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A procedure is proposed to produce intermolecular potential energy surfaces from

limited data. The procedure involves generation of geometrical configurations using

a Latin hypercube design, with a maximin criterion, based on inverse internuclear

distances. Gaussian processes are used to interpolate the data, using over-specified

inverse molecular distances as covariates, greatly improving the interpolation. Sym-

metric covariance functions are specified so that the interpolation surface obeys all

relevant symmetries, reducing prediction errors. The interpolation scheme can be

applied to many important molecular interactions with trivial modifications. Re-

sults are presented for three systems involving CO2, a system with a deep energy

minimum (HF−HF) and a system with 48 symmetries (CH4−N2). In each case the

procedure accurately predicts an independent test set. Training this method with

high-precision ab initio evaluations of the CO2−CO interaction enables a parameter-

free, first-principles prediction of the CO2−CO cross virial coefficient that agree very

well with experiments.

PACS numbers: XXX, XXX, XXX
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I. INTRODUCTION

This article concerns a central problem in molecular physics: quantitatively predicting

macroscopic material properties from first-principles molecular physics. There are numerous

practical applications to this problem, including the molecular design of materials, manufac-

ture and industrial processing. Such applications would be better understood and addressed

by exploiting predictions, from molecular first principles, of properties and processes such

as solubility, phase separation, osmosis, gas diffusion, crystallisation and nucleation.

Intermolecular potential energies can often be calculated accurately enough to be useful.

Thus the problem above can be solved, in principle, by computing molecular interactions

from ab initio quantum mechanics and macroscopic properties from statistical mechanics.

However, in practice, the computational cost of directly combining these two techniques

is hopelessly expensive in all but exceptional cases. The cost of evaluating the energy at

a single point is significant (often minutes or hours of time). Thus, it is necessary to fit

or interpolate calculated energy data at a limited number of points to produce a potential

energy surface.

In this article a machine-learning approach is applied to the problem. Machine-learning

algorithms have recently produced very rapid progress in computer mastery of complex

games, such as Go1, and they have enormous potential to surmount recalcitrant problems

in the physical sciences. The approach herein produces a flexible and widely applicable

algorithm to interpolate calculations of intermolecular potential energies, leading to a fast

method to compute the potential energy surface. The algorithm’s significant advantages

include high accuracy, the need for only comparatively small input data sets, and the gen-

erality to capture new molecular systems with little or no modification, leading to broad

applicability and significant savings in researcher time.

The efficacy of the method is shown by comparison with current best practice in rep-

resenting potential energy surfaces. Examples of careful, elaborate fits of calculated data

include the potential energy surface of CO2−Ne2, where a root mean square error (RMSE)

∼0.15 µEh was quoted (1 Eh ≈ 27.211 eV≈ 2625.5 kJ mol−1); a RMSE of about 0.6 µEh in

the well region (energy E < 0) of CO2−H2
3; and a maximum error of about 2% of the well

depth in the well region of CH4−N2
4. Fits with much larger errors are commonplace in the

literature, even when RMSE scores are based only on the training data, rather than indepen-
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dent data, a procedure which is prone to over-estimating predictive accuracy. Interpolations

of intermolecular potential data are less common. Cubic splines are the most popular in-

terpolation method, for example in work on CO2−Ar5. In contrast, Gaussian process (GP)

interpolation, of which cubic splines are a special case6,7, has been relatively little used8,9,

despite its promise in other applications. Applications include solid-state potentials10,11,

conformational energies12, and the difference between calculated intermolecular potentials

of water13. The accuracy and speed of GPs compared to other machine learning techniques

was demonstrated for the electronic polarisation of water clusters14. The same group later

applied GPs to the atomic multipole moment surface of ethanol15, the electrostatic interac-

tion energy between Na+ and water molecules16 and the electrostatic energy of cholesterol17.

It is demonstrated here that with a small set of training points and a carefully chosen coor-

dinate system, a general symmetric Gaussian process interpolation scheme can achieve high

predictive accuracy and that the resulting PES can accurately predict experimental data.

II. GAUSSIAN PROCESS MODELLING

The approach involves two sets of data. A set of training data (between 20-1000 points)

is used to train the model, and a larger set of grid data is used to test the model’s predictive

performance. Both datasets are described below. No knowledge of the test data is used

during training.

