
This is a repository copy of Evolving Test Environments to Identify Faults in Swarm
Robotics Algorithms.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/117325/

Version: Published Version

Conference or Workshop Item:
Wei, Hao, Timmis, Jonathan Ian orcid.org/0000-0003-1055-0471 and Alexander, Robert
David orcid.org/0000-0003-3818-0310 (2017) Evolving Test Environments to Identify
Faults in Swarm Robotics Algorithms. In: IEEE Congress on Evolutionary Computation
2017, 05-08 Jun 2017.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Evolving Test Environments to Identify Faults in

Swarm Robotics Algorithms

Hao Wei

Department of Computer Science

University of York

York, UK

hw967@york.ac.uk

Jon Timmis

Department of Electronics

University of York

York, UK

jon.timmis@york.ac.uk

Rob Alexander

Department of Computer Science

University of York

York, UK

rob.alexander@york.ac.uk

Abstract—Swarm robotic systems are often considered to be

dependable. However, there is little empirical evidence or theo-

retical analysis showing that dependability is an inherent proper-

ty of all swarm robotic system. Recent literature has identified

potential issues with respect to dependability within certain types

of swarm robotic algorithms. There appears to be a dearth of

literature relating to the testing of swarm robotic systems; this

provides motivation for the development of the novel testing

methods for swarm robotic systems presented in this paper. We

present a search based approach, using genetic algorithms, for

the automated identification of unintended behaviors during the

execution of a flocking type algorithm, implemented on a simu-

lated robotic swarm. Results show that this proposed approach is

able to reveal faults in such flocking algorithms and has the po-

tential to be used in further swarm robotic applications.

Keywords—swarm robotics; genetic testing method;

I. INTRODUCTION

Swarm Robotics is the study of the design of groups of ro-
bots that operate without relying on any external infrastructure
or on any form of centralized control [1]. Work by Winfield [2,
3] has raised concerns about the reliability of swarms in certain
conditions, raising doubts over the assumption that swarm ro-
botic systems are inherently reliable. There are significant is-
sues in the reliable and controllable performance of a swarm in
complex tasks. Issues such as communication, line of sight and
failing units are examples of such problems.

Due to the emergent behaviors in swarm robotic systems,
ensuring certain types of behavior emerge is challenging, and
ensuring that certain types of behaviors do not emerge especial-
ly so. Software testing is a process, or a series of processes,
designed to ensure that computer code does what it was de-
signed to do and, conversely, that it does not do anything unin-
tended [4]. There is very little literature on testing swarm ro-
botic systems [5], yet the complexity of controller generation,
coupled with coping with emergent properties of the system
would indicate a complex testing strategy may well be re-
quired. Automated ways of testing swarms could potentially
save significant amounts of time and identify subtle faults in
the systems operation.

One of the goals of software testing is to automate, as much
as possible, thereby significantly reducing its cost, minimizing
human error and make regression testing easier [6]. Testing

swarm robotic systems can be seen as having two levels, the
code level and behavior level. For code level testing, the meth-
od designed for testing the code of single robotic system might
be used for testing the code of swarm robotic systems. Howev-
er, for behavior level testing, unlike single robotic system or
centralized control multi-robotic system, the behavior of a
swarm robotic system is not explicitly described by the behav-
ior of the components of the system, and is therefore difficult
to predict and test.

In this paper, we propose an automated testing method,
based on a genetic algorithm approach. The approach generates
test cases (specifically, the environment in which the swarm is
executed) and monitors the movement of the swarm as it
moves through the environment. Undesired behaviors will be
recorded and used for assessing whether the swarm algorithm
(or e.g. the design and implementation of the individual robots)
has faults.

The remainder of this paper is organized as follows. Section
II describes flocking rules and defines metrics for flocking be-
havior and failure taxonomy. Section III shows the approach
for solving the problem. Section IV gives the experimental
design of evolutionary computation approach. Section V gives
experimental results and finally Section VI concludes the study
and outlines future works for the research.

II. PROBLEM DESCRIPTION

In this paper we focus on the problem of finding undesired
behavior in a specific swarm algorithm: flocking. As different
kinds of swarm behaviors follow different rules, different types
of test cases are needed for testing different swarm robotic sys-
tems. Flocking is an emergent behavior from a group of agents
which are following a limited set of rules. By means of exam-
ple in this paper, we use a simple flocking algorithm, based on
Boids [7] to illustrate our approach.

