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CHAMBER STRUCTURE OF DOUBLE HURWITZ

NUMBERS

RENZO CAVALIERI, PAUL JOHNSON, AND HANNAH MARKWIG

Abstract. Double Hurwitz numbers count covers of P1 by genus
g curves with assigned ramification profiles over 0 and ∞, and sim-
ple ramification over a fixed branch divisor. Goulden, Jackson and
Vakil have shown double Hurwitz numbers are piecewise polyno-
mial in the orders of ramification ([GJV05]), and Shadrin, Shapiro
and Vainshtein have determined the chamber structure and wall
crossing formulas for g = 0 ([SSV08]). This paper gives a unified
approach to these results and strengthens them in several ways —
the most important being the extension of the results of [SSV08]
to arbitrary genus.

The main tool is the authors’ previous work ([CJM]) expressing
double Hurwitz number as a sum over certain labeled graphs. We
identify the labels of the graphs with lattice points in the chambers
of certain hyperplane arrangements, which are well known to give
rise to piecewise polynomial functions. Our understanding of the
wall crossing for these functions builds on the work of Varchenko
([Var87]), and could have broader applications.
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1. Introduction

1.1. Statement of Results. Hurwitz theory studies holomorphic
maps between Riemann surfaces with specified ramification. Double
Hurwitz numbers count covers of P1 with assigned ramification profiles
over 0 and ∞, and simple ramification over a fixed branch divisor.

We use a new notation for double Hurwitz numbers. We define Hg(x)
to be the genus g double Hurwitz number with profile x0 := {xi|xi > 0}
over zero and x∞ := {xi|xi < 0} over ∞ (previous notation recorded
the ramification over 0 and ∞ separately). Furthermore, frequently the
natural numerical invariant is r, the number of simple ramifications,
rather than the genus g. Since these are equivalent by the Riemann-
Hurwitz formula, we use Hr(x) to denote Hg(x) when it makes formulas
more attractive.

Our first result is a new proof of the following theorem in [GJV05]:

Theorem 1.1 (GJV). The function

Hg(x) :
{

∑

xi = 0
}

⊂ (Z \ {0})n → Q

is a piecewise polynomial function of degree 4g − 3 + n.

Our techniques allow us to answer an (implicit - see Section 1.4)
conjecture of Goulden, Jackson and Vakil.

Theorem 1.2. Hg(x) is either even or odd, depending on the parity
of the leading degree 4g − 3 + n.

We extend the results of [SSV08] to all genera. First, we determine
the regions on which Hg(x) is polynomial:

Theorem 1.3. The chambers of polynomiality of Hg(x) are bounded
by walls corresponding to the resonance hyperplanes WI , given by the
equation

WI =

{

∑

i∈I

xi = 0

}

,

for any I ⊂ {1, . . . , n}.

Our main result is a wall crossing formula. We denote the chambers
of the resonance arrangement as H-chambers.

Definition 1.4. Let c1 and c2 be two H-chambers adjacent along the
wall WI , with c1 being the chamber with xI < 0. The Hurwitz number
Hr(x) is given by polynomials, say P1(x) and P2(x), on these two
regions. A wall crossing formula is a formula for the polynomial

WCr
I (x) = P2(x) − P1(x).
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Note that with the notation WCr
I (x) there is no ambiguity about

which direction we cross the wall.

Theorem 1.5.

WCr
I (x) =

∑

s+t+u=r
|y|=|z|=|xI |

(

(−1)t ·

(

r

s, t, u

)

·

∏

yi

ℓ(y)!
·

∏

zj

ℓ(z)!
·(1)

Hs(xI ,y) · H t•(−y, z) · Hu(xIc ,−z)

)

Here y is an ordered tuple of ℓ(y) positive integers with sum |y|, and
similarly with z.

This formula appears not to depend on the particular choice of cham-
bers c1 and c2 that border on the wall, but only upon the wall WI ; how-
ever the polynomials for the simpler Hurwitz numbers in the formula
depend on chambers themselves.

The walls WI correspond to those values of x where the cover could
potentially be disconnected, or where xi = 0. Crossing this second
type of wall corresponds to moving a ramification between 0 and ∞.
In the traditional view of double Hurwitz numbers, this would cross
between different problems: the lenght of the profiles over 0 and ∞
were fixed separately, rather than just the sum of the lengths being
fixed. However, Theorem 1.5 suggests that it is natural to treat these
as part of the same problem: the wall crossing formula for xi = 0 is
identical to the other wall crossing formulas.

1.2. Overview of Methods. This paper is an exploration of the con-
sequences of formula (2) in the authors’ previous work [CJM], which
expresses double Hurwitz numbers Hg(x) as a sum over certain graphs
Γ, which we call monodromy graphs (Definition 2.1). Each internal
edge of a monodromy graph is labeled with a positive integer. The
contribution of each monodromy graph is the product of these inte-
gers. In genus zero, these edge labelings are determined uniquely by x,
and as a result the genus zero case of all of our theorems follow quickly
from the graphs, as is presented in Section 6 of [CJM].

In positive genus, however, the choice of edge labelings is not unique.
The crux of this paper is to understand the space of edge labelings for
each directed graph and value of x. We show in Section 2 that for
each directed graph and value of x, the space of edge labelings (which
we call flows) are the lattice points in certain bounded polytopes we
call F -chambers. As x changes, the faces of the F -chambers shift,
but their normal directions remain constant. Thus, for each directed
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graph the contribution is the sum of a polynomial (the product of the
edge weights) over the lattice points in a polytope. Furthermore, the
F -chambers for directed graphs with the same underlying undirected
graph Γ fit together as the set BCΓ(x) of bounded chambers of a natural
hyperplane arrangement AΓ(x) associated to Γ and x. Intuitively, the
arrangements AΓ(x) have an easy description: we consider flows of wa-
ter along the edges of the graph. At vertices not labeled by a part of x,
water is conserved, and the inflowing water must equal the outflowing
water. The vertices labeled by parts of x, however, have valves, that
add in xi of water. The space of all such flows is the underlying affine
space of the arrangement, and the hyperplanes are given by when the
flow along a given edge is equal to zero.

There is a general theory of lattice points in polytopes that can be
brought to bear upon the problem. Theorems 1.1, 1.2 and 1.3 follow
from standard results in this theory. Since for all integral x the vertices
of the flow polytopes are integers, we can conclude that the sums are
piecewise polynomial, and that the walls occur when the topology of
the hyperplane arrangement changes, proving Theorems 1.1 and 1.3.

Theorem 1.2 is more subtle: as opposed to integrating a homogenous
polynomial over a polytope, summing a homogenous polynomial over
the lattice points of a polytope does not in general result in an odd
or even polynomial. However, Ehrhart reciprocity says that the failure
to be odd or even is essentially due to the lattice points contained
in the boundary of the polytope. In our case the polynomial we are
summing vanishes on the boundary of the polytope, giving 1.2. This
phenomenon plays an important role in our approach to Theroem 1.5.

1.3. Wall Crossing. The wall crossing phenomenon for polytopes is
a rich area with many possible approaches and ongoing research. In
our proof of Theorem 1.5, we follow Varchenko’s viewpoint in [Var87];
however, other approaches should also prove fruitful in investigating
this problem – forthcoming work of Ardila [Ard] takes the point of
view of generalized Dahmen-Micchelli spaces [dPV]. As Varchenko’s
viewpoint is less standard than the other lattice point techniques we
use, we give a short overview.

The fundamental idea is that understanding wall crossing becomes
much simpler if instead of focusing on a single polytope, we view the
polytope as one chamber of a hyperplane arrangement. Then wall
crossing for a given polytope can be understood in terms of adding and
subtracting certain nearby polytopes in the arrangement. The data of
which polytopes to add and subtract is encoded in a linear map called
the Gauss-Manin connection. For the explanation of the name, see
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Section 5. We now illustrate this idea in the local setting. A global
example is worked out in detail in Example 4.1.

Consider the 1-dimensional family At of n-dimensional arrangements,
where the n + 1 hyperplanes of At consist of the n coordinate hyper-
planes, together with the hyperplane x1 + · · · + xn = t. For t > 0, the
arrangement is simple, and there are 2n+1 − 1 chambers: one bounded
n-simplex and 2n+1 − 2 unbounded chambers, each of which borders
the bounded chamber on one of its proper faces. As t approaches zero,
the bounded chamber shrinks, until it disappears at t = 0 and there
is a nontransverse intersection: all k + 1 hyperplanes intersect at the
origin. When t < 0, a new bounded simplex A appears. Furthermore,
the topology of each of the unbounded chambers has changed, but in
an easily described way: we must add or subtract the appearing cham-
ber A to each unbounded chamber U , depending on the codimension
with which A and U border.

If we add a few fixed hyperplanes to this hyperplane arrangement to
obtained bounded chambers, the volume of one of the resulting cham-
bers would be a polynomial in t for t > 0 and for t < 0; the difference
between these polynomials is, up to a sign, the volume of the appear-
ing/vanishing simplex. This is essentially the local picture for all wall
crossings in families where the generic arrangement is simple: at the
wall, there are k + 1 hyperplanes meeting in codimension k. On either
side of the wall, these k + 1 hyperplanes bound a k-simplex crossed
with Rn−k, which may be further cut into smaller chambers by the
other hyperplanes. We call these chambers vanishing chambers. As
we cross the wall, to keep using the same volume polynomial, we must
add or a subtract each vanishing/appearing chamber to each of the
2k+1−2 chambers obtained by crossing some proper subset of the k+1
hyperplanes that meet nontransversely.

Varchenko’s approach to understanding this phenomenon is to use
cones: any chamber can be written as a signed sum of cones, and cones
obviously do not change topology - rather, the change in topology is
due to the change in relative position of the cones.

Care is needed in extending this approach to integer points in the
polytopes: for each boundary face, we must specify whether we are
including the lattice points on that face or not. This can be done
from the cone point of view: when writing our polytope as a sum of
cones, we must specify whether each face of the cone is included or not.
If we keep track of this information, everything follows. Varchenko
calls the result a “combinatorial connection”: it is the usual Gauss-
Manin connection, with corrections by lower dimensional cells. Thus,
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the combinatorial connection can be understood as a generalization of
Ehrhart reciprocity([BR07]).

We wish to apply the general machinery of the combinatorial con-
nection to our situation. As the polynomial we are summing over the
lattice points vanishes on the boundary, the lower dimensional correc-
tions to the combinatorial connection are unnecessary for our purposes,
and we only need a formula for the usual connection. The difficulty is
that the generic hyperplane arrangement in our families is not simple,
and so the easy description of the Gauss-Manin connection described
above fails.

The technical heart of our paper is a formula for the Gauss-Manin
connection for the families of hyperplane arrangements we are dealing
with, stated in terms of the combinatorics of the graph (Lemma 6.12).

1.4. Connections with geometry. Although our methods are es-
sentially combinatorial, much of the motivation for studying Hurwitz
theory lies in deep geometric connections to moduli spaces. We now
discuss the relationship of our work to these results.

Historically, one motivation for studying Hurwitz theory is to un-
derstand the moduli space of curves Mg - in particular, to show it
is irreducible. Another recent connection is ELSV formula [ELSV01],
which expresses single Hurwitz numbers – i.e., when there is no rami-
fication over ∞ – in terms of intersection numbers on Mg,n. The role
of the ELSV formula in understanding these and related intersection
numbers has been remarkably fruitful, and a survey would be far be-
yond our needs. We mention one result going in the opposite direction:
the geometric form of the ELSV formula proves and explains polyno-
miality for single Hurwitz numbers as conjectured by Goulden, Jackson
and Vainshtein [GJV00].

Goulden, Jackson and Vakil conjecture in [GJV05] that there should
be a formula similar to the ELSV formula for one part double Hurwitz
numbers – those Hurwitz numbers with total ramification over 0 and
arbitrary ramification over ∞. One part double Hurwitz numbers are
in fact polynomial, and the GJV conjecture would provide a geometric
explanation why, parallel to that for single Hurwitz numbers. In their
conjecture, the moduli space of curves is replaced by some universal
Picard scheme which over the smooth locus parameterizes a complex
curve together with a line bundle; the difficulty is determining how to
compactify the Picard group of nodal curves.