Data sets of the intermolecular interaction energy of the bimolecular complexes CO2−Ne,

CO2−H2, CO2−CO, HF−HF and CH4−N2 are calculated as a function of their configu-

rational geometry. These complexes are chosen to cover a range of intermolecular bond

strengths and symmetries, and to be small enough that an extensive set of data can be pro-

duced for testing the interpolations. For the same reason, all molecules are approximated as

linear rigid rotors in their vibrational ground state, with fixed bond lengths, although the

interpolation method can be extended straightforwardly to non-rigid molecules. Energy cal-

culations are carried out in Molpro18 using second-order Møller-Plesset perturbation theory

(MP2) and augmented correlation-consistent triple-zeta (aug-cc-pVTZ) basis sets. Basis set

superposition errors are corrected using the full counterpoise correction procedure.

Jacobi coordinates are used to describe the multi-dimensional potential energy hyper-

surfaces (see Table I). In all cases r is the distance between the molecular centres. For
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CO2−Ne, θ is the angle between r and the CO2 axis. For CO2−H2, θ1 is the angle between

r and the CO2 axis, θ2 is the angle between r and the H2 axis, and φ is the torsional angle

of the H2 axis. Analogous coordinates are used for HF−HF and for CO2−CO, where θ2 = 0

corresponds to the O from the CO molecule being closest to the CO2. For CH4−N2, the

N2 molecule is placed at a position relative to the C of CH4 at position (r, θ, φ) in polar

coordinates, and the N-N axis is rotated to orientation (α, β), also in polar coordinates.

The C-O (for CO2), C-O (for CO), H-H, H-F, C-H and N-N bond lengths are taken to be

1.1632 Å, 1.128 Å, 0.77 Å, 0.92 Å, 1.09 Å and 1.098 Å, respectively. An energy cutoff of

Ecut = 0.005 Eh is imposed (0.02 Eh for HF-HF due to its much larger well depth), and

configurations with intermolecular potentials above this cutoff are excluded from the data

sets. Configurations are also excluded if any interatomic distance is below 1.5 Å or if all

interatomic distances are above 8.5 Å. Separations below this would also be excluded by the

energy cutoff, but this criterion saves time that would be spent in calculating unhelpfully

large energies, and beyond 8.5 Å it is more efficient to use an asymptotic expansion of the

energy, as discussed later. Details of the test data used for model assessment are given in

Table I.

Gaussian processes (GPs) are used extensively in machine learning and statistics as re-

gression models. The book of Rasmussen and Williams7 contains a detailed introduction

to GPs, including several different but equivalent ways of understanding GPs. Like neural

networks (NNs), GPs are non-parametric models which have proved successful in creating

theory-free models of complex datasets. The advantage of GPs over NNs is that they are

mathematically tractable and interpretable, and allow prior information to be built in to

the model (such as symmetry, differentiability, and conditioning on derivative information).

The prior specification of a GP consists of a mean function (often taken as zero) and a

covariance function k(x,x′), expressing the covariance between f(x) and f(x′), where f is

the function being interpolated. Training data, consisting of observations of the value of f

at various locations, update the mean and covariance functions to give a posterior model

which predicts the function at any location.

Properties of the GP model are inherited from the covariance function, for example,

differentiability, continuity and stationarity. The intermolecular energy is a non-stationary

function of distance, as it varies rapidly at small interatomic separations, but more gently

at larger separation. Although it is possible to specify a non-stationary covariance function,
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TABLE I. Coordinates for the test (grid or LHC) data for each system.

System Test Grid or Latin Hypercube Test

Coordinate Range Spacing points

CO2−Ne r 1.5-10 Å 0.116 Å 1122

cos θ 0-1 0.05

CO2−H2 r 1.5-10 Å 0.5 Å 12844

cos θ1 0-1 0.111

cos θ2 0-1 0.111

φ 0-180◦ 20◦

CO2−CO r 1.5-10 Å Latin 60000

cos θ1 0-1 hypercube

cos θ2 -1-1 sampling

φ 0-180◦

HF−HF Latin hypercube 2158

CH4−N2 Latin hypercube 1182

in practice it can be challenging to find a flexible form with the correct non-stationary

behaviour. It is simpler to transform either the inputs or outputs to achieve approximate

stationarity, which is addressed here by using the inverse interatomic distances as covariates

in the GP. Thus the GP coordinates are x = (1/r1, ..., 1/rND
) where ri is the interatomic

distance, running over all pairs of nuclei on different molecules. This results in an over-

specified system, for example with ND = 6 dimensions for CO2−H2. It is shown later that

this change in variables leads to a dramatic improvement in performance.