A. Flocking Rules

Agents in Boids use three rules to achieve basic flocking
behavior:

• Separation: steer to avoid crowding local flockmates;

• Alignment: steer towards the average heading of local
flockmates;

978-1-5090-4601-0/17/$31.00 ©2017 Crown 929

• Cohesion: steer to move toward the average position of
local flockmates.

In order to make the flocking behavior more interesting, the
following two rules can be added:

• Obstacle avoidance: steer to avoid obstacles in the envi-
ronment;

• Goal seeking: steer towards the direction of the goal.

B. Metrics for flocking behavior

There are various studies around flocking behavior, but
most of them only develop algorithms that produce flocking
behaviors and then test the behavior through manual observa-
tion of the swarm [8, 9, 10]. Few of them define metrics for
measuring the performance (quality) of flocking behaviors.
However, based on several papers, for example [8, 11, 12], we
can conclude that good flocking behavior should have at least
some of the following properties:

• The agents of the swarm should always face approxi-
mately the same direction;

• The agents or flocks that meet should stay together;

• The swarm should neither lose no agents nor separate
into different swarms;

• The agents should remain close to each other;

• The agents should not collide with each other or obsta-
cles;

• The agents should be able to reach the target.

The focus of this study is to evaluate overall behavior at the
swarm level and not at an individual level, therefore we will
ignore failures of single agents, e.g. motor failures. Hence, we
assume that agents in the swarm will not be damaged by collid-
ing with other agents or the obstacles, and therefore will ignore
the property 5. For property 6, if the swarm is unable to reach
the target in a given time, we will treat this as a total failure for
the whole swarm.

There are a limited number of metrics described in the liter-
ature, which can be used to assess, in part, some of the above
properties. In this paper, we use two: angular order to access
property 1 and positional order to access property 2-4.

1) Angular Order
The angular order of a swarm can be used to indicate

whether the agents are moving in the same direction. In [13], a
mathematical model is proposed for the measurement of the
angular order of self-aligned objects. By combing it with the
model proposed in [14], an equation for calculating the angular
order (ψ) of a group of objects can be derived - see equation 1:

 (1)

where N is the total number of objects in the group, θn is
the facing direction of the nth object in the group, where θ [–

π, π], and i is the imaginary unit (complex number, which i
2
=-

1).

The value of the angular order can vary between 0 and 1.
The value 0 means that the group is in a completely disordered
state while 1 means that the group is perfectly aligned and is in
a completely ordered state.

In a two-dimensional case, the angle describing the facing
direction of an object is θ and θ [–π, π].

2) Positional Order
The positional order of a swarm shows whether the swarm

is in a steady state or not. When a swarm is in a steady state,
the distance between each agent and its neighbors is close
enough that the agent is attracted to the centre of its neighbor-
hood and is far enough that the agent can avoid colliding with
its neighbors.

There are several metrics which can provide a mathematical
measurement of positional order, such as the social entropy
developed by Shannon [15], cohesion radius developed by Gu
et al. [16], and the deviation energy developed by Antonelli et
al. [17]. For this paper, we employ the social entropy metric for
positional order measurement. In future work we plan to find
other suitable metrics for measuring positional order.

Shannon’s social entropy can be used to measure the posi-
tional order of a swarm by setting the maximum distance (h)
between the individuals in the same cluster. For a given cluster,
an agent r is considered to belong to this cluster if and only if
in this cluster there exists another agent for which the distance
between this agent and agent r is less than the maximum dis-
tance h. Shannon’s information entropy H(h) of a cluster with a
maximum distance h is defined as:

 (2)

where pi is the proportion of the individuals in the ith clus-
ter and M is the number of clusters for a given maximum dis-
tance h.

The value of H(h) varies from 0 to ∞ for a given h. A
swarm with its H(h) equals 0 means that this swarm is in a
steady state. The larger the value of H(h), the less steady.