One point where our work makes interesting contact with this con-
jecture is our observation that double Hurwitz numbers behave well
when we allow ramification to become negative and pass from zero to
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infinity. From this perspective, there is nothing special about one part
double Hurwitz numbers. They are one chamber of polynomiality for
Hg(x) – where x1 > 0 and xi < 0 for i > 1.

It is then natural to wonder whether the GJV conjecture could be
extended to give a geometric explanation for the polynomiality of each
chamber, and indeed the whole piecewise polynomial nature of Hg(x).
Ideally, one would hope that there were stability conditions that lead
to different compactifications of the Picard varieties of nodal curves,
and that the changing choice in compactification would account for the
change in polynomial.

Part of the motivation for the GJV conjecture was a rather explicit
formula for one part double Hurwitz numbers obtained via represen-
tation theory; this approach is extended to all chambers in [Joh], pro-
viding another proof of Theorems 1.1, 1.2 and 1.3, as well as a proof
of the strong piecewise polynomiality conjecture of [GJV05] that the
methods of the current paper cannot prove (see Section 3.4). Taken to-
gether, these results show that the algebraic form of all double Hurwitz
polynomials are compatible with an extended GJV conjecture.

Though all three approaches to Theorem 1.1 are largely algebraic, it
is interesting to observe that both the original proof in [GJV05] and the
proof presented here have elements that point toward connections with
the moduli space of curves Mg,n: the proof in [GJV05] uses ribbon
graphs, which index the cells of a combinatorial description of Mg,n

(for an introduction, see [LZ04]). The trivalent graphs that we use
index the top dimensional cells of the stacky fan that is the closest
thing to a tropical Mg,n (see [BMV]). This is not surprising, as our
original motivation was from tropical geometry.

Our method provides some evidence for an extended GJV conjecture
as described above: the hyperplane arrangements AΓ(x) appearing on
our work are precisely the combinatorial information used by Oda and
Seshadri [OS79] (see also [Ale04]) to construct their compactifed Jaco-
bians Jacφ for nodal curves. In their work, Γ is the dual graph of a
nodal curve, they are working considering the infinite hyperplane ar-
rangement given by all integer translates of our hyperplanes, and the
polyhedra are used to construct toric varieties; in any case, there is a
chamber structure on possible values of φ given by the changing topol-
ogy of the arrangement. Thus, the combinatorial mechanism responsi-
ble for producing our chamber structure is identical to that producing
changing stability conditions for compactified Jacobians.

Nice behavior as ramification crosses from 0 to ∞ has been observed
previously in the closely related area of the Gromov-Witten theory of
P1 relative to 0 and ∞. In [OP06], Okounkov and Pandharipande show
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x ordered tuple of n nonzero integers p. 2
xi with

∑

i xi = 0
Hg(x), Hr(x) Hurwitz numbers (g genus, p. 2

r #simple ramifications)
WI (Hurwitz) walls 1.3
WCr

I (x) wall crossing 1.4
c A (Hurwitz) chamber for x 1.4, 3.5
Γ(d, o), Γ(x, d, o) monodromy graph (directed x-graph 2.1

with a compatible ordering of vertices)
ϕΓ product of internal weights of Γ (2)
Γ, Γ(x) x-graph 2.3
Γ(d), Γ(x, d) directed x-graph 2.3
FΓ(x) space of flows on Γ(x) 2.8
A,AΓ(x) flow hyperplane arrangement 2.8
ϕA defining equation of A 2.8
A, B, . . . F -chambers 2.15
ΓA, ΓB, . . . directed x-graphs associated to 2.15

the F -chambers A, B, . . .
m(ΓA), m(A) number of vertex orderings of ΓA 2.15
sign(A) (−1)e where e = #edges in which ΓA 2.15

differs from reference orientation
Ch(AΓ(x)) set of chambers of AΓ(x) 2.15
D discriminant arrangement 3.4
BCΓ(x) set of bounded F -chambers of AΓ(x) p. 32
∇Γ,12, ∇∗

Γ,12 Gauss-Manin connection resp. adjoint 5.1
Γ/E contracting the edges in E 6.3
C a cut 6.4
CutsI(Γ) poset of cuts 6.4
Γ′

A contracting everything 6.7
except the maximal cut

XCutsI (Γ) cone of cuts 6.7
XC face of XCutsI(Γ) corresponding to a cut 6.7
L(P ) face lattice of the polyhedron P 6.8
K a cone p. 42
K(c) sum of chambers in a cone p. 42
P partial orientation of edges p. 42
KP cone corresponding to P p. 43
OΓ set of all orientations of Γ 7.2
∇O

Γ,12 graph connection 7.2
NGΓ(c) nongeometric orientations 7.2
KO

P a combinatorial cone 7.2
t(C) thin cut associated to C 8.1
γ(T ) the middle components 8.3

Table 1. Notation used throughout the paper.



CHAMBER STRUCTURE OF DOUBLE HURWITZ NUMBERS 9

that the one point invariants are polynomial of degree 2g in the orders
of ramification, and observe, in what they call “crossing symmetry”,
that these polynomials are completely symmetric. Additionally, this
phenomenon has been observed by Vakil ([Vak]) for the pushforward
of the rubber virtual fundamental class to Chow classes in the moduli
space M rt

g of curves with rational tails.

1.5. Organization. The organization of this paper is as follows. Sec-
tion 2 begins with a motivating example before introducing our in-
terpretation of double Hurwitz numbers in terms of the hyperplane
arrangements AΓ. We then apply this interpretation in Section 3 to
prove Theorems 1.1, 1.2 and 1.3.

The rest of the paper is devoted to proving our wall crossing formula,
Theorem 1.5. Section 4 is a gentle, example-oriented introduction and
overview of our approach.

Section 5 formally discusses the combinatorial Gauss-Manin connec-
tion. In Section 6, we introduce the poset of cuts, which allows us
to state our formula for the Gauss-Manin connection, and show how
this formula implies the “heavy” wall crossing formula. Section 7 then
proves our formula for the Gauss-Manin connection. In Section 8 we
show how the main wall crossing formula follows from the “heavy” one.

1.6. Acknowledgements. We would like to thank Federico Ardila
and Michael Shapiro for many helpful discussions.

2. Monodromy Graphs and Hyperplane Arrangements

Our main tool is the key observation of our earlier paper [CJM], that
the cut and join recursion can conveniently be organized in terms of
certain graphs; we review this in 2.1. We refine this organization by
introducing certain hyperplane arrangements AΓ(x). This is motivated
with examples in 2.2 and presented formally in 2.3.

2.1. Hurwitz numbers and Monodromy graphs. The double Hur-
witz number Hg(x1, . . . , xn) counts the number of maps π : C → P1,
where C is a connected, genus g curve and π has profiles x0 := {xi|xi >
0} (resp. x∞ := {xi|xi < 0}) over 0 (resp. ∞), and simple ramification
over r = 2g − 2 + n fixed other points. The preimages of 0 and ∞ are
marked. Furthermore, each cover is counted with weight 1/|Aut(π)|.

In [CJM, Lemma 4.1], we associate to each cover π as above a dec-
orated graph Γ(= Γ(x, d, o)) that we call a monodromy graph.

Definition 2.1. For fixed g and x = (x1, . . . , xn), a graph Γ is a
monodromy graph if:
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(1) Γ is a connected, genus g, directed graph.
(2) Γ has n 1-valent vertices called leaves ; the edges leading to them

are ends. All ends are directed inward, and are labeled by the
weights x1, . . . , xn. If xi > 0, we say it is an in-end, otherwise
it is an out-end.

(3) All other vertices of Γ are 3-valent, and are called internal ver-
tices. Edges that are not ends are called internal edges.

(4) After reversing the orientation of the out-ends, Γ does not have
sinks or sources1.

(5) The internal vertices are ordered compatibly with the partial
ordering induced by the directions of the edges.

(6) Every internal edge e of the graph is equipped with a weight
w(e) ∈ N. The weights satisfy the balancing condition at each
internal vertex: the sum of all weights of incoming edges equals
the sum of the weights of all outgoing edges.

The notation Γ(x, d, o) indicates that the graph comes with directed
edges (d) and with a compatible vertex ordering (o).

Remark 2.2. Since the vertices in a monodromy graph are totally or-
dered, any orientation occurring has no directed cycles.

It follows from [CJM, Lemma 4.1] that the Hurwitz number is com-
puted as:

(2) Hg(x) =
∑

Γ

1

|Aut(Γ)|
ϕΓ,

where the sum is over all monodromy graphs Γ for g and x, and ϕΓ

denotes the product of weights of all internal edges.
We simplify the combinatorics of this sum by grouping together fam-

ilies of monodromy graphs that coincide after forgetting structure.

Definition 2.3. Given g and x, an x-graph Γ(x) (or simply Γ if there
is no risk of confusion) is a connected, genus g, trivalent graph with n
ends labeled x1, . . . , xn.

Remark 2.4. Unless otherwise specified an x-graph is not a directed
graph. In order to compare different directed graphs that map to the
same x-graph it is useful to pick once and for all a reference orientation
for all the edges. When assigning weights to the edges we understand
that a positive weight preserves the reference orientation, whereas a
negative weight reverses it. The convention that all ends in the refer-
ence orientation are directed inwards is compatible with positive ends
being inputs and negative ends outputs.

1We do not consider leaves to be sinks or sources.
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x1 + x3

−x4 − j

−x4 − i − j

j − x2

j

i

x2

x1

j + i − x2

x3x1

x4x2

x3

x4

1

2

5

6

3

4

Figure 1. A directed x-graph and the weights of inter-
nal edges determined by the balancing condition.

The weights of internal edges for a directed x-graph are parameter-
ized by (the integer points of) a g-dimensional polytope. The polytopes
corresponding to different orientations of the edges of the same x-graph
fit together as the bounded chambers of a natural hyperplane arrange-
ment. In the remainder of this section we develop this point of view.

2.2. A motivating example.

Example 2.5. Consider the directed x-graph Γ(x, d, o) on the left
hand side in Figure 1. We describe all monodromy graphs that equal
Γ(x, d, o) after forgetting the weights of the internal edges. There are
no monodromy graphs that equal Γ(x, d, o) after forgetting the weights
if x1 + x3 ≤ 0, so we assume that x1 + x3 > 0. Imposing the balanc-
ing condition at interior vertices leaves two degrees of freedom for the
weights of interior edges, one for each independent cycle of Γ, as shown
in the right hand side of Figure 1. All possible collections of edge labels
are indexed by the lattice points in the polytope defined by:

i ≥ 0, j ≥ 0,

j + i − x2 ≥ 0, −x4 − i − j ≥ 0,

−x4 − j ≥ 0, j − x2 ≥ 0,

Figure 2 shows all hyperplanes w(e) = 0 with a normal vector indicat-
ing on which side of the hyperplane the inequality w(e) > 0 is satisfied.

The contribution of Γ(x, d, o) to Hg(x) is given by

(x1 + x3) ·
∑

i · j · (j + i − x2) · (−x4 − i − j) · (−x4 − j) · (j − x2)
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x2 −x4

−x4

x2

i

j

Figure 2. The polygon parameterizing internal edge
weights for Γ(x, d, o).

where the sum goes over all lattice points (i, j) in the polygon above
(note that Γ(x, d, o) has no automorphisms). This equals

(x1 + x3)·

−x4−x2
∑

i=0

−i−x4
∑

j=x2

i · j · (j + i − x2) · (−x4 − i − j) · (−x4 − j) · (j − x2)

Expanding the sum, we observe it is an odd polynomial in the entries
of x of degree 9 = 4g + n − 3.

Let us point out the features of Example 2.5: for each cycle in the
graph, there is one degree of freedom in choosing the labelings of the
interior edges; each directed x-graph together with a vertex ordering
gives rise to a g dimensional polytope whose integer points parametrize
monodromy graphs; varying the vector x results in parallel translating
the faces of the polytope. As long as the topology of the polytope
remains the same, the contribution of a given directed x-graph to the
Hurwitz number is a polynomial of degree 4g − 3 + n.

This polynomial does not depend on the vertex ordering. Thus, we
can forget the vertex ordering and weight each directed x-graph by an
appropriate multiplicity m (Definition 2.15).