The training data should ideally cover evenly a single symmetry-distinct sub-region of

x space, and respect the geometric constraint. The general strategy is to generate many

candidate data sets (coordinates only, not energies), exclude points outside the symmetric

and geometric constraints, and select the candidate data set with the best distribution of

points. The placement of candidate data sets is based on Latin hypercube (LHC) sampling,

as explained in appendix B. Specifically, for CO2−Ne, CO2−H2 and CO2−CO, candidate

data sets are generated from LHC sampling of 1/r and the angular LHC coordinates in
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Table I. For HF−HF, three LHCs are generated and combined into one dataset: one uses

the F-F distance as the radial coordinate r, and keeps only those data points within the

LHC for which the F-F distance is the shortest of the four internuclear distances; the other

two LHCs are generated in the same way but with F-F replaced by H-H and H-F in turn.

The LHC for CH4−N2 is generated based on an H-N distance as the radial coordinate,

and uses only the data points for which the same H-N distance is the shortest of the ten

internuclear distances. For all cases, after generating the LHCs, deleting data points based

on the symmetric and geometric constraints, and combining the sets of points into one (for

HF-HF), the minimum separation of the remaining points is calculated in x space. The

candidate data set with the largest minimum separation is used as the training set. This

‘maximin’ approach aims to cover evenly the relevant region of x space. See appendix B for

further details of this algorithm.

The Gaussian process has a zero mean function and a squared-exponential covariance

function

κ(x,x′) = σ2
f

ND
∏

i=1

exp

[

−
(xi − x′

i)
2

2l2i

]

(1)

where σ2
f is the signal variance and li is the correlation length for each dimension. This

results in a stationary and infinitely differentiable model, called the ‘non-symmetric model’.

Here, symmetric refers to the permutations the interatomic distances under which the PES

should be invariant, because of molecular symmetries (see appendix C for further details).

In the non-symmetric model neither the kernel (covariance function) nor the training data

have these symmetries. Introduced later is a model in which the kernel has the appropriate

symmetries.

The potential energy surfaces obey various symmetries in x space. For example, for

CO2−Ne, the energy is invariant under the interchange of the two coordinates corresponding

to distances between Ne and each of the O atoms. Let G represent the permutation group

containing permutations of elements of x under which the energy surface is unchanged. If

it is assumed that li = lj when coordinates xi and xj swap for some permutation in G, then

a covariance function of the form

ksym(x,x
′) =

∑

g∈G

κ(gx,x′). (2)

results in a GP which shares the symmetries of the energy surface (see appendix C). The
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‘symmetric model’ based on this covariance function gives predictions that respect the

relevant symmetries, and usually significantly improves the performance, even within the

symmetry-distinct region covered by the test data, as shown below.

Results are obtained using the GPy package19, modified to include symmetric covari-

ance functions. Zero-mean Gaussian observation error7 is assumed on the function outputs

(referred to as a nugget in geostatistics), with standard deviation σn. Thus the model’s

hyperparameters are σf , σn and {li}. These hyperparameters are estimated by optimising

the log-likelihood over ≈ 30 random restarts, which typically is sufficient to find the optimal

values multiple times.

The choice of inverse internuclear distances to transform to stationarity is important.

To illustrate this a ‘basic model’ GP is created, which uses internuclear distances r as

coordinates rather than 1/r, but is otherwise identical to the non-symmetric GP above,

having the same test and training data and a covariance function of the same form as

equation (1).

III. RESULTS

Predictive performance is measured using the root mean square error (RMSE) of the

GP predictions of the test data. Since the test data extensively cover the potential energy

surface, the RMSE is a reasonable guide to the expected ‘accuracy’ of the interpolation.

The methodology used here represents a demanding test of accuracy, since the GP has no

advance knowledge of the test data, only the far more limited training data, and equal

weighting is used for all test data, including positive interaction energies up to the potential

energy cutoff.

