemented for F1.
Values at any +10% step outside this range were considered measurement errors and tokens
removed. The restrictions allow for considerable F1 variation, since Hay et al claim that NZE has a
central GOOSE variant which is “linked with an off-glide” such that /u: /> [ou] (2008:24). Since the
average male F1 for schwa is around 500Hz (Johnson 2003:96), an upper limit of 600Hz was

considered sufficient to capture variation in vocal tract length, without accepting erroneous values.

The reliability of adjacent values within formant contours was assessed visually. Where deviations
between +10% steps were considered questionable, the token was removed. Finally, univariate
outliers were identified by calculating between-speaker z-scores, such that values +3.29 standard
deviations from the mean for each +10% step were removed (Tabachnick and Fidell 2007:73). The
final eight speakers with the lowest mean z-scores were used as the ONZE test set (32-70

tokens/mean=56).



3.2.5 Within- and between-speaker variability

In LR calculations, similarity between SS and DS pairs is assessed in terms of
between-sample variation. Therefore, both within- and between-speaker variation must be
controlled across test sets to reduce the effect of quantifiable similarity and difference between
suspect and offender data which may obscure results. To minimise within-speaker variation, within-
speaker z-scores for all test speakers were calculated. Tokens containing values greater than +3.29
were removed. Z-scores for the remaining tokens were categorised according to five phonological

contexts:

Table 1 — Phonological categorisation of GOOSE tokens and the maximum number of tokens in such

contexts shared by every speaker in each of the test sets

Phonological Context Maximum Number of Tokens shared by all Test Speakers
j— 6
1 1
non-j non- 1 4
] # 2
non-j # 4
Total = 16(17)

Given the need for an even number of tokens in each context in order to perform reliable

comparisons, all 1 tokens were omitted. For each of the remaining tokens, z-scores were added
together and ranked within phonological grouping. The six ‘j " tokens, four ‘non-j non-1’
tokens, two ‘j #' tokens and four ‘non-j # tokens per speaker with the lowest combined z-

scores were used in LR calculations. Tokens for each speaker were assigned equally by phonological
category to either the suspect or offender condition. This ensured that pairs of samples were

comparable in terms of the number of tokens and range of phonologically predictable variation.

The lowest levels of variation are found in the ONZE set. This is a result of the availability of a
considerable amount of acoustic data, providing greater freedom to reduce the group of potential

speakers to those with minimal levels of variation. The highest between-speaker variation is found in



the York set. Processes of sound change in the ten years between York98 and YorkO8 may account

for this.

Table 2 — Mean within- and between-speaker variation across the duration of the both F1 and F2
trajectories according to test set together with % difference with ONZE for Manchester, Newcastle

and York data (a breakdown of these values by +10% step is provided at appendix 2)

ONZE Manchester %%JZ‘ZNE’M Newcastle %%ﬁ;gth York %‘gfﬂxth
Mean within-
speaker SD 111 128 +15.37 124 +11.27 123 +10.33
(Hz)
Between-
speaker SD 127 148 +16.07 135 +6.08 195 +53.28
(Hz)

3.3 Reference data

Auto-generated GOOSE data from CC was also used as reference data. With the exception of
the eight ONZE test speakers, 161 males born between 1932 and 1987 were eligible for inclusion (5-

111 tokens/mean=30). As before, the raw data contained numerous formant tracking errors.

Speakers with fewer than 10 tokens were removed from the analysis at each stage of the screening
process. Restrictions on F1 of 250Hz-600Hz were implemented along with F2 restrictions of 750Hz-
2400Hz. The range of permitted F2 variation accounted for maximally fronted and retracted

realisations. Univariate outliers were identified using between-speaker z-scores.

Finally, all ____1 tokens were removed. Given the inconsistency between speakers with regard to
the number of tokens in each context, it was not possible to control for phonological conditioning
and simultaneously ensure that speakers had the same number of tokens overall. Instead combined
z-scores were used to rank tokens by speaker, such that tokens were included on the basis of
minimal between-speaker variation rather than phonological context. Therefore, there is a
divergence between the test and reference data in the proportion of tokens in each context. The

resultant reference data consists of 120 speakers with a minimum of 10 tokens per speaker.

Table 3 — Percentage of tokens in test sets and reference data in each of the four phonological

contexts coded for



Phonological Context % of tokens in test sets % of tokens across reference data
| 37.5 23.7
non-j ____ non-l 25.0 26.8
j ____# 12.5 18.0
non-j ____# 25.0 31.5

Table 4 — Number of speakers in the reference set grouped according to the number of tokens per

speaker

Number of tokens per speaker 10+ 15+ 20+ 30+
Number of speakers 120 85 43 19

3.4 Multidimensional speaker-space




The F1~F2 plot of mean trajectories across all phonological contexts (Figure 3) displays
general regionally-defined patterns. However, the range of between-set variation is low with mean
F1 spread over 100Hz and mean F2 spread maximally over 300Hz. For almost all speakers these
values are within the range of intra-speaker variability. Therefore, despite the broad regionally-

defined patterns, acoustic differences between sets are considered minimal.

To assess statistically how acoustic differences between test and reference data affect LR output,
Euclidean distance was calculated in PASW 18. Euclidean distance quantifies the proximity between
the test and reference data in the multidimensional speaker-space. The distance (D) between two
speakers (x,y) is calculated by dividing the square root of the combined difference between the
speakers’ mean F2 and mean F1 by the number of input variables (N) (2 formants x 9 measurement

points). This may be formalised as:

\/Z (Vr2)i= X2))? + (Y F1)i— X))

N

D

adapted from Young (1985:651)

(Brereton p.c.)

For the test speakers, all 16 tokens were included as input. Distances relative to the reference data
were calculated on the basis of the 10 tokens per speaker with the lowest combined z-scores for all

120 reference speakers.