Example 2.6. For the graph Γ(x, d), obtained by forgetting the ver-
tex ordering in Example 2.5, the multiplicity m(Γ(x, d)) equals 2: the
vertices 4 and 5 can change their role.

If we forget more structure and just consider the underlying x-graph
Γ(x), then the polytopes for the various choices of directions fit together
nicely.
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Example 2.7. Consider the x-graph Γ(x) underlying Example 2.5.
Retain the orientation of the edges in Figure 1 as a reference orien-
tation, and the labels w(e) for the internal edges obtained from the
balancing condition:

x1 + x3

−x4 − j

−x4 − i − j

j − x2

j

i

x2

x1

j + i − x2

x3

x4

In order to distinguish these labels from the usual weights, let us denote
them by w′(e).

The hyperplanes w′(e) = 0 subdivide R2 into different chambers
that we call F -chambers (see Definition 2.15). In the interior of each
F -chamber w′(e) has a given sign, and thus every edge inherits an
orientation. This also determines the actual weight w(e) = |w′(e)| =
±w′(e) of the edge. Figure 3 shows the hyperplane arrangement and
the corresponding directed graphs with the induced orientations. Since
the orientation of the ends and the edge with label x1 + x3 does not
depend on i and j, we do not include these edges in the pictures.

Only the bounded F -chambers (shaded) correspond to directed x-
graphs that contribute to the Hurwitz number. The unbounded F -
chambers correspond to graphs with a directed cycle, hence with mul-
tiplicity 0.

For different chambers, the product ϕΓ differs at most by the sign,
since the edge weights w(e) equal plus or minus the edge label w′(e),
depending on the side of the hyperplane w′(e) = 0 the F -chamber
is situated. Thus we can define a sign for each F -chamber that is
determined by the number of edges that are reversed when compared
to the reference orientation.

We now develop a formalism that generalizes this discussion.

2.3. Hyperplane arrangements: formalities. An x-graph Γ with
a fixed reference orientation can be viewed as a one dimensional cell
complex. The differential d : REΓ → RVΓ, sending a directed edge to
the difference of its head and tail vertices, gives a short exact sequence:

(3) 0 → ker(d) → REΓ → im(d) → 0.
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Figure 3. The parameter space for monodromy graphs
corresponding to a given x-graph.

Decomposing the space of vertices RVΓ = Rn ⊕ Ri.v. into ends and
internal vertices, a vector (x, 0) lies in the image of d when

∑

xi = 0.

Definition 2.8. The space of flows is

FΓ(x) = d−1(x, 0).

Inside it, we have the hyperplane arrangement

AΓ(x)

given by the restriction of the coordinate hyperplanes corresponding to
the 3g − 3 + n internal edges in REΓ. The defining polynomial for this
hyperplane arrangement is

ϕA =

3g−3+n
∏

i=1

ei,

where ei are the coordinate functions on REΓ restricted to FΓ(x).

Remark 2.9. Note that AΓ(x) is a hyperplane arrangement only for
generic choices of x. In Example 2.5, if x satisfies x1 +x3 = 0, then the
space of flows FΓ(x) is contained in the restriction of the hyperplane of
the edge from vertex 1 to 2. We still speak of a hyperplane arrangement
and consider this a nontransversality of the hyperplane arrangement -
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a single hyperplane that intersects in codimension 0 rather than 1 as
expected in a transverse intersection.

If x1 + x3 6= 0, the hyperplane of this edge does not meet the space
of flows at all. In general, for an edge which is not part of a cycle,
the weight and thus the orientation is determined by x, (same proof as
Lemma 6.4 of [CJM]). The corresponding coordinate hyperplane either
does not intersect the space of flows, or contains it.

Remark 2.10. Note that FΓ(0) = H1(Γ, R) is a g dimensional vector
space; the other FΓ(x) are thus g-dimensional affine spaces modeled on
H1(Γ, R).

Remark 2.11. Our hyperplane arrangement is a variation of a standard
construction in algebraic combinatorics. From the short exact sequence
(3) there are two natural central hyperplane arrangements, obtained
from taking the coordinate hyperplanes in REΓ, and either taking their
image in im(d) or restricting them to ker(d). In the literature, these
are referred to as the graphic and cographic arrangement, respectively.

Thus, AΓ(0) is the cographic arrangement, and AΓ(x) is a deforma-
tion of the cographic arrangement obtained by translating the hyper-
planes.

The chambers of AΓ(x) are indexed by orientations of edges of Γ,
with not all orientations appearing. An orientation occurs if and only
if it admits a flow where water is conserved, i.e. if there are no sources
or sinks, not even after contracting a cycle.

The chambers we care about are bounded (Section 2.2) and corre-
spond to orientations without cycles (Remark 2.2). These facts are
related:

Lemma 2.12. The bounded chambers of AΓ(x) correspond to orienta-
tions of Γ with no directed cycles.

Proof. Suppose that a given flow has a directed cycle. Then we may
add any fixed positive integer to the weight of each edge in this di-
rected cycle and the balancing conditions are still met and none of the
signs of the edges change. Thus, the chamber containing this flow is
unbounded.

Now suppose we have an unbounded chamber A; then A contains
some flow f and some edge e so that the flow along e is greater than
deg = |x0|. Because of the balancing conditions, it is clear that in this
case e must be part of a directed cycle in A, for water is conserved and
only deg enters and leaves the graph. �
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Corollary 2.13. Given an x-graph Γ, the bounded chambers of AΓ(x)
are in bijection with directed x-graphs projecting to Γ after forgetting
the orientations of the edges that come from a monodromy graph.

We conclude this section by establishing some more notation that
allows to rephrase equation (2) for Hg(x) in a more convenient way.

Definition 2.14. SΓ(x) denotes the contribution to Hg(x) of all mon-
odromy graphs having underlying x-graph Γ.

Definition 2.15. For an x-graph Γ, we call F -chambers the chambers
of AΓ(x) in the flow space FΓ(x). For an F -chamber A, let ΓA denote
the directed x-graph Γ with the edge directions corresponding to A. We
use m(A), or m(ΓA), to denote the number of orderings of the vertices
of ΓA. By Lemma 2.12, m(A) is zero if and only if A is unbounded.
We use Ch(AΓ(x)) to denote the set of chambers of AΓ(x).

The sign of ϕA alternates on adjacent F -chambers (since we swap
the direction of one edge); we use sign(A) to denote the sign of ϕA on
the chamber A.

Definition 2.16. For integer values of x, the space of flows FΓ(x) has
an affine lattice, coming from the integral structure on ZEΓ. We denote
this lattice

Λ = FΓ(x) ∩ ZEΓ.

This notation allows for a convenient interpretation of SΓ(x) in terms
of the hyperplane arrangement AΓ(x). Choices of weights of the edges
— i.e. the choice of a flow f on Γ— correspond to lattice points in Λ.
The product of all the edge weights of a flow f is the absolute value of
ϕA(f), which if f ∈ A is sign(A)ϕA(f). Thus, we have that

(4) SΓ(x) =
1

Aut(Γ)

∑

A∈Ch(AΓ(x))

sign(A)m(A)
∑

f∈A∩Λ

ϕA(f).

3. Piecewise Polynomiality

In this section we use Equation (4) to show that double Hurwitz
numbers are piecewise polynomial (in Section 3.1), determine the walls
(Section 3.2), and show that the polynomials are odd/even (Section
3.3). Section 3.4 contains a discussion of the strong Piecewise polyno-
miality conjecture of [GJV05].

3.1. Polynomials.

Theorem 3.1 ([GJV05]). Hg(x) is a piecewise polynomial of degree
4g − 3 + n.



CHAMBER STRUCTURE OF DOUBLE HURWITZ NUMBERS 17

Proof. The proof is immediate from the following fact: summing a
polynomial of degree d over the lattice points in an g-dimensional in-
tegral polytope of fixed topology is a polynomial of degree d+ g in the
numbers defining the boundary of the polytope.

This is an analogue of integration of polynomials over a region, and
can be seen by iterated applications of Bernoulli’s formula for the sum
of the first n k-th powers. The key point to be careful about is that
our vertices are always integers - otherwise one gets quasipolynomials
instead of polynomials. Since ϕA is a polynomial of degree 3g − 3 + n
and x and FΓ(x) has dimension g, the contribution SΓ(x) is locally a
polynomial of degree 4g − 3 + n, and so Hg(x) is as well. �

3.2. Walls. From the discussion in the Section 3.1, the functions SΓ(x)
are polynomial as long as the topology of the arrangement AΓ(x) does
not change. If we could translate the hyperplanes of AΓ(x) indepen-
dently, then generically there would only be transverse intersections,
and the topology would change exactly as we passed through nontran-
verse intersections. In our case, certain nontransversalities occur for
every value of x - however, it is still true that the topology of AΓ(x)
changes when there are additional nontransversalities.

We call the nontransversalities occurring for every x good. The good
nontransversalities are easily described: at every interior vertex, if the
flow at any two of the adjacent edges is zero, then by the balancing
condition the flow at the third edge must also be zero. Thus, for each
vertex we have three hyperplanes intersecting in codimension two. The
only good nontransversalities are these intersections and their conse-
quences. More explicitly:

Definition 3.2. Suppose a set I of k hyperplanes (equivalently, edges
in Γ) in AΓ(x) intersect in codimension k− ℓ. We call this intersection
good if there is a set L of ℓ vertices in Γ so that I is precisely the set
of edges incident to vertices in L.

Remark 3.3. Recall from Remark 2.9 that we also consider the case
where the space of flows is contained in a coordinate hyperplane of an
edge a nontransversality. It is not a good nontransversality.

Definition 3.4. The discriminant locus D ⊂ Rn is the set of values of x
so that for some directed x-graph Γ the hyperplane arrangement AΓ(x)
has a nontransverse intersection that is not good. The discriminant is
a union of hyperplanes, which we call the discriminant arrangement.

The chambers of the discriminant arrangement are the chambers of
polynomiality for Hurwitz numbers.
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Definition 3.5. We call the hyperplanes defining the discriminant ar-
rangement walls. The chambers of polynomiality for Hurwitz numbers
are called H-chambers.

We prove that the walls correspond to the resonance hyperplanes.

Definition 3.6. A simple cut of a graph Γ is a minimal set C of edges
that disconnects the ends of Γ; i.e., there are two ends of Γ such that
every path between them contains an edge of C, and this is true of no
proper subset of C.

For an x-graph Γ, a flow in FΓ(x) is disconnected if for some simple
cut C the flow on each edge of C is zero.

Remark 3.7. If a flow is disconnected, it follows by the balancing con-
dition that the sum

∑

i∈I xi of weights of ends belonging to a connected
component of Γ \ C is 0.

Lemma 3.8. The discriminant arrangement D is given by the set of
x ∈ Rn such that for some x-graph Γ, FΓ(x) admits a disconnected
flow.

Proof. Let f ∈ FΓ(x) be a disconnected flow, and let C = {e1, . . . , ek}
be a simple cut for f . Let H1, . . . , Hk be the corresponding hyperplanes;
we claim that the Hi intersect nontransversely. The affine space

⋂

Hi

corresponds to the space of flows on Γ\C with ends x. This is an affine
space modeled on H1(Γ \C, R). Since we removed k edges from Γ, the
Euler characteristic increased by k. But the number of connected com-
ponents of Γ increased by at least one, and so we see that H1(Γ \C, R)
has dimension at least g−k+1, and so the Hi intersect nontransversely.
If this nontransversality was good, there must be a vertex such that all
three adjacent edges belong to C. But this contradicts the fact that C
is a simple cut, because we do not have to cut all three edges adjacent
to a vertex to disconnect.

Now suppose x ∈ D. Let H1, . . . , Hk ⊂ FΓ(x) be a maximal collec-
tion of hyperplanes having bad non-transverse intersection: K =

⋂

Hi

is not contained in any other hyperplane. Since the intersection is non-
transverse, by the above reasoning removing the corresponding set of
edges C = {e1, . . . , ek} disconnects Γ.
Claim: If all the ends of Γ lie on the same component of Γ \ C, the
other components must consist of a collection of vertices.
This claim implies that K is a good nontransversality, a contradiction.
Thus, all x on the discriminant arrangement have disconnected flows.