The results for CO2−Ne are shown in Figure 1. Models based on inverse intermolecular

distances dramatically outperform the basic model, being typically 2-3 orders of magnitude

more accurate for a given LHC size. Furthermore, even though CO2−Ne has only one

symmetry, the symmetric model is typically twice as accurate as the non-symmetric model.

Figure 2 shows similar results for CO2−H2. Here, the inverse distance models again strongly

outperform the basic model, achieving RMSEs < 10−6 Eh for a reasonable number of

training points. The symmetric kernel typically gives a factor of 2-10 improvement, with

the greater improvement compared to CO2−Ne probably resulting from the greater number
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FIG. 1. RMSE against LHC size for CO2−Ne. The lowest energy in the grid data is −2.90 ×

10−4 Eh.
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FIG. 2. RMSE against LHC size for CO2−H2. The lowest energy in the grid data is−8.25×10−4 Eh.

For HF−HF, the minimum energy in the test data is −6.17× 10−3 Eh, which is about an

order of magnitude larger than for the other interactions. Probably as a consequence of this,

it is necessary to include training points up to at least 10−2 Eh, otherwise the prediction

of points on the repulsive wall is poor. Using a cutoff of 2 × 10−2 Eh gives an RMSE of

1.6×10−4 Eh for a symmetric GP with 59 training points, and the RMSE generally decreases

with increasing numbers of training points, to 1.8 × 10−5 Eh for 327 training points. The

RMSE in the negative-energy region is about 5 × 10−6 Eh for the latter GP; one or two

high-energy points dominate the overall RMSE. The inclusion of symmetry in the GP has

little effect on the RMSE for this interaction.

For CH4−N2, all 48 symmetry elements are included in the GP. Consideration of symme-

try is important for this interaction, even though all the training and test data are confined

within a single symmetry-distinct region of space. The minimum energy in the test data is

−6.98× 10−4 Eh. With a training set of 106 points, the RMSE is 51× 10−6 Eh for the non-

symmetric GP and 6.8× 10−6 Eh for the symmetric GP. Using 326 training points reduces
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these to 17× 10−6 Eh and 1.3× 10−6 Eh respectively.

For CO2−CO, with the symmetric GP, the RMSE is 6.7 × 10−5 Eh for 132 training

points, reducing to 1.1 × 10−5 Eh for 345 training points. The RMSE resulting from the

non-symmetric GP is generally a factor of ∼ 2 larger. Generating CO2−CO training data

by replacing LHC sampling of 1/r with 1/r2 improves performance, leading to RMSEs of

2.4 × 10−5 and 3.0 × 10−6 for 135 and 366 training points respectively, with the RMSEs

computed using the same test set as the above results.
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FIG. 3. CO2−Ne Molpro calculations and the GP model, at cos θ = 1 (linear geometry), in the

repulsive (a), attractive (b) and long-range (c) regions. The long-range asymptotic expansion is

E = −(0.570 + 0.182 cos2 θ)r−6 − (1.704 + 7.266 cos2 θ + 1.785 cos4 θ)r−8.

The performance of the GP outside the training region (E > 0.005Eh and r > 8.5Å) is

shown for CO2−Ne in Figure 3; results for other geometries and interactions are qualita-

tively similar. The extrapolation errors for short-range geometries satisfying the geometric

constraint, but with E > Ecut, are mostly a few percent or less. Even though the maximum

energy in the training set is limited to 0.005 Eh, the predicted repulsive wall continues up

to about 0.1 Eh. However, for small values of r the GP returns to its mean value of zero.

This unphysical behaviour can be corrected by crossing over to a strongly repulsive function

outside the geometric constraint. One example of the many possible choices is plotted in

Figure 3(a), namely

E = Emax

1

N

N
∑

i=1

(xi/xmax)
12, (3)

where Emax is an estimate of the typical energy at the small-r edge of the geometric

constraint20 and xmax is the maximum inverse distance allowed by the geometric constraint

(0.67 Å−1 in this case). For large separations the GP tends to a small, but non-zero con-

stant. This can be corrected for points beyond the geometric constraint, by crossing over to
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the long-range asymptotic expansion obtained from a truncated multipole expansion of the

interaction energy (to second order) from intermolecular perturbation theory. Figure 3(c)

shows that smooth interpolation between the GP and this function will be straightforward.