C. Failure Taxonomy

Our approach will attempt to find undesired behaviors that
occur during the execution of a swarm. Hence, we need a crite-
rion to categorize failures. In swarm robotics, works such as
[3], address failure modes of a single robot in the swarm, but
few papers discuss taxonomies of failures for swarm behavior.

In this paper, we propose a failure taxonomy based on vari-
ous causes of the failures. When a swarm is moving in an envi-
ronment, the main reason of splitting up the swarm is the ob-
stacles. When the agents meet obstacles, their velocity (both
speed and moving direction) will be affected, which might
cause them to lose track of the rest of the swarm. Our taxono-

930

TABLE I. PARAMETER DESCRIPTIONS FOR GA

Name of Parameter Description Candidates

Population size
Number of

chromosomes [1,]

Parent Selection
method

How to select
chromosomes

All Parent-BestHalf
2BestParent-
2WorseAway

2RandomParent-
2WorseAway

Crossover type and
probability

A genetic operator
and its usage
probability

Single-point-
crossover

Double-point-
crossover

Uniform-crossover

Mutation probability
The probability of

mutation [0, 1]

Number of
Generation

The number of
generations before
the evolution ends

[1,]

my is therefore in terms of how agent speeds and directions
change when a swarm fails by splitting splits.

Specifically, when a split occurs, we compare the speed and
moving direction of these two clusters. We classify the nature
of the split in terms of relative speeds (is the slower cluster at
>= 50% of faster cluster speed, or not) and relative angle (in 10
degree increments until 90 degree, and then 90 degree plus).
Hence, there will be 20 different types of failures.

We also apply the following rules:

• A cluster is only treated as a swarm if the number of
agents in this cluster is larger than or equal to N (in our
paper, we use 3, 5 and 7);

• During an experiment, if no swarm reaches the target, a
“total failure” has occurred;

• We are only considering the last cluster which is split
from the swarm;

III. METHOD

In the field of automated testing, two of the most common
testing methods are random testing and testing using genetic
algorithms (GA) [18]. Random testing is based on random
search and is a well-known automatic testing technique [19],
which can be effective at finding software bugs [20]. Yet, it is
also well-known that random testing only finds simple bugs
and provides low test coverage [21]. GAs provide an intelligent
exploitation of a random search, and widely used to solve op-
timization problems [22]. They have been applied to automated
software testing in conventional software applications [23] and
to evolve control algorithms in swarm robotic systems [24], but
to date not in testing for swarm robotics.

A. Genetic Testing Method

A GA evolves solutions by selecting, reproducing and mu-
tating a population over many generations [25]. To use a GA,
we need to design a good chromosome (the representation of
each individual in the population), define an appropriate fitness
function, and set appropriate GA parameters.

1) Chromosome
The term chromosome, for a GA, refers to a candidate solu-

tion to a problem [22]. In this study, each test case can be treat-
ed as a chromosome. In our testing approach, a test case is an
environment containing obstacles in different locations so that
the performance of a swarm can be tested. In all cases, the task
of the swarm will be move from the starting point to the desti-
nation.

In this study, we use cellular representation [26] to repre-
sent our chromosomes. In a cellular representation, an object is
represented by using directions for constructing it rather than
using direct descriptions. The cellular representation for our
test cases is composed of single descriptors. A single descriptor
specifies an obstacle according to a simple rule. Each de-
scriptor has five parameters (x, y, l, w, o) which specify its cen-
tral position (x, y) in the environment, the length l, the width w,
and o the orientation of the descriptor.

If there are N obstacles in each test case, a random test case
can be generated according to the following rules:

• Randomly generate N single descriptors (obstacles).

• Process single descriptors in the order they are generat-
ed, and place a corresponding obstacle in the environ-
ment.

• If part of the obstacle is outside the edge of the envi-
ronment, split this part from the obstacle, but leave the
descriptor for this unchanged.

• If an obstacle is totally inside another obstacle, regener-
ate its descriptor.

• If adding the obstacle means that there is no path be-
tween the starting point of the swarm and the destina-
tion, regenerate its descriptor.

2) Fitness Function
The fitness value of a test case in this study represents the

performance of the swarm in this simulation with a given
chromosome. The purpose of the testing method is to find un-
intended behaviors or failures in a swarm; this means that the
worse a swarm performs in a test case the better (more fit) the
test case is.