To prove the claim let e be an edge in Γ \ C not in the component
containing all the ends; for any flow f ∈ K, then f must be zero along
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e, hence K is contained in the corresponding hyperplane, which by
maximality must be one of the Hi. �

Theorem 3.9. The walls for the discriminant arrangement are given
by the resonances, i.e. by equations

∑

i∈I

xi = 0

for any proper subset I ⊂ {1, . . . , n}.

Proof. We have established that for each graph Γ, the walls of poly-
nomiality of SΓ(x) are the set of x so that Γ admits a disconnected
flow. By Remark 3.7, this is a subset of the resonance arrangement.
But for any given resonance, it is easy to construct a Γ realizing the
given resonance: take a graph Γ with some edge e so that Γ\ e has two
components, one containing the ends of I and one the other containing
the ends of Ic. �

3.3. Parity.

Theorem 3.10. Hg(x) is either odd or even.

We first give an elementary proof of this theorem. A more conceptual
approach, which plays an important role later, is discussed in Remark
3.11.

Proof. Recall that the polynomial Hg(x) is obtained as a sum of poly-
nomials one for each appropriate directed graph. Each of these polyno-
mials is obtained by iterated applications of formulas for sums of k-th
powers applied to the homogeneous polynomial ϕA.

The sum over lattice points for a general even or odd polynomial is
typically neither even nor odd; one obtains essentially Bernoulli poly-
nomials, which are neither even nor odd. However, they are nearly
so: in the formula for the sum of k-th powers, all nonzero terms have
the parity of k + 1 except for the coefficient of nk, which is 1/2, inde-
pendently of k. This independence means that if p(x) is, say, an odd
polynomial, then

n
∑

i=1

p(i) = q(n) +
1

2
p(n),

where q is an even polynomial. Thus, the error from being even or odd
is a constant times the original polynomial on the boundary of the lat-
tice polytope. The point is that ϕA, the polynomial we add over lattice
points, is the product of the defining equations of the hyperplanes, and
so vanishes on the boundary of the polytope. Thus at each step the
error is zero, and the resulting polynomials are either odd or even. �
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Remark 3.11. Conceptually, Theorem 3.10 is a consequence of Ehrhart
reciprocity. For ∆ ⊂ V a g-dimensional polytope in a vector space V ,
ϕ a homogenous polynomial of degree d in t and the coordinates of V ,
and t a positive integer, the sum of ϕ over the lattice points in the
t-dilate of ∆ is polynomial in t, which we denote P∆,ϕ(t):

P∆,ϕ(t) =
∑

x∈Λ∩t∆

ϕ(x).

Based upon our intuition from integrals, for t a negative integer,
we might expect this polynomial to be (−1)g+d times the sum over
the lattice points in −t∆. Ehrhart reciprocity tells us this intuition
is not quite correct: the closed polytope ∆ must be replaced by the
corresponding open polytope ∆◦ - that is, we only sum over the interior
lattice points of −t∆:

(5) P∆,ϕ(−t) = (−1)g+dP−∆◦,ϕ(t).

In our application we are using ϕ = ϕA, which is homogenous of
degree 3g − 3 + n. The key point is that ϕA, being the defining poly-
nomial of the hyperplane arrangement, vanishes on the boundary of all
the polytopes, and so we have

(6) P∆,ϕA
(t) = P∆◦,ϕA

(t).

Thus, the correction required by Ehrhart reciprocity vanishes in our
case, and Equations 5 and 6 together say our polynomial has parity
4g − 3 + n.

3.4. Lower degree bound. In [GJV05], the Strong piecewise poly-
nomiality conjecture suggests that the polynomial Hg(x) should only
have terms of degree in between 4g−3+n and 2g−3+n. Our methods
cannot at this time prove this conjecture (although the second author
has recently proved this using the infinite wedge, see [Joh]) because it
does not hold graph by graph: some graphs contribute monomials of
degree lower than 2g−3+n, which remarkably cancel between graphs.
Example 3.12 illustrates this situation.

Example 3.12. Let g = 2 and n = 2. The conjecture states that in
H2(x1, x2) there are no monomials of degree lower 3.

Figure 3.12 shows all genus 2 directed x-graphs with x = (x1, x2).
There is always only one choice of vertex ordering. The automorphisms
of the second graph contribute a factor of 1

4
, the one of the third graph

a factor of 1
2
. The first contributes
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x2

i

x1 − i x1 − j

x1

x2

i

x1 − i x1 − j

j

x2

x1
x1 − i

x1

j

i

x1 − i − j

x1

j

x1 − i

i − j

Figure 4. All genus 2 directed (x1, x2)-graphs.

f1 =
x1
∑

i=0

i
∑

j=0

i · j · (i − j) · (x1 − i) · (x1 − j)

=
1

280
x7 −

1

60
x5 +

1

120
x3 +

1

210
x,

which has a monomial of degree 1.
The second and third contribute

f2 =
1

4
·

x1
∑

i=0

x1
∑

j=0

i · j · (x1 − i) · x1 · (x1 − j)

=
1

144
x7 −

1

72
x5 +

1

144
x3, resp.

f3 =
1

2
·

x1
∑

i=0

x1−i
∑

j=0

i · j · (x1 − i)2 · (x1 − i − j)

=
1

504
x7 −

1

90
x5 +

1

72
x3 −

1

210
x.

In total, we get

H2(x1, x2) = f1 + f2 + f3 =
3x7 − 10x5 + 7x3

240
,

and the degree 1-monomials that show up in the contributions from
two of the directed x-graphs cancel leaving a polynomial which has
monomials of degree 3 as lowest degree.
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4. Wall Crossing: strategy of proof

This section contains an overview of our strategy of proof for The-
orem 1.5. It is largely informal and centered on examples. We first
illustrate the core idea of our construction in the simplified scenario of
a graph admitting only one cut (Section 4.1), then provide an outline
of the proof (4.2) and finally illustrate this strategy with a simple but
non-trivial example (4.3).

4.1. The Simple Cut Example.

Example 4.1. Let x = (x1, x2, x3, x4) and r = 6 (i.e. g = 2). Let
I = {1, 3}, and let c1 be an H-chamber next to the wall WI satisfying
x1 + x3 ≤ 0. c2 is the opposite H-chamber.

Figure 5 shows an x-graph Γ (with reference orientation) for which
the hyperplane arrangement AΓ(x) has a bad nontransversality at the
wall WI , and the hyperplane arrangements AΓ(x1) and AΓ(x2) over
points x1 and x2 on opposite sides of the wall. The nontransversality at
the wall consists of the three red hyperplanes meeting in codimension 2.
On one side of the wall, these three hyperplanes form a simplex which
vanishes when we hit the wall. We call it a vanishing F -chamber. A
new simplex reappears on the other side of the wall, called an appearing
F -chamber (see Definition 6.1). The directed x-graph corresponding
to the appearing chamber has flows from top to bottom, but none from
bottom to top, and so can only be realized when x1 + x3 ≥ 0, i.e. on
side “2” of the wall, or in c2. This gives a general criterion to see from
the graphs whether an F -chamber is vanishing/appearing or not (see
Lemma 6.6). The 6 neighboring chambers appear on both sides of the
wall. In the picture, the directions of the three red edges in each of
the bounded F -chambers is marked. Also, each bounded F -chamber is
labeled with a letter, and with its (signed) multiplicity.

We want to understand the contribution of Γ to the wall-crossing
P2(x2) − P1(x2). To understand the contribution to P2, we sum the
polynomial ϕA (weighted with sign and multiplicity) over the lattice
points in each of the chambers A, B, . . ., G. For the polynomial P1,
we have to play the same game with the chambers B′, . . ., H ′ on top,
however, we evaluate this polynomial now at the point x2 which is not
in c1 but in c2. Thus, we have to “carry” the chambers B′, . . . , H ′

over the wall, i.e. we need to interpret the region bounded e.g. by the
defining hyperplanes of B′ on the other side of the wall in terms of the
chambers A, . . . , G.
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i j x1 + x3 − i − j
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j
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Figure 5. An x-graph with reference orientations and
the hyperplane arrangements for two points on opposite
sides of a wall.
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We express each of the chambers B′, . . . , H ′ as a formal signed sum
of the chambers A, . . . , G. For example, C ′ on side 1 is bounded by

j ≥ 0, x1 − i − j ≥ 0, i ≥ 0.

The region that is described by these inequalities on side 2 is A + C.
The hyperplanes bounding simplex H ′ on side 1 bound A, preserving
orientation, hence H ′ = A (recall that we sum the polynomial ϕA over
the lattice points of H ′; we need to switch the summation index twice
since x1 + x3 ≤ 0 on side 2, getting a factor of (−1)2).

Altogether, the result of carrying F -chambers on side 1 to side 2 can
be expressed as follows:

H ′ → A B′ → B − A C ′ → C + A D′ → D − A

E ′ → E + A F ′ → F − A G′ → G + A.

In Section 5 we see that we can view the bounded chambers as a basis
of a certain relative homology group of the hyperplane arrangement,
and the map just described is the Gauss-Manin connection written in
these bases.

Observe that the only chamber on side 1 which contains B in its
support when interpreted on side 2 is B′, and it contributes positively.
Thus, in the difference P2(x2)−P1(x2) the two summands

∑

B 1 ·ϕA−
∑

B 1 · ϕA cancel. In fact, all the contributions from chambers which
are not appearing chambers cancel, and we only have the contribution
from A:

(7)

∑

A

(

5 − (−5) + 1 − (−2) + 2 − (−1) + 2 − (−2)
)

ϕA

=
∑

A

20 · ϕA =
∑

A

(

6

3

)

· ϕA.

If we cut the graph Γ at the three edges, then the upper part Γu

contributes to the Hurwitz number H3(x1, x3,−i,−j,−x1 −x3 + i + j)
and the lower part Γl to H3(x2, x4, i, j,−x2 − x4 − i − j). In fact
the pair (Γu, Γl) appears 6 times in the product of Hurwitz numbers,
corresponding to all ways of labelling the three cut edges. Then note
that to compute the pair of Hurwitz numbers we must sum over all
i ≥ 0, j ≥ 0 and x1 + x3 − i − j ≥ 0 (the simplex A) the product of
internal edges of the two connected components times the connecting
edges, hence just the polynomial ϕA. Then the contribution to the
right hand side of Equation (1) by pair of graphs that glue to Γ is
6
∑

A

(

6
3

)

· ϕA

6
, i.e. Equation (7).

We want to take this a little further, and interpret this equality geo-
metrically. The factor

(

6
3

)

counts the ways to merge two orderings of the
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vertices of Γ1 and Γ2 to a total ordering of all vertices. Then re-gluing
the cut graphs with the extra data of this merging gives a bijection
with the directed, vertex-ordered graphs, contributing to Equation (7).

4.2. Outline of Proof. Step 1: the left hand side. For x ∈ c2,
given an x-graph Γ and an F -chamber A, the contribution of Γ with
edges directed according to the chamber A to P2(x) is obtained by
summing the polynomial m(A)ϕA over A. The polynomial P1(x) is
obtained by interpreting in the flow space over x ∈ c2 the sums and
bounds used to compute the Hurwitz numbers in c1; thus the graph
corresponding to A can contribute to P1(x): for each chamber A′

in A(c1), consider all hyperplanes that bound A′ and trace them in
A(c2): if such hyperplanes bound a set of F -chambers including A,
then assign A′ an appropriate sign. Otherwise let A′ count 0. Call
this coefficient 〈A′,∇∗

Γ,12(A)〉; this choice of notation is explained in
Section 5. Then the contribution of (Γ, A) to P1 is obtained by sum-
ming the polynomial ϕA over A and then multiplying by the number
(
∑

A′ m(A′)〈A′,∇∗
Γ,12(A)〉

)

.
Step 2: the right hand side and the heavy formula. We

again focus on the contribution by the graph Γ directed as in the F -
chamber A, and declare a certain subset of edges of Γ to be cuttable.
Ideally we would like to consider all possible ways of cutting Γ along
cuttable edges into at most three components. We observe that by
doing so we recover all graphs contributing to the products of Hurwitz
numbers on the RHS of (1) that glue back to Γ. The polynomial
contribution from each cutting of Γ is always the same (summing ϕA

over A), so we would like to show that the signed multiplicity is exactly
the one computed on the LHS because of a natural bijection between
regluings of the cut graphs (where we allow to reorient the cut edges)
and the orientations of Γ corresponding to either A or chambers A′

such that 〈A′,∇∗
Γ,12(A)〉 6= 0. Alas, cutting the graph into only three

connected components doesn’t give us enough flexibility to create such
a correspondence. Therefore we allow to cut the graphs in all possible
legal (see Definition 6.4) ways along cuttable edges, and then organize
the inclusion-exclusion process in terms of the number of connected
components we have cut the graph into. We therefore wish to prove a
wall crossing formula in terms of products of arbitrarily many Hurwitz
numbers, that we call the heavy formula.
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Ht1
(

µ(0,1), µ(1,2) + µ(1,3)
)

Hs(xI , λ)
xI,0

xI,∞

xIc,∞
xIc,0 Hu(xIc , −η)

µ(1,3)

µ(3,4) = η

µ(0,2)

µ(2,3)

µ(0,1) = λ − µ(0,2)

µ(1,2)

Ht2
(

µ(0,2) + µ(1,2), µ(2,3)
)

Ht3
(

µ(1,3) + µ(2,3), µ(3,4)
)

Figure 6. The data denoted by ⋆ in the heavy formula,
Theorem 4.2

Theorem 4.2 (Heavy Formula).