IV. THE CO
2
−CO POTENTIAL ENERGY SURFACE AND SECOND

VIRIAL COEFFICIENT

Using the LHC training set for CO2−CO, based on sampling of 1/r2 and containing 135

training points, higher quality evaluations of the potential energy were produced for each

configuration. This involved complete basis set (CBS) extrapolation of the counterpoise-

corrected CCSD(T) interaction energy from the aVQZ and aVTZ basis sets. Training a

GP to this set gave a PES designed to be valid within the geometric constraint for energies

< 0.005Eh. For large separations outside the geometric constraint, an asymptotic expression

consisting of atomic charges, dipoles, quadrupoles, static polarizabilities and C6 dispersion

coefficients is used instead of the GP. For separations smaller than the geometric constraint

the PES uses equation (3) with xmax = 0.5/Å and Emax = 0.456 Eh, which is the largest

energy in the LHC training data before applying the energy cut off. The code for this

potential energy surface is available in the Supplementary Material.
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FIG. 4. Comparison of calculated interaction energies (symbols) with the GP-based PES (lines)

for CO2−CO in the T-shaped configuration (θ1 = π/2) for the C-bonded (θ2 = π) and O-bonded

(θ2 = 0) isomers:. The C-bonded isomer includes the minimum energy.

The minimum energy for this PES, computed by numerical minimisation, is −1.827 ×

10−3Eh, which occurs at r = 3.791 Å, θ1 = π/2 and θ2 = π, corresponding to a T-shaped

orientation with the carbon of the CO closest to the CO2 molecule. This agrees with previous
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experimental21 and theoretical22 work in which this C-bonded isomer was confirmed to be

the most stable. The C-C distance of 3.23 Å from the PES is 0.01 Å larger than the minimum

distance taken from the best literature calculation22; both are lower than the experimental

distance of 3.277 Å21, mainly as a result of non-rigidity of the intermolecular bond. A direct

calculation of the interaction energy for this geometry gives −1.859 × 10−3 Eh, which is

within 0.01 × 10−3 Eh of the best calculated value22. The difference of ∼ 0.03 × 10−3Eh

between the PES and calculation is similar to the RMSE of 0.024 × 10−3Eh reported in

section III. A second, O-bonded, isomer has been observed spectroscopically23, and found

to be also T-shaped with the CO reversed relative to the C-bonded isomer. The equilibrium

separation predicted from the PES is 3.06 Å between the C of CO2 and the O of CO,

which is about 0.04 Å less than the experimental value. The difference between the two

is in the expected direction, and reasonably consistent with the results for the C-bonded

isomer. Apparently there have been no other high-quality calculations on the O-bonded

isomer; the current PES gives an interaction energy of −1.332 × 10−3 Eh, which, again,

agrees well with a direct calculation at the same geometry; the calculated interaction energy

is −1.345 × 10−3 Eh. Figure 4 shows how the GP-PES predicts accurately the entire well

region for both the C and O-bonded isomers.

The GP’s ability to predict these structures and energies is impressive when considering

that the training data are sparsely positioned and have essentially no a priori information

about the position of the minimum. Indeed the lowest energy in the training set is −1.15×

10−3 Eh, which is positioned at r = 3.75 Å, θ1 = 0.36π, θ2 = 0.76π and φ = 0.71π. This

configuration is broadly in the vicinity of the minimum but has an energy that is only 62%

of the minimum energy. Nevertheless the GP captures the minimum energy with an error of

less than 2%. This illustrates the considerable ability of the GP to reproduce quantitative

details of the PES even when interpolating features that are a significant distance from the

training data.

The CO2−CO PES is then used to compute the cross virial coefficient, taking the classical

contribution plus the (small) first-order quantum corrections; the calculation procedure has

been described previously28. A comparison with experimental data is shown in figure 5.