If the swarm flocks to the destination with the given time,
this indicates that the swarm performs a perfect flocking behav-
ior in this test case. If the swarm can not reach the destination
within the given time, or the robots reach the destination sepa-
rately (the robots are not moving in flock), this indicates a total
failure. Hence, the fitness value of a test case can be calculated
using angular order and positional order as follows:

 (3)

where ψ is the angular order of the flock and H is the posi-
tional order of the flock. In order to make the calculation sim-
ple, if the calculated fitness value is larger than 1, we’ll set it to

931

TABLE II. PARAMETER VALUES OF GENETIC ALGORITHM

Name of param-
eters

Potential
Candidates

Best
Candidates

Number of genes [1, 15] 6

Population size [2, 50] 20

Parent selection
method

AllParent-best half
2BestParents-2WorseAway

2RandomParents-2worseAway

2BestParents-
2WorseAway

Crossover
operator

Single-point-crossover
Double-point-crossover

Uniform-crossover

Single-point-
crossover

Crossover
probability [0, 1] 0.1

Mutation
probability [0, 1] 0.05

Number of
generations [1, 100] 50

1. The range of fitness value is therefore from 0 to 1, where 0
indicates a perfect flocking and 1 indicates a total failure.

3) Parameter Analysis
In this study, there are five parameters in our genetic algo-

rithm which are population size, parent selection method,
crossover type and probability, mutation probability, and num-
ber of generations in evolution. Table I shows the description
and potential candidates for these five parameters.

We employed a parameter robustness technique from Spar-
tan [27, 28] which allows the assessment of the sensitivity of
parameters in the simulation. This technique is performed by
changing each parameter individually with all other parameters
remaining the same. For each parameter, simulation results for
different values will be compared to determine whether a sci-
entifically significant behavioral alteration has occurred. From
the simulation results, we can also determine at which value of
the parameter the genetic algorithm performs best.

IV. SIMULATION AND EXPERIMENTAL SETUP

In order to simulate the experiments for our case study, we
use foot-bot in ARGoS, an open source robot simulator focus-
ing on the simulation of large heterogeneous robot swarms [29].
The following subsection talks about the flocking algorithm
which is applied to foot-bots in order to achieve flocking be-
havior in ARGoS.

A. Control Algorithm for Flocking Behavior

Agents in a swarm robotic system typically have limited
sensors and do not share global knowledge. In this paper, the
flocking algorithm we used to achieve flocking behavior is
developed based on the algorithm proposed in [12]. In that al-
gorithm, no agent (robot) has access to either the goal direction
or to alignment information. However, the algorithm only
works in an environment without obstacles, and is also unable
to move towards a goal.

We improved this flocking algorithm by adding obstacle
avoidance and goal seeking rules (see section 2.1). In order to
apply obstacle avoidance, a way needs to be established to al-
low a foot-bot to distinguish the difference between its flock-
mates and obstacles. This can be achieved by using the omni-
directional camera provided by ARGoS. The omni-directional
camera can tell the position of a light source with respect to the
centre of the foot-bot. Foot-bots in ARGoS are able to emit
light of different colours with their LEDs. All foot-bots in the
swarm can be set to emit light of the same colour, and then
each foot-bot can use its omni-directional camera to find out
the position of other foot-bots. Finally, a light source can be
provided at the destination, which emits light having different
colour from foot-bots. Foot-bots will be able to move towards
the destination following the light, and therefore a goal seeking
rule can be applied to our control algorithm.

The improved flocking algorithm should be able to reach
the goal while avoiding obstacles in the environment by shar-
ing global knowledge. However, as stated in [12], the flocking

behavior accomplished is limited in the sense that the swarm
could not stay cohesive the whole time.

B. Genetic Algorithm Procedure

The following procedure shows how to generate test case
using the genetic algorithm:

Step 1: Initialize population: randomly generate an initial
population using the rules stated in section 3.1.1 for generating
test cases.

Step 2: Compute fitness: evaluate the fitness value of each
test case.

Step 3: Select parents: follow the parent selection method
to choose parent test cases.

Step 4: Crossover: Use a crossover procedure to produce
offspring, if the produced offspring doesn’t contain a clear path
from the starting point to the destination, redo Step 4.