WCr
I (x) =

∞
∑

N=0

∑

s+(
∑N

m=1 tm)+u=r

|λ|=|η|=d
data in ⋆

(

(−1)N ·

(

r

s, t1, . . . , tN , u

)

·(8)

∏

µ
(i,j)
k

∏

ℓ(µ(i,j))!
· Hs(xI , λ) ·

( N
∏

m=1

H tm(⋆)

)

· Hu(xIc ,−η)

)

The data denoted by ⋆ is illlustrated in Figure 6: it consists in
disconnecting a graph with the right numerical invariants in all possible
legal ways, where legal means that the graph obtained by shrinking all
connected components to vertices and maintaining the cut edges as

edges has no directed cycles. The µ
(i,j)
k denote the partitions of weights

of the edges connecting the i-th to the j-th connected component.
The equivalence of Theorem 4.2 to Theorem 1.5 follows from an

inclusion-exclusion argument in Lemma 8.3.
Step 3: from chambers to cones. We wish to prove that the
multiplicities coming from the Gauss-Manin connection and from the
inclusion-exclusion process from the heavy formula match by giving a
geometric correspondence between various decorated graphs appearing
on the left and right hand side of the formulas. While this is simple
“case by case”, it is hard to systematize this check, especially because
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we don’t have an efficient expression for the Gauss-Manin connection
on the natural basis given by individual chambers. The key observation
is that any chamber can be obtained as a linear combination of cones.
A cone corresponds to a partial orientation of Γ, such that cutting along
the oriented edges does not disconnect the ends of Γ; we go further and
use this as the definition of a “combinatorial cone” in the space OΓ of
all possible orientations of edges of Γ. There is a natural lift of a cone to
a combinatorial cone, defining a section from the space of F -chambers
over c1 to OΓ. The Gauss-Manin connection acts on combinatorial
cones as the identity, and it therefore factors as the composition of the
section mentioned above with the natural projection to F -chambers
over c2. We prove Theorem 4.2 by defining a “graph connection” in
terms of cuttings and regluings of graphs (see 7.2), that on the one hand
acts like the identity on combinatorial cones (and hence agrees with the
geometric Gauss-Manin connection), on the other is a natural extension
of the inclusion-exclusion in the right hand side of the heavy formula
(see 7.3). In this purely combinatorial cutting and gluing process one
introduces graphs with sinks or sources, or that lie on the wrong side of
the wall. We conclude the proof by checking (Lemmas 7.4, 7.5 and 7.6)
that such non-geometric regluings give vanishing contributions, hence
this extension recovers the original inclusion-exclusion multiplicity.

4.3. Following the proof in one example. Step 1: the left hand

side.

Example 4.3. Refer to Example 2.7, where we assumed that 0 >
x2 + x4. The topology of AΓ(x) changes if 0 = x2 + x4. Fix the wall
W{2,4} and let c1 and c2 be two adjacent H-chambers. Assume that in
c1, we have 0 < x2 + x4, and in c2, we have x2 + x4 < 0. Figure 7
shows the hyperplane arrangements AΓ(x1) and AΓ(x2) for two points
x1 ∈ c1 and x2 ∈ c2. The hyperplanes appear with their defining
equations. The bounded F -chambers are labeled with letters. Since
the edge with weight x1 + x3 gives the inequality x1 + x3 > 0, which
holds in c2 but not on c1, every F -chamber on the right is an appearing
chamber, and every F -chamber on the left is vanishing (see Definition
6.1 and Remark 6.2). This is also seen from the corresponding graphs:
since over c2 the top most interior edge points down, there is a flow
from top to bottom (see Lemma 6.6). Figure 8 shows the directed
x-graphs corresponding to some of the F -chambers.

As in Example 4.1, we pick an appearing F -chamber on the right,
e.g. A, and ask ourselves what F -chambers on the left contain it in
their support when carried over the wall (this is what we formally
define as ∇∗

Γ,12(A) in Definition 5.1). To do this, we take chambers on
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i = 0

j = x2

j = −x4

j = 0

E

F

G

D′

i + j = x2
i + j = −x4

i = 0

j = −x4

j = x2

j = 0

i + j = −x4

A

C

D

B

i + j = x2

AΓ(x1) AΓ(x2)

Figure 7. The hyperplane arrangements AΓ(x1) and
AΓ(x2) for two points x1 and x2 on opposite sides of a
wall.

D D′

A E

Figure 8. The directed x-graphs corresponding to the
F -chambers B, E, F , G and H of Figure 7.
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Figure 9. The directed x-graph ΓB from 4.3 and its
poset of {1, 3}-cuts. Letters in the boxes correspond to
cut edges.

the left, e.g. E, and carry them over, i.e. we first determine ∇Γ,12(E).
When we carry E over, we get B and keep the orientation, similarly
to the vanishing chamber H ′ in Example 4.1. In the same way, we get
∇Γ,12(F ) = A. If we interpret the bounds of G in AΓ(c2), we obtain
A+B+C but with reversed orientation. Thus ∇Γ,12(G) = −A−B−C.
Finally, H becomes D + B + C. Thus, ∇∗

Γ,12(A) = F −G, ∇∗
Γ,12(B) =

E − G + H , ∇∗
Γ,12(C) = −G + H and ∇∗

Γ,12(D) = H .

Step 2: the right hand side and the heavy formula. Now we
want to establish a bijection between regluings of a cut graph ΓA and
graphs in chambers A′ with 〈A′,∇∗

Γ,12(A)〉 6= 0.

Remark 4.4. The precise statement for this bijection is in Lemma 6.12.
Roughly, this lemma states that the number 〈A′,∇∗

Γ,12(A)〉 equals the
weighted number of ways to cut the graph ΓA and reglue it to the graph
ΓA′. Each cut is weighted by its rank in a poset of cuts (see 6.4).

Example 4.5. We preview the formal definition of a cut with the
example of the poset of {1, 3}-cuts of the graph ΓB, see Figure 9.

Now we demonstrate the statement of Lemma 6.12. Consider the
appearing chamber B in Example 4.3. We determined that ∇∗

Γ,12(B) =
E −G + H . Here are some checks for the weighted number of ways to
cut ΓB and reglue it to a given graph:

ΓE: to get ΓE from a cut of ΓB, we have to turn around the edges a, b,
c, d, e and f . So only cuts that cut all of these edges contribute
to E. There is only one such cut, the maximal cut. Its rank
is 4. We have to turn around all the edges we cut, which is 5
edges. So we get

(−1)4 · (−1)6 = 1 = 〈E,∇∗
Γ,12(B)〉.

ΓG: to get ΓG, we need to turn around a, b, c and e. There are 3 cuts
that cut these edges, namely abcde and abcef (of rank 3), and
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A

B

U1

U2

U3

Figure 10. A cone

abcdef of rank 4. Each time, we have 4 edges to turn around.
We get:

((−1)3 + (−1)3 + (−1)4) · (−1)4 = −1 = 〈G,∇∗
Γ,12(B)〉.

ΓH: to get ΓH , we have to turn around the edges a, b and e. The cuts
that cut these edges are: abcde and abcef of rank 3 and abcdef
of rank 4. We have to turn around 3 edges. So we get:

((−1)3 + (−1)3 + (−1)4) · (−1)3 = 1 = 〈H,∇∗
Γ,12(B)〉.

ΓF : to get ΓF , we have to turn around a, b, c, e and f . The cuts that
cut these edges are abcef of rank 3 and abcdef of rank 4. Thus
we get

((−1)3 + (−1)4) · (−1)4 = 0 = 〈F,∇∗
Γ,12(B)〉.

Step 3: from chambers to cones. To prove our bijection be-
tween cutting and regluing of graphs and Gauss-Manin contributions
of chambers in Lemma 6.12, we introduce cones.

Example 4.6. Figure 10 shows the cone given by:

j − x2 ≥ 0 and − x4 − i − j ≥ 0

in Example 4.3. Combinatorially, the cone requires two edges to have
a certain orientation, as depicted in Figure 11. The corresponding
combinatorial cone (defined in Section 7) is the set of all graphs for
which these two edges have the required orientation, and consists of
25 = 32 oriented graphs. However, 25 of these graphs have a source or
sink, as shown in Figure 12. The picture also shows two graphs that
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x1 + x3

−x4 − j

−x4 − i − j

j − x2

j

i

x2

x1

j + i − x2

x3

x4

Figure 11. The orientations forced by a cone

1 with a source 2 with a source

2 on the other side of the wall

16 with a sink 4 with a source 2 with a sink

Figure 12. A combinatorial cone

don’t appear in Figure 10, as they correspond to vanishing chambers.
Finally, we have 5 graphs belonging to the cone in Figure 10.

Now transport the cone to side one. On this side, the cone consists
of only one F -chamber, namely the chamber corresponding to the same
graph (up to reversing the orientation of the edge x1 + x3) as chamber
U1. We call it U ′

1. Since the Gauss-Manin connection preserves cones
(see Section 7), the sum of all F -chambers in the cone c1 that map to
each F -chamber in the cone in c2 is one. This is trivially true in this
example, since there is only one chamber in the cone on the left, and
it maps to each chamber in the cone on the right. We define a graph
connection in terms of cutting and regluing of graphs (see Definition
7.2), and show in 7.3 that it acts like the Gauss-Manin connection as
the identity on cones. We verify this statement for the example:

• for a chamber inside the cone in c2, e.g. B: the number of ways
to cut ΓB and reglue it so that we stay inside the cone is one.
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ΓC ΓB

Figure 13. Colored edges for ΓC

• for a chamber outside the cone in c2, e.g. C: the number of
ways to cut ΓC and reglue it so that we stay inside the cone in
zero.

Remember that the cone fixes the orientation of two edges. In Figure
13, we use different colors for the edges: blue if it is not an edge oriented
by the cone, green if it is an edge oriented as prescribed by the cone,
red if it points in the wrong direction.

Each nontrivial cut of ΓB e.g. has to cut a blue edge, since the cone
edges do not disconnect the ends of the graph. Fix a nontrivial cut,
and let e be a blue edge contained in this cut. Now we can pair up
regluings in the cone where we keep the orientation of e with regluings
where we reverse the orientation of e (and which is also in the cone,
since it is a blue edge). The contribution from each pair is 0 since the
two graphs differ by the orientation of one edge. Thus the number of
ways to nontrivially cut ΓB and stay inside the cone is 0. Since we
also have the empty cut, we can altogether cut and reglue exactly once
and stay inside the cone. For ΓC , essentially the same argument works,
only now the empty cut is not a cut which allows us to stay inside the
cone, since we have to reverse the red edge.

5. Moving hyperplanes and the Gauss-Manin connection

The bounded chambers of the hyperplane arrangement AΓ(x) can be
viewed as a basis for the relative homology group Hg(FΓ(x),AΓ(x)),
that is:

R[BCΓ(x)] = Hg(FΓ(x),AΓ(x)).