The PES produces accurate, first-principles, parameter-free prediction of this quantity, over

the range of temperatures studied experimentally. Also shown are the PES predictions with

the long-range asymptotic correction set to zero. This shows that the virial prediction is
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FIG. 5. The CO2−CO cross virial coefficient: comparison of the GP calculations with experimental

data24–26 and the GERG equation of state27.

mostly determined by the PES region controlled by the GP, with the long-range asymptotic

calculation making a small but significant further contribution. Also in figure 5 are the

results from the GERG model27, a widely used empirical equation of state. Despite the

extensive fitting involved in the development of the GERG equation of state, the predictions

of the present first-principles approach gives significantly better agreement with experiment.

V. FUTURE WORK

There are numerous extensions that follow from this approach. Application to many

other chemical systems is straightforward. Furthermore, the model’s performance for small

training set sizes could be optimised by sequentially adding training points through active

learning methods29. This could be achieved either with or without a priori knowledge of

the test data, depending on the potential energy data to be modelled. Another promising

application is the interpolation of non-additive potentials, which are known to be difficult

to fit30. Such data are usually high-dimensional, vary strongly and rather unpredictably

with geometry, and can have many symmetries. Finally, existing high-precision calculations

could be used as training and test data for interpolation by the algorithm. Here a sparse

GP31 could select a subset of the preexisting data to train the model, leading to numerically

cheap, yet highly accurate, potential energy surfaces.
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VI. CONCLUSIONS

The procedure described here produces intermolecular potential energy surfaces efficiently

from relatively few input data points. The algorithm is straightforward to generalise to

new molecular pairs. It uses a symmetric Gaussian process, with the inverse interatomic

distances as input variables. The GP is trained using data on a Latin hypercube design,

with a maximin criterion for the inverse internuclear distances.

The general utility and robustness of the approach have been demonstrated by testing

against three systems involving CO2, a system with a deep energy minimum (HF−HF) and

a system with 48 symmetries (CH4−N2). In all cases the approach accurately predicts an

extensive test data set, with no a priori knowledge, and gives RMSE values that are similar

to, or better than, the best fits in the literature, which were generally based on thousands of

training points. Furthermore, the interpolation method can be readily and directly applied

to any pairwise interaction, at least for simple molecules, with no bespoke work beyond

identifying the relevant symmetries. The approach contains two key features: the use of in-

verse interatomic distances as the GP input variables, and a strategy for positioning training

data on a Latin hypercube design with a maximin criterion on the inverse intermolecular

distances.

As the method requires only a relatively small number of training points it can be used

with more precise and computationally demanding potential energy calculations. An exem-

plar is CO2−CO, for which a four-dimensional PES was produced from 135 data points. This

CO2−CO PES was used to compute the cross virial coefficient, leading to parameter-free

predictions of this quantity that agree very well with experimental data.

SUPPLEMENTARY MATERIAL

See the supplementary material for fortran code for the CO2−CO PES used in section IV.
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Appendix A: Latin hypercube sampling

Latin hypercube (LHC) sampling is a method of choosing sampling points in a multidi-

mensional space. LHC sampling aims to spread the sample points more evenly across all

possible values than random sampling. In 2D a latin square is defined as a set of samples with

exactly one sample in each row and column. For a given number of rows and columns there

are many permutations that satisfy this. A LHC generalises this to an arbitrary number

of dimensions by requiring that each hyperplane normal to one of the co-ordinates contains

exactly one sample.

We generate an M dimensional unit LHC of N sample points as follows.

• Place all N points on the diagonal of the hypercube to create an initial LHC. We

do this by placing the nth point so that each co-ordinate value lies in the range

(n − 1)/N ...n/N , with the value within the range being chosen randonly, uniformly

and independently for each co-ordinate.

• Choose two points at random and swap one of their co-ordinate values, chosen at

random. This permutes the sampling configuration, while ensuring we still have a

LHC, as defined above.

• Repeat the co-ordinate swaps until the desired number of swaps has been completed.

Appendix B: Latin hypercube generation

We wish to generate a dataset of model evaluations, {xi, f(xi)}
N
i=1, that can be used to

train the Gaussian process, where the xi represent N distinct molecular geometries. Each

element of xi is the inverse distance between two atoms, one from each of the molecules under

consideration. The design only needs to contain points in a symmetry-distinct subspace.