Step 5: Mutate: Allow the offspring to mutate with muta-
tion probability pm, if the produced offspring doesn’t contain a
clear path from the starting point to the destination, redo Step
5.

Step 6: Check for termination: Terminate the algorithm if
we’ve now run N generations (where N is a parameter).

C. Experimental Setup

In this study, the environment in which foot-bots are tested

is a closed 6m×6m squared space. For each experiment, 10
foot-bots will be tested. The starting point of the swarm is at
the upper left corner of the environment, and the goal is placed
at the lower right corner.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results of pa-
rameter selection for the genetic algorithm. Then results of the
genetic testing method and random testing method are com-
pared. We refer to a test case generated by our automated test-
ing method as an evolved test case, and test case generated

932

Fig. 1. The fitness value of evolved test cases compared with that of

random test cases

Fig. 2. A line graph shows the average number of failure types of 10

independent evolutions in 80 generations.

TABLE III. RESULT DETAILS OF MANN-WHITNEY U-TEST.

randomly as a random test case.

A. Parameter turning for the Genetic Algorithm

First, we present the parameters selected for the GA. A ro-
bustness technique is performed by perturbing parameter indi-
vidually, using a ‘one at a time’ approach [27] – when evaluat-
ing the different values of one parameter, all other parameters
will remain unchanged. For each candidate value of each pa-
rameter, 20 evolutions will be executed (The number of 20 is
chosen by using the Consistency Analysis technique provided
by Spartan for reducing the uncertainties during the experi-
ments). The final results for all potential candidates will be
compared using the Vargha-Delaney A-Test [30] to determine
if a scientifically significant behavioral alteration has occurred,
if yes, then the candidate which performs best will be selected.

Table II shows the parameter values determined according
to the analysis from Spartan. All the parameter values in Table

II were only optimized for a 6m×6m environment with a
swarm of 10 foot-bots.

B. Comparison of Severity of Failure

In this subsection, we will compare the performance of the
simulated swarm, which is equipped with the flocking algo-
rithm mentioned in section IV.A, in both evolved and random
test cases. Our means of comparison is the fitness score. We
propose a null hypothesis:

H0: the use of evolved test cases makes no difference to the
ability to identify the severity of failures when compared to a
random testing strategy.

At the beginning of the experiments, 5000 random test cas-
es are produced. In order to keep the fitness evaluations be-
tween random testing method and genetic testing method the
same (at 5000), and given that we will run 50 generations of
the GA, 100 evolved test cases should be generated. The
swarm is executed in both evolved test cases and random test
cases, and the performance in each test case is calculated and
recorded. When comparing the results, 100 random test cases
will be randomly chosen.

Table III shows the result details of applying Mann-
Whitney U-Test to the experimental results, the average (mean)
fitness of the solutions (avg), the standard deviation (std), the
fitness of the best solution (best), sum of ranking (SoR), mean
of ranking (MoR), and the U-value. The p-value of the test is 0
and this result is significant at p<0.05, which means that the
medians of the fitness values of both groups of test cases is
different.

Figure 1 presents a box-and-whisker plot which shows the
distribution of the fitness values of the test cases generated by
genetic testing method and random testing method. From the
graph, it is clear that there is no overlap in spreads (75% of

random test cases are less fit than 75% of evolved test cases),
therefore both mean and median of the fitness value of evolved
test cases is higher than those of random test cases. Hence, the
null hypothesis H0 is rejected.

C. Comparison of Diversity of Failure Type

The purpose of our testing method is not only to discover as
many instances of undesired behaviors as possible, but also to
discover as many distinct types of undesired behaviors as pos-
sible. In order to measure the diversity of failures found by our
testing methods, 10 independent evolutions are carried out. For
each evolution, there are 20 initial populations and the evolu-
tion continues for 80 generations. Figure 2 shows that the
number of failure types won’t keep increasing as the number of
generations increases. The number of failure types will reach
the peak after certain numbers (between 20 and 40) of genera-
tions. Hence, to keep the computing cost at a minimum, the
evolutions in this subsection will run for 20 generations. We
propose another null hypothesis:

H0: the use of evolved test cases makes no difference to the
ability to identify types of failures when compared to a random
testing strategy.