Complexifying FΓ(x) and the arrangement AC

Γ(x), we still have that
R[BCΓ(x)] ∼= Hg(FΓ(x) ⊗ C,AC

Γ(x)), as the map sending x + iy to
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x+(1−t)iy is a deformation retract of the pair (FΓ(x)⊗C,AC

Γ(x)) to the
pair (FΓ(x),AΓ(x)). Then we can allow x to take on complex values,
giving a complex family of hyperplane arrangements, whose real part
is our original family of hyperplane arrangements. The benefit of this
maneuver is that now the discriminant D is a complex codimension 1
subvariety, and so its complement Cn \ D is path connected.

The spaces R[BCΓ(x)] form a vector bundle over Cn \ D, which we
denote by BC. As a homological bundle, this bundle has a natural
flat connection known as the Gauss-Manin connection [Voi02]. In fact,
in this case the connection is actually trivial [Var87], and so gives a
canonical identification of all the BCΓ(x). For real x within one H-
chamber, this is the obvious identification; for real x in different H-
chambers, this is the identification illustrated in Step 1 of the outline
of the proof (Section 4.2) and in Examples 4.1 and 4.3.

Definition 5.1. Given two H-chambers c1 and c2, and an x-graph Γ,

∇Γ,12 : R[BCΓ(x1)] → R[BCΓ(x2)]

denotes the Gauss-Manin connection described above. We give the
spaces R[BCΓ(x1)] and R[BCΓ(x2)] inner products 〈·, ·〉1, 〈·, ·〉2 by declar-
ing chambers to be an orthonormal basis. We denote by ∇∗

Γ,12 the
adjoint of the Gauss-Manin connection:

〈∇Γ,12(A), B′〉2 = 〈A,∇∗
Γ,12(B

′)〉1

Remark 5.2. Note that the Gauss-Manin connection and its adjoint
contain equivalent information, namely:

∇Γ,12(A): the vector in R[BCΓ(x2)] that corresponds to F -chambers
bounded by the equations defining A in c1.

∇∗
Γ,12(B

′): the vector of F -chambers in R[BCΓ(x1)] whose image via
the Gauss-Manin connection contains B′.

Note that the chambers in the vectors above appear with a sign corre-
sponding to preserving/reversing orientations.

Remark 5.3. For our purposes it is enough to understand ∇Γ,12 when
c1 and c2 are two H-chambers adjacent across the wall W (I).

For a vector v in a R[BCΓ(y)], for some fixed y, the Gauss-Manin
connection gives a covariant constant section

v : Cn \ D → BC.

Given a family of g-forms ω(x) ∈ Hg(FΓ(x)) that varies holomorphi-
cally in x, then the pointwise pairing

〈v, ω〉 =

∫

v

ω
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produces a holomorphic function on Cn \ D.
The continuous analogue of our scenario is the following: the family

of forms is given by the family of polynomials ϕA, which we want
to integrate over a formal sum of bounded F -chambers. Performing
integration gives naturally a polynomial function in the real H-chamber
where the topology of the F -chambers does not change. When the
topology changes, the Gauss-Manin connection tells us that we can
keep using the integrating polynomial if we adjust the chambers we’re
integrating over, and gives the precise prescription for this adjustment.

Remark 5.4. Gauss-Manin connections are typically used with contin-
uous structures. Luckily, since our polynomial ϕA vanishes on the
boundary of each F -chamber, we don’t have to deal with the subtleties
that arise when dealing with a discrete sum over lattice points (see the
discussion in the introduction).

We now interpret the wall crossing in terms of the Gauss-Manin
connection.
From Wall Crossing to Gauss-Manin: the contribution of the x-
graph Γ to the wall crossing (:=WC[Γ]) is:

WC[Γ] =
∑

A∈BCΓ(x2)

WC[Γ, A]

(

∑

Λ∩A

ϕA

)

,

where

(9) WC[Γ, A] = sign(A)



m(A) −
∑

B∈BCΓ(x1)

m(B)〈B,∇∗
Γ,12(A)〉



 .

6. Cuts

Since our hyperplane arrangements have a combinatorial interpreta-
tion in terms of graphs, we wish to describe the Gauss-Manin connec-
tion directly in terms of the combinatorics of the graphs. In Section
6.3, we state Lemma 6.12, which accomplishes this, then show how the
Heavy formula (Theorem 4.2) follows from this lemma. The proof of
Lemma 6.12 is postponed until Section 7.

Lemma 6.12 is stated in terms of the poset of cuts, which we intro-
duce in Section 6.1, and identify with the face lattice of a certain cone
in Section 6.2.

Throughout this section fix a wall WI and an x-graph Γ such that
its hyperplane arrangement AΓ(x) in the flow space FΓ(x) has a bad
nontransversality for a point x at the wall. Let c1 and c2 be two H-
chambers on opposite sides of the wall; by our conventions, c2 is the
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chamber satisfying
∑

i∈I xi > 0. Anytime we give a subscript to x, we
assume the point lies in the corresponding H-chamber.

6.1. The poset of cuts.

Definition 6.1. Let A be an F -chamber of AΓ(c2). If the inequalities
that define A define an empty set in AΓ(c1), then we call A an appearing
F -chamber. Analogously, we call F -chambers in AΓ(x1) that do not
exist in AΓ(x2) vanishing F -chambers.

Remark 6.2. If over points of the wall the whole flow space is contained
in a coordinate hyperplane (FΓ(x) ⊆ {ei = 0}), then all F -chambers
in c2 are appearing chambers.

Definition 6.3. For Γ a directed graph, and E a subset of edges of Γ,
we denote by Γ/E the directed graph obtained by contracting all edges
of E. That is, the vertices of Γ/E are the connected components of
Γ \ Ec, and the edges of Γ/E are Ec.

Note that Γ/E can have cycles and multiple edges.

Definition 6.4. For a directed x-graph ΓA and a subset I ⊂ {1, . . . , n},
the set CutsI(ΓA) of I-cuts of ΓA consists of subsets C of the edges of
ΓA so that either the subset is empty (we say, the empty cut) or

(1) ΓA \ C is disconnected.
(2) The ends of ΓA lie on precisely two components of ΓA \ C; one

containing all ends in I, the other Ic.
(3) The directed graph Γ/Cc is acyclic and has the (vertex corre-

sponding to the) component containing I as an initial element
and that containing Ic as a final element.

The set CutsI(ΓA) is given the structure of a poset by inclusion of cut
edges, called poset of I-cuts. In Corollary 6.10 we show it is ranked
by the number of connected components of the graph with the edges
in C removed minus one (so that the empty cut has rank zero). The
minimal nonempty elements of the poset CutsI(ΓA) are the simple I-
cuts of Definition 3.6. The collection of all edges belonging to some
I-cut is the set of cuttable edges.

Example 6.5. Remember the graph ΓB from Example 4.3. In Exam-
ple 4.5, we depicted its poset of I-cuts for I = {1, 3}. In Figure 14,
we demonstrate that cutting the edges labeled b, c, d and e is indeed
an I-cut (it appears in the poset), while cutting the edges b, c and d is
not, since the edge d leads to a cycle starting and ending at the bottom
connected component.



36 RENZO CAVALIERI, PAUL JOHNSON, AND HANNAH MARKWIG

d

a

c

f

b

e
d

g
b c d e b c

Figure 14. The graph ΓB from 4.3 and two cuts.

Lemma 6.6. An F -chamber A in AΓ(x2) is an appearing chamber if
and only if the directed x-graph ΓA admits an I-cut.

Proof. Assume ΓA admits an I-cut C. The edges in C are oriented such
that they point from the connected component of Γ \C containing the
ends I to the connected component containing Ic. That means there
is a flow from the ends I to the ends Ic. Such a flow can only exist if
∑

i∈I xi >
∑

i∈Ic xi, and this inequality does not hold in c1.
Vice versa, if A is an appearing chamber, a subset of the hyperplanes

that bound A form a bad nontransversality for a point y on the wall.
Make this nontransversality maximal by adding hyperplanes (not nec-
essarily bounding A) containing the non-transverse intersection. Let C
be the set of edges corresponding to these hyperplanes.

Lemma 3.8 shows that that ΓA/Cc has a vertex to which all ends in
I are contracted (call it vI), a vertex with all ends in Ic and possibly
other vertices. The condition that A is an appearing chamber implies
that ΓA/Cc has no directed cycles containing both vI and vIc . We can
therefore further contract edges in ΓA/Cc that are contained in some
directed cycle (this amounts to shrinking C to a smaller subset C ′) to
obtain an acyclic graph and be assured that we have not identified our
two special vertices. The fact that A ∈ Ac2 and A 6∈ Ac1 finally implies
that vI is an initial element and vIc is terminal. �

6.2. Geometrization.

Definition 6.7. Consider a directed x-graph ΓA that admits an I-
cut. Form a new directed graph Γ′

A by contracting all vertices above
the maximal cut to one vertex, and similarly all vertices below the
maximal cut to another vertex. Then Γ′

A corresponds to a chamber in
the graphical arrangement of Γ′, defined as the set of v ∈ im(d) (the
image of d is the subset of RV (Γ′) so that the sum of the coordinates are
zero) satisfying inequalities δe(v)(:= the difference of the coordinates
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of v for the tail and source vertices of the edge e) ≥ 0 for all edges
e ∈ Γ′.

For C ∈ CutsI(ΓA) we define a subset XC of this cone by

XC =

{

v ∈ im(d) ⊂ RV (Γ′)
∣

∣

∣

δe(v) > 0 e ∈ C
δe(v) = 0 e /∈ C

}

.

Furthermore, for a subset S ⊂ CutsI(ΓA), we use

XS =
⋃

C∈S

XC .

Note that with this notation, the entire cone is XCutsI(ΓA), and the
vertex of the cone is X∅.

Definition 6.8. For any polyhedron P , we denote its lattice of faces
by L(P ).

The following lemma, suggested to us by Federico Ardila, allows us
to interpret our inclusion-exclusion type sums as Euler characteristics.

Lemma 6.9. The geometrization mapping C 7→ XC induces an iso-
morphism of posets:

CutsI(ΓA) ∼= L(XCutsI (ΓA)).

Proof. The elements of both posets are labeled by certain allowable
subsets of edges of the graph: for the poset of cuts CutsI(ΓA) these are
the cuts, and for the poset of faces L(XCutsI (ΓA)) these are the set of all
hyperplanes containing a given face. Since in both posets the ordering
is given by inclusion, it is enough to show that the allowable subsets of
edges for each poset agree.

The poset of cuts CutsI(ΓA) has been carefully discussed already,
so we now focus on the poset of faces L(XCutsI (ΓA)). Any subset S of
edges defines some face: intersect all of the hyperplanes corresponding
to edges not in S with the cone XCutsI(ΓA). S is not allowable if the
resulting face lies in additional hyperplanes corresponding to edges in
S; we now understand how this happens.

Suppose then that v0 = v∞ is such a hyperplane for the set S; that is,
v0 = v∞ is one of the hyperplanes contained in S, but the intersection
of the cone and all the hyperplanes not in S is contained in v0 = v∞.
Since all of the hyperplane equations are of the form vi = vj and all of
the inequalities defining the cone are of the form vi ≥ vj , the only way
to have such an equality forced is to have a cycle of inequalities

v0 ≻ v1 ≻ · · · ≻ vk ≻ v∞ ≻ w1 ≻ · · · ≻ wℓ ≻ v0,
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Figure 15. Shrinking everything except the edges of
the maximal cut to a vertex.

where vi ≻ vj means either vi = vj is an edge not in S or vi = vj is
an edge in S and vi ≥ vj is an inequality defining the cone XCutsI(ΓA).
But this is exactly saying there is a cycle in the induced graph of
components ΓA/Sc; hence the allowable sets of edges in each poset
agree.

Similarly, if a set of edges S is not a cut, then there is a directed
cycle in the graph ΓA/Sc, and the corresponding inequalities force an
equality.

From the construction of the graph Γ′
A it is clear that a cut must

separate the top from the bottom.
�

Corollary 6.10. The poset CutsI(ΓA) is ranked, and

rk(C) = the number of components of Γ \ C − 1.