For example, in CO2-Ne the O nuclei are denoted O1 and O2, and the symmetry-distinct

subspace is defined such that Ne is always nearer to O1 than to O2. Space filling designs

are held to be good choices for Gaussian process models, and so we will use a maxi-min

criterion to evaluate candidate designs. In other words, we seek designs which maximise

14



the minimum distance between any two design points. Latin hypercube (LHC) designs are

used as candidate designs, as they naturally fill space to some extent, and we then choose a

preferred design from a large number of candidates. We define the effective distance between

points xi and xj in the design to be

|x|2ij = (xi − xj)
⊤(xi − xj) (B1)

and we generate a training design using the following algorithm:

• Generate a LHC in 1/r and rigid-body rotation angles. (For non-rigid molecules,

intramolecular coordinates would also be used.)

• Convert the LHC data to atomic positions and compute all interatomic distances for

pairs of atoms on separate molecules.

• Reject the geometries that don’t obey the geometric constraint or lie outside the

symmetry-distinct region of coordinate space.

• Reject the entire LHC if it does not contain at least the target number of geome-

tries (usually the mean number of remaining points after the geometric constraint is

applied).

• Find the minimum |x|2ij within the current LHC.

• Repeat for as many new LHCs as desired and return the LHC with the largest minimum

|x|2ij.

Appendix C: Symmetric covariance function

The motivating problem is modelling the H2 - CO2 system, which we parameterise by 6

distances:

• r1 = H1 → C

• r2 = H2 → C

• r3 = H1 → O1

• r4 = H2 → O1
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• r5 = H1 → O2

• r6 = H2 → O2

The potential function f between the two molecules obeys the following symmetry rela-

tions

f(123456) = f(214365) = f(125634) = f(216543)

where f(123456) denotes f(r1, r2, r3, r4, r5, r6).

In other words, the function

f(x) = f(σx)∀σ ∈ K4

where K4 is the permutation group consisting of the permutations

σ1 = (12)(34)(56), σ2 = (35)(46) σ3 = (12)(36)(45)

where we are using cyclic notation for the permutations. Note that along with the identity

e, these four permutations form an abelian group that is isomorphic to the Klein-4 group

K4 (≡ Z2 × Z2), i.e., σ
2
i = e and σ1σ2 = σ3 etc.

1. A single symmetry

To illustrate the procedure, suppose we want to model f where f is invariant under the

single permutation σ, where σ2 = e. If we assume

f(x) = g(x) + g(σx)

for some arbitrary function g, then f has the required symmetry. If we model g(·) ∼

GP (0, k(·, ·)), then the covariance function for f is

kf = Cov(f(x), f(x′))

= k(x, x′) + k(σx, x′) + k(x, σx′) + k(σx, σx′)

If k is an isotropic kernel (we only actually require isotropy for each pair of vertices that

swap in σ), then k(x, x′) = k(σx, σx′) and k(x, σx′) = k(σx, x′) as swaps only occur in pairs

(σ2 = e). So we can use
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kf (x, x
′) = k(x, x′) + k(σx, x′)

saving half the computation.

2. Invariance under permutations in K4

Now consider functions that are invariant to permutations in K4. If we write

f(x) = g(x) + g(σ1x) + g(σ2x) + g(σ3x)

then if g(·) ∼ GP (0, k(·, ·))

kf (x, x
′) =k(x, x′) + k(σ1x, x

′) + k(σ2x, x
′) + k(σ3x, x

′)

+ k(x, σ1x
′) + k(σ1x, σ1x

′) + . . . k(σ3x, σ3x
′)

(C1)

If k is isotropic, then k(x, σix
′) = k(σ−1

i x, x′). Thus k(x, x′) = k(σix, σix
′), k(x, σix

′) =

k(σix, x
′) and k(σix, σjx

′) = k(σkx, x
′) for i 6= j 6= k. Thus we can use

kf (x, x
′) = k(x, x′) + k(σ1x, x

′) + k(σ2x, x
′) + k(σ3x, x

′)

as a covariance function for f instead of Equation (C1). This reduces the amount of com-

putation needed to calculate the covariance functions by 75%.

Note that we don’t need k to be completely isotropic for this simplification to hold, only

that the covariance function is isotropic for any pair of inputs that swap in any of the

permutations. So in the H2 − CO2 system, we require the length-scales to be the same for

inputs 1 and 2, and the same for inputs 3, 4, 5 and 6.
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