933

Fig. 3. A line graph shows the total number of failure types during 8000

fitness evaluations.

TABLE IV. FAILURE TYPES DISCOVERED

In this subsection, 8000 random test cases are generated. To
keep the fitness evaluations between two testing methods the
same, 400 evolved test cases are produced. As the population
size for each evolution is 20, therefore 20 independent evolu-
tions are carried out.

For failure taxonomy, failures are categorized into 20 cate-
gories, formed by combining two speed categories and 10 an-
gle categories. The two speed categories are “<=50% of mean
robot speed” and “>50% of mean robot speed”. Angles are
measured with respect to the mean heading of the swarm mem-
bers. The angle categories are in the range 10-90 degrees with
an increment of 10 degrees, along with a tenth “90 degrees+”
category.

Figure 3 shows the total failures type found for both
evolved and random test cases. In this graph, we assume that
the executions of 20 different evolutions are independent and
parallel. As we discussed in subsection II.C, there are 20 dif-
ferent types of failures in total. Figures 3 shows that evolved
test cases discover 17 different types of failures, while random
test cases discover only 9. Table IV shows the specific failure
types discovered by both evolved and random test cases. From
the table, it is clear that the set of failure types discovered by
random test cases is a subset of the set of failure types discov-
ered by evolved test cases.

One precondition for all the experimental results above is
that a cluster will only be treated as a swarm if the number of
agents in this cluster is larger than or equal to 5. We also car-
ried out all the experiments in this subsection when a cluster is
treated as a swarm if the number of agents in it is larger than or
equal to 3 and 7. From the experimental results, even though
the number of failure types for both evolved and random test
cases are changing, the set of failure types discovered by ran-
dom test cases is always a subset of that discovered by evolved

test cases.

Hence, the experimental results from all three sets of exper-
iments show that after a certain number of fitness evaluations
and under the criterion we developed for failure taxonomy, the
evolved test cases not only cover all the failure types which
random test cases identified, but also identify more types of
failures. The null hypothesis H0 in this subsection is rejected.

D. Discussion

According to the experimental results from subsection V.B
and V.C, the evolved test cases lead to worse swarm perfor-
mance and cover more failure types than random test cases,
suggesting that they are better tests when testing flocking algo-
rithm in section IV.A.

VI. CONCLUSION

In this paper, we have proposed an automated test genera-
tion method for the identification of undesired behaviors during
the execution of a swarm robotic system. A genetic algorithm
was applied to generate test cases that represents the environ-
ment. The evolved test cases were compared with random test
cases in simulation experiments. The evolved test cases lead to
more severe and more diverse failures, the evolutionary ap-
proach thus produced a better quality of test than random did.
By analyzing the failures found during the tests, there might be
a chance of improving the swarm control algorithm.

In the future, this automated testing method will also be ap-
plied on physical devices. Moreover, metrics for different
swarm algorithms can be established and applied for the devel-
opment of corresponding automated testing methods. Those
new developed testing methods will be evaluated to find out
whether the approach proposed in this paper is adaptive for
testing other swarm behaviors.

REFERENCES

[1] Dorigo, M., Birattari, M., & Brambilla, M. (2014). Swarm robotics.

Scholarpedia, 9(1), 1463.

[2] Winfield, A. F., Harper, C. J., & Nembrini, J. (2004). Towards
dependable swarms and a new discipline of swarm engineering.

International Workshop on Swarm Robotics. Springer Berlin Heidelberg.

[3] Winfield, A. F., & Nembrini, J. (2006). Safety in numbers: fault-

tolerance in robot swarms. International Journal of Modelling,
Identification and Control, 1(1), 30-37.

[4] Myers, G. J., Sandler, C., & Badgett, T. (2011, September 23). The art

of software testing. John Wiley & Sons.

[5] O’Grady, R., Groß, R., Christensen, A. L., & Dorigo, M. (2010). Self-
assembly strategies in a group of autonomous mobile robots.

Autonomous Robots, 28(4), 439-455.

[6] Ammann, P., & Offutt, J. (2008, January 28). Introduction to software
testing. Cambridge University Press.

[7] Reynolds, C. W. (1987). Flocks, herds and schools: A distributed

behavioral model. ACM SIGGRAPH computer graphics, 21(4), 25-34.