Proof. The poset L(XCutsI(ΓA)) is ranked, and the rank is the dimen-
sion. From the definition, it is clear that XC has dimension equal to
the number of components of Γ \ C, minus one from restricting to the
image of d. The statement then follows immediately from Lemma 6.9.

�

Example 6.11. Return to Example 4.5. Figure 15 shows the graph
Γ′

B where we shrink everything except the maximal {1, 3}-cut to a
vertex. We labeled the vertices of Γ′

B. These are the coordinates of
RVΓ′

B
. The cone XCutsI(ΓB) is given by the inequalities of the edges,

i.e. the edge a gives v1 ≥ v2, b gives v2 ≥ v3 etc. Altogether, we get
v1 ≥ v2 ≥ v3 ≥ v4 ≥ v5.

The face lattice of this cone is shown in Figure 16. For a proper face,
we turn some of the above inequalities into equalities. Below these
equalities, we write down the letters of the edges in S corresponding
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v1 = v2 = v3 = v4 = v5

∅

XC(I)

abcdef

v1 = v2

bcdef
v3 = v4

abcef
v2 = v3

acdef
v4 = v5

abcde

v3 = v4 = v5
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v2 = v3

v4 = v5
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v2 = v3 = v4

aef
v1 = v2

v4 = v5

bcde

v1 = v2 = v3

cdef

v2 = v3 = v4 = v5

a
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v3 = v4 = v5

bc

v1 = v2 = v3

v4 = v5

cde

v1 = v2 = v3 = v4

ef

v1 = v2

v3 = v4

bcef

Figure 16. The face lattice of XCutsI(ΓB).

to the inequalities that we did not turn into equalities. Notice that the
lattice is opposite to the poset of cuts in Example 4.5.

6.3. Combinatorial formula for the Gauss-Manin connection.

The following lemma is the key step connecting the wall crossing ex-
pressed through the Gauss-Manin connection with the inclusion-ex-
clusion of products of Hurwitz numbers.

Lemma 6.12. Let A be a (not necessarily bounded) F -chamber in
AΓ(x2), and ΓA be the corresponding directed x-graph. For E a sub-
set of the cuttable edges of ΓA, consider the graph ΓA,E obtained from
ΓA by reversing the edges in E. If it corresponds to an F -chamber in
AΓ(x1), denote this chamber AE. Then:

∇∗
Γ,12(A) =

∑

C∈CutsI(ΓA)

(−1)rk(C)
∑

E⊂C

(−1)|E|AE .

If ΓA,E has sinks or sources, or if it corresponds to an F -chamber in
AΓ(x2) other than A, then

∑

C∈CutsI(ΓA) s.t. E⊆C

(−1)rk(C) = 0.
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Remark 6.13. In case A is not an appearing chamber, then CutsI(ΓA)
consists only of the empty cut, and ∇∗

Γ,12(A) = A, hence A does not
contribute to the wall crossing.

Remark 6.14. Note that AE might not be a bounded chamber. Part
of the lemma is that these terms contribute zero to the inclusion-
exclusion.

For an example see 4.5. We prove Lemma 6.12 in Section 7. Assum-
ing the lemma, we now prove Theorem 4.2.
From Lemma 6.12 to Theorem 4.2.

For an F -chamber A, recall that m(A) counts the number of possible
vertex orderings (compatible with the edges directions) for a directed
x-graph ΓA. We can interpret expression (9) as follows: let O(Γ) denote
the set of directed x-graphs Γ(d, o) with ordered vertices that project
to Γ when forgetting the extra structure. For Γ(d, o) ∈ O(Γ), denote
by AΓ(d) the F -chamber identified by the edges directions of Γ(d, o).
Then:

WC[Γ, A]sign(A) =
∑

Γ(d,o)∈O(Γ)s.t.AΓ(d)∈BCΓ(x2)

〈AΓ(d), A〉

−
∑

Γ(d,o)∈O(Γ)s.t.AΓ(d)∈BCΓ(x1)

〈AΓ(d),∇
∗
Γ,12(A)〉,

which is nonzero only if A is an appearing chamber.
We now turn to the right hand side of our heavy formula (8), which

is an inclusion-exclusion of products of Hurwitz numbers, and it can be
computed in terms of tuples of (directed, vertex-ordered) graphs that
glue to a graph of genus g with the appropriate number of ends. We
isolate the contribution (:=H [Γ]) by tuples of graphs that reglue to a
fixed Γ. Note that, up a numerical coefficient, the polynomial that we
sum over appropriate regions is just ϕA, hence:

H [Γ] =
∑

A∈BCΓ(x2)

H [Γ, A]

(

∑

Λ∩A

ϕA

)

.

Every tuple comes weighted with a multinomial coefficient, correspond-
ing to a merging m of the orderings of the connected components to
a total order of all vertices. Each such merging produces a graph
Γ(d, o) ∈ O(Γ) by gluing appropriately the ends of the N + 2 con-
nected graphs and orienting such edges according to the total order
induced by the merging. We can express the contribution to the right
hand side of our wall crossing formula by tuples of graphs that reglue
to Γ(d, o). We denote by (γ1, . . . , γN+2, m | A) such a tuple with
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the extra condition that the “bounds of summation” of the tuple of
graphs contain the chamber A (which happens precisely if AΓ(d) = A
or AΓ(d) = B ∈ BCΓ(x1) with 〈B,∇∗

Γ,12(A)〉 6= 0). Then:

H [Γ, A] =
∑

Γ(d,o)∈O(Γ)

sign(AΓ(d))
∑

N≥0

(−1)N
∑

(γ1,...,γN+2,m|A)

1
∏

η∈⋆ ℓ(η)!
,

where ⋆ is as in Figure 6. If we forget the order of the ends to glue,
each tuple (γ1, . . . , γN+2, m) appears in the product of Hurwitz numbers
∏

η∈⋆ ℓ(η)! times (because ends are labeled in our definition of Hurwitz

numbers), and the combinatorial factor just cancels such overcounting.
Finally, we need to analyze for what (γ1, . . . , γN+2, m) we sum over a

chamber A. This happens precisely when (γ1, . . . , γN+2) corresponds to
a nonempty I-cut of ΓA. In particular it follows that A is an appearing
chamber, since otherwise ΓA would not allow nonempty I-cuts (see 6.6).
Observing that N + 1 = rk(C) and that sign(AΓ(d)) = sign(A) · (−1)|E|

we have:

H [Γ(d, o), A]sign(A) = −
∑

C∈CutsΓA
(I)\{∅} s.t. E⊆C

(−1)rk(C)+|E|,

where H [Γ(d, o), A] denotes the summand corresponding to Γ(d, o) in
H [Γ, A] and E denotes the set of edges for which the orientation differs
in ΓA and Γ(d, o). Now we observe:

(1) If AΓ(d) = A then E = ∅. It follows from Lemma 6.9 that the
ranked sum of all cuts (including the empty cut) is 0, since it is
the Euler characteristic of a cone. Since the rank of the empty
cut is 0 we have H [Γ̃, A]sign(A) = 1.

(2) If AΓ(d) 6= A is in ∈ A(x2) or if Γ(d, o) has sinks or sources, then
H [Γ(d, o), A]sign(A) = 0 by the second part of Lemma 6.12.

(3) If AΓ(d) ∈ A(x1), then E 6= ∅ since A is an appearing chamber
and does not exist in A(x1). Thus any cut which contains E is
not the empty cut and therefore we can include the empty cut
in the sum on the right hand side without changing the sum.
Then H [Γ(d, o), A]sign(A) = −〈AΓ(d),∇∗

12(A)〉 by the first part
of Lemma 6.12.

We have thus shown that:

WC[Γ, A] = H [Γ, A]

and hence that Theorem 4.2 follows from Lemma 6.12.

Remark 6.15. In our wall crossing formulas Equations (8) and (1), we
sum Hurwitz numbers over many different values. For the “middle”
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Hurwitz numbers in the expression, these values do not lie in a fixed
Hurwitz chamber, so we are not summing a polynomial. However, the
left and right Hurwitz numbers (e.g. from Equation (8) the Hurwitz
numbers Hs(xI , λ) and Hu(xIc ,−η)) lie in a single chamber, deter-
mined the chambers in the original problem:

We cross a wall xI = 0 and work on the side where xI < 0. If
Hs(xI ,y) did take values in different walls, we would have xK +yJ = 0
for some x in our chamber and K ⊂ I and some possible choice of y

and J . The sets K and J cannot be empty, as y is strictly positive and
x lies in the interior of a Hurwitz chamber.

Further since y positive, this would give xK < 0 but xK + y > 0.
But y ≤ −xI , and so xK − xI = −xI\K > 0. Thus we have three
resonsances for x that we know which side x was on: xK < 0, xI\K < 0
and xK + xI\K = xI . By assumption, our chamber for x bordered this
last wall. But before we can cross this wall, we would have to cross
one of the other two walls xK or xI\K . Thus we are not adjacent to
the wall xI = 0, which is a contradiction.

7. Cones

One of the main insights of [Var87] is that while the Gauss-Manin
connection is complicated to write in terms of the bounded F -chambers,
things simplify when considering unbounded polyhedra. In particular
we focus on cones, which are preserved by the Gauss-Manin connection.

The Gauss-Manin connection naturally extends to

∇Γ,12 : R[Ch(AΓ(x1))] → R[Ch(AΓ(x2))].

By a cone K ⊆ FΓ, we mean a region bounded by hyperplanes Hi, i ∈ I
so that ∩Hi 6= ∅ for all x. For c an H-chamber, we use

K(c) ∈ Z[Ch(AΓ(c))]

to denote the sum of all the chambers in K. Cones are preserved by
the Gauss-Manin connection: ∇Γ,12K(c1) = K(c2). Furthermore, cones
generate Z[Ch(AΓ(x))]. Since our formula from Lemma 6.12 for the
Gauss-Manin connection applies to unbounded chambers, we can prove
it by showing that it preserves cones.

A cone K can be labeled by a partial orientation P of Γ: each hy-
perplane Hi defining K gives an edge ei ∈ Γ; the orientation of ei is
determined by which side of Hi K lies on. This labeling is not nec-
essarily unique. For instance, suppose that e1, e2, e3 are three edges
bordering a vertex v, and Hi are the corresponding hyperplanes. Then
the Hi split FΓ(x) into six cones, intersecting in the linear space ∩Hi.
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Each of these cones may be indexed by a partial ordering by only two
of the ei, but could also be indexed by an ordering of all three edges.

Any partial orientation P corresponds to some (perhaps zero) ele-
ments of Z[Ch(AΓ(x))]. The first step is to understand which partial
orientations P of Γ correspond to cones.

Lemma 7.1. Let P be a partial orientation of Γ, with E the set of
oriented edges. Then P defines a cone if and only if all ends of Γ lie
on the same component of Γ \ E.

Proof. Let ei, i ∈ I be the edges of E, and Hi the corresponding hy-
perplanes. For P to define a cone, the only property we need is that

∩i∈IHi 6= ∅.

However, ∩Hi can be understood as the space of flows on Γ\E. If all the
ends of Γ lie on one component, then clearly there are flows; however
if some component of Γ\E contains a proper subset ∅ 6= J 6= [n] of the
ends, then the balancing condition implies

∑

j∈J xj = 0, which holds
only for x on the wall WJ and not in general. �

For P a partial ordering satisfying the conditions of Lemma 7.1, we
use KP to denote the corresponding cone.

In fact, our formula for the Gauss-Manin connection does not seem
to depend on the geometry at all, only on the directed graphs:

Definition 7.2. Let OΓ denote the set of all orientations of Γ. Then
the graph connection

∇O
Γ,12 : R[OΓ] → R[OΓ]

is defined as follows. Let A ∈ OΓ correspond to an oriented graph ΓA.
For E a subset of the cuttable edges of ΓA, denote by AE ∈ OΓ the
vector corresponding to having reversed the orientations of the edges
in E. Then

∇O∗
Γ,12(A) :=

∑

C∈CutsΓA
(I)

(−1)rk(C)
∑

E⊂C

(−1)|E|AE.

For any chamber c, the set OΓ is the disjoint union of those ori-
entations labeling geometric chambers of AΓ(c), and the rest of the
orientations, which we denote NGΓ(c), for nongeometric.

This induces splittings

R[OΓ] = R[Ch(AΓ(c))] ⊕ R[NGΓ(c)].