[8] Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems:
Algorithms and theory. IEEE Transactions on automatic control, 51(3),

401-420.

[9] Kwong, H., & Jacob, C. (2003). Evolutionary exploration of dynamic

swarm behaviour. Evolutionary Computation, 2003. CEC'03. The 2003
Congress on. IEEE.

934

[10] Lindhé, M., Ogren, P., & Johansson, K. H. (2005). Flocking with

obstacle avoidance: A new distributed coordination algorithm based on
voronoi partitions. Proceedings of the 2005 IEEE International

Conference on Robotics and Automation. IEEE.

[11] Xiong, N., He, J., Yang, Y., He, Y., Kim, T., & Lin, C. (2010). A survey

on decentralized flocking schemes for a set of autonomous mobile
robots. Journal of Communications, 5(1), 31-38.

[12] Moeslinger, C., Schmickl, T., & Crailsheim, K. (2009). A minimalist

flocking algorithm for swarm robots. European Conference on Artificial
Life. Springer Berlin Heidelberg.

[13] Mogilner, A., & Edelstein-Keshet, L. (1996). Spatio-angular order in

populations of self-aligning objects: formation of oriented patches.
Physica D: Nonlinear Phenomena, 89(3), 346-367.

[14] Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995).

Novel type of phase transition in a system of self-driven particles.
Physical review letters, 75(6), 1226.

[15] Shannon, C. E. (2001). A mathematical theory of communication. ACM

SIGMOBILE Mobile Computing and Communications Review, 5(1), 3-
55.

[16] Gu, D., & Hu, H. (2008). Using fuzzy logic to design separation

function in flocking algorithms. IEEE Transactions on fuzzy Systems,
16(4), 826-838.

[17] Antonelli, G., Arrichiello, F., & Chiaverini, S. (2010). Flocking for
multi-robot systems via the null-space-based behavioral control. Swarm

Intelligence, 4(1), 37-56.

[18] Ammann, P., & Offutt, J. (2008). Introduction to software testing.
Cambridge University Press.

[19] Bird, D. L., & Munoz, C. U. (1983). Automatic generation of random

self-checking test cases. IBM systems journal, 22(3), 229-245.

[20] Forrester, J. E., & Miller, B. P. (2000). An empirical study of the
robustness of Windows NT applications using random testing.

Proceedings of the 4th USENIX Windows System Symposium. Seattle.

[21] Godefroid, P., Klarlund, N., & Sen, K. (2005). DART: directed

automated random testing. ACM Sigplan Notices. ACM.

[22] Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.

[23] Srivastava, Praveen Ranjan, and Tai-hoon Kim. "Application of genetic

algorithm in software testing." International Journal of software
Engineering and its Applications 3.4 (2009): 87-96.

[24] Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T. H., Baldassarre,

G. & Gambardella, L. M. (2004). Evolving self-organizing behaviors for
a swarm-bot. Autonomous Robots, 17(2-3), 223-245.

[25] Holland, J. H. (1975). Adaptation in natural and artificial systems: an

introductory analysis with applications to biology, control, and artificial
intelligence. U Michigan Press.

[26] Gruau, F. (1994). Automatic definition of modular neural networks.

Adaptive behavior, 3(2), 151-183.

[27] Alden, K., Read, M., Timmis, J., Andrews, P. S., Veiga-Fernandes, H.,
& Coles, M. (2013). Spartan: a comprehensive tool for understanding

uncertainty in simulations of biological systems. PLoS Comput Biol,
9(2), e1002916.

[28] Alden, K., Read, M., Andrews, P. S., Timmis, J., & Coles, M. (2014).
Applying spartan to understand parameter uncertainty in simulations.

The R Journal, 6(2), 1-10.

[29] Pinciroli, C., Trianni, V., O'Grady, R., Pini, G., Brutschy, A., Brambilla,
M., et al. (2011). ARGoS: a modular, multi-engine simulator for

heterogeneous swarm robotics. 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE.

[30] Vargha, A., & Delaney, H. D. (2000). A critique and improvement of the

CL common language effect size statistics of McGraw and Wong.
Journal of Educational and Behavioral Statistics, 25(2), 101-132.

935