Given a partial orientation P defining a cone, we define the combi-
natorial cone KO

P to be the sum of all orientations of Γ that agree with
P.
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For an example of a combinatorial cone, see 4.6.
In the next lemma we show that the graph connection acts as the

identity on combinatorial cones.

Lemma 7.3. For any combinatorial cone KO
P , we have

∇O
Γ,12(K

O
P ) = KO

P .

Proof. From the definition of ∇O
Γ,12, we have:

〈∇O
Γ,12(K

O
P ), A〉 = 〈KO

P ,∇O∗
Γ,12(A)〉(10)

=
∑

C∈CutsΓA
(I)

(−1)rk(C)
∑

E⊂C

(−1)|E|〈KO
P , AE〉.

Consider a non-trivial cut C. As the oriented edges of P do not
disconnect the ends of Γ, but the edges in C do, there must be an edge
e ∈ C ∩ Pc.

It follows that
∑

E⊂C

(−1)|E|〈KO
P , AE〉 = 0,

as the set of all E ⊂ C can be partitioned into those which contain
e and those which don’t, with an obvious bijection between the two
sets. As e /∈ P, adding or subtracting e only changes the sign (−1)|E|,
and not 〈KO

P , AE〉, and hence the terms for E containing e cancel with
those for E not containing e.

The only remaining contribution is from the empty cut, and hence
equation (10) simplifies to

〈∇O
Γ,12(K

O
P ), A〉 = 〈KO

P , A〉,

which proves the lemma. �

For an example of the statement, see 4.6. Lemma 7.3 is very close in
form to Lemma 6.12, but the adjoint to the graph connection applied
to an F -chamber A ∈ BCΓ(x2) a priori contains contributions from
(chambers corresponding to) graphs with sources and sinks, and from
graphs that do not occur in BCΓ(x1). The next three lemmas prove
Theorem 6.12 by showing that these nongeometric chambers do not
actually appear in ∇O∗

Γ,12(A).

Lemma 7.4. Suppose A ∈ BCΓ(x2) and S ∈ OΓ corresponds to a graph
with a source or sink. Then 〈∇O

Γ,12(S), A〉 = 0.

Proof. From the definition,

〈∇O
Γ,12(S), A〉 =

∑

C∈C(I)

(−1)rk(C)
∑

E⊂C

(−1)|E|〈S, AE〉.
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Since S is a single chamber, 〈S, AE〉 vanishes unless E = ∆, where
∆ is the set of edges where the orientations of S and A differ. Hence,

〈∇O
Γ,12(S), A〉 =

∑

C∈CΓA
(I)

∆⊂C

(−1)rk(C)

We interpret this sum as the Euler characteristic of an appropriate
complex. Consider the dual complex X∨

CutsI (ΓA) and the natural iden-

tification of its lattice of faces with CutsI(ΓA). Denote by X∆ the
subcomplex corresponding to cuts containing ∆. Each minimal cut
Cm ⊃ ∆ corresponds to a maximal cell XCm ∈ X∆.

We now prove that
⋂

Cm⊃∆
Cm minimal

XCm

is positive dimensional. A source or sink of S must occur at a vertex v
interior to the set of cuttable edges of A, for flipping all cuttable edges
of A gives a graph with no sources or sinks. Since the local picture in
A at v begins with no sources or sinks, the orientation of (at least) one
the edges incident to v is preserved in the sink/source. Such edge e is
not part of any minimal cut that produces S from A, and hence the
ray in X∨

CΓA
(I) corresponding to cutting all cuttable edges except e is

contained in
⋂

XCm .
Since X∆ is a union of a finite number of cones all of whose (multiple)

intersections consist of positive dimensional cones, the Euler character-
istic is χ(X∆) = 0. �

Lemma 7.5. If A, A′ ∈ BCΓ(x2) are two distinct appearing chambers,
then

〈A′,∇O∗
Γ,12(A)〉 = 0.

Proof. As in the previous lemma, if we let ∆ denote the set of edges
with different orientations in ΓA and ΓA′:

〈∇O
Γ,12(A

′), A〉 =
∑

C∈CΓA
(I)

∆⊆C

(−1)rk(C)

Since by 6.9 the weighted sum of all cuts in CΓA
(I) is 0, we prove the

equivalent fact that the weighted sum over all cuts that do not cut all
of ∆ is 0. We now work with the face complex XCΓA

(I), and denote Xc
∆

the subcomplex of cuts that do not cut all of ∆. The maximal cells of
Xc

∆ correspond to maximal cuts CM . Again, we conclude the proof by
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arguing that
⋂

CM 6⊇∆
CM maximal

XCM

is positive dimensional. This is because ∆ is disjoint from the set of
cuttable edges of ΓA′. Any nontrivial cut of ΓA′ is therefore a cut of
ΓA corresponding to a positive dimensional face in

⋂

XCM
. �

Lemma 7.6. If A ∈ BCΓ(x2) and A′ 6∈ BCΓ(x1)∪BCΓ(x2) is a bounded
chamber, then

〈A′,∇O∗
Γ,12(A)〉 = 0.

Proof. This lemma argues that a graph cannot cross over a wall differ-
ent than WI by just flipping cuttable edges for the I-wall. Let ΓA be
the graph corresponding to chamber A. Consider a wall WJ given by a
subset J 6= I, and assume that in c2 the inequality

∑

k∈J xk > 0 holds.
Restricting to variables in J ∩ I or J ∩ Ic, at least one of the two sums
must be still strictly positive. Assume that

∑

k∈I∩J xk > 0.
If one cuts all I-cuttable edges, ΓA has two connected components

that contain all the ends, ΓI
A containing all the I ends and ΓIc

A all the
Ic ends. Since the weight of the I-cuttable edges is arbitrarily small
when approaching WI , the flow that enters ΓI

A must leave again through
the ends I. Thus there must be a directed path from a positive end
in I ∩ J to a negative end in I ∩ Jc. But this prevents any regluing
of the cut graph to identify an appearing chamber on the side of WJ

corresponding to
∑

k∈J xk < 0.
�

Example 7.7. As an example for the statement of Lemma 7.5, consider
the directed x-graphs ΓA, ΓA′ in Figure 17, corresponding to appearing
chambers. We want to see that the weighted number of ways to cut ΓA

and reglue it to ΓA′ is zero. Any cut that allows to reglue ΓA to ΓA′ must
cut the two dotted edges. We have to show that (

∑

C(−1)rk(C)) = 0,
where the sum goes over all cuts that cut at least the two dotted edges.
Alternatively, since the weighted sum of all cuts is 0 by 6.9, we can
show that the sum of all cuts that do not cut both dotted edges is 0.

ΓA admits 6 simple cuts that are also shown in Figure 17. The
maximal cuts which do not cut both wrong edges are 123 and 346.
Since the poset of cuts equals the face lattice of XCutsI(ΓA), we can
describe the cuts which do not cut both wrong edges as a subset Xc

∆ of
this cone. We want to see that Xc

∆ is contractible, which implies that
its Euler characteristic — which equals the weighted sum of cuts that
don’t cut both wrong edges — is 0. The figure also shows a schematic
picture of Xc

∆, intersected with the sphere (so that rays become points).



CHAMBER STRUCTURE OF DOUBLE HURWITZ NUMBERS 47

5 64321

ΓC ΓW

123 346

3

4

6

1

2

(XC(I) \ X∆) ∩ S5

Figure 17. A chamber on the same side of the wall.

We can see that the maximal cells intersect in the ray 3, which is the
only cut of ΓA′. Thus the set is contractible.

8. Heavy to Light: Proof of Theorem 1.5

To prove Theorem 1.5 we observe that we are applying the Gauss-
Manin connection to a particular vector where each chamber A has
coefficient m(A)sign(A). With these weights, the expression of the
Gauss-Manin connection simplifies.

Definition 8.1. A cut C where every edge is adjacent to either the top
or the bottom component is called a thin cut. We refer to the union of
connected components that are not the top or the bottom component
as the middle components.
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To each cut C, there is a naturally associated thin cut t(C), ob-
tained by keeping the edges in C that border either of the components
containing the ends, and forgetting all edges of C that are between
two interior components. For each thin cut T , the set of cuts C with
t(C) = T forms a sub-poset P (T ) of the poset of all cuts.

Theorem 1.5 naturally appears as a sum over all thin cuts. To prove
it, we match the sum over P (T ) of the terms in Theorem 4.2 as an
inclusion-exclusion formula in Lemma 8.2 that evaluates to the contri-
bution of cut T in Theorem 1.5. Denote by o(C) the number of vertex
orderings on Γ \ C.

Lemma 8.2. For a thin cut T with t vertices in the middle compo-
nents,we have:

(11) (−1)t
o(T ) =

∑

C∈P (T )

(−1)rk(C)
o(C).

To prove Lemma 8.2, we use the following lemma:

Lemma 8.3. Given a thin cut T of a graph Γ, denote by γ(T ) the
induced directed subgraph on the vertices in the middle components.
Using the notation of 6.7, we have

P (T ) = L(Xγ(T )).

Proof. The proof is a slight modification of that of Lemma 6.9. The
same arguments show that those subsets of edges of γ(T ) that avoid
creating directed cycles are exactly those that correspond to faces of
Xγ(T ). The only difference is that since every set of edges in P (T )
already separates the top from the bottom, we use a different graph,
which does not have vertices corresponding to the top and the bottom
components. �

Remark 8.4. Although every thin cut T is also a cut, the signs with
which the corresponding terms appear in Theorems 1.5 and 4.2 need not
agree - in Theorem 1.5 the sign of the term corresponding to T is given
by the number of components, while in 4.2 it is given by the number of
vertices. However, T is the minimal element of P (T ), and the maximal
element of P (T ) corresponds to the cut where each component consists
of one vertex, and so the sign of the maximal element of P (T ) in the
heavy formula does agree with the sign of T in the thin cut formula
(see Equation (11)).

Fix a thin cut T , and consider the graphical arrangement for the
graph γ(T ); the hyperplanes correspond to edges, and the chambers
correspond to orientations of the edges that have no cycles, though
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they may have sources and sinks. The cone Xγ(T ) is one chamber of
this arrangement.

To each chamber C we associate the number o(C) of total orderings
of the graph Γ \ T that are compatible with the directed graph of the
top and bottom components of Γ \ T , and with the directed edges of
the middle components given by C (in particular o(Xγ(T )) = o(T )).
Observe that the geometrically opposite chamber Xop

γ(T ) corresponds to

reversing all the edges of the middle components, and so o(Xγ(T )) =
o(Xop

γ(T )).

For a given cut C in P (T ), denote by KC the affine tangent cone to
Xγ(T ) along the face XC : this is the cone containing Xγ(T ) defined by
all facets of Xγ(T ) incident to XC . The cone KC contains the chambers
corresponding to all possible orientations of the cut edges.

o(C) =
∑

C∈KC

o(C).

From this discussion, we see that Lemma 8.2 follows from the following
identity on cones:

Lemma 8.5.

(−1)tXop

γ(T ) =
∑

C∈P (T )

(−1)rk(C)KC

Proof. Proposition 3.1 of [BV97] gives two inclusion-exclusion formulas
for a bounded polyhedron P in terms of cones based at the faces f ∈
F of P . These formulas are essentially equivalent to our lemma; we
must make some adjustments to deal with the fact that we are using
unbounded cones instead of bounded polyhedrons.

Before we can state the formulas of [BV97], we must introduce some
notation. The inward pointing cones C+

P (f) are defined by the same
hyperplanes that define f , and contain P , while the outward pointing
cones C−

P (f) is the opposite cone based at f ; this means that C+
P (P )

and C−
P (P ) are both the whole space. Rather than working with char-

acteristic functions as in [BV97], we take formal sums of chambers.
Then we have:

P =
∑

f∈F

(−1)dim fC+
P (f) and(12)

(−1)dim PP =
∑

f∈F

(−1)dim fC−
P (f).(13)

We can prove 8.5 by applying each of (12) and (13) in turn.
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To apply these formulas to our situation, take a hyperplane H trans-
verse to Xγ(T ), and let P = H ∩ Xγ(T ). Then, the faces of P are in
bijection with the nonempty cuts in P (T ). The cones here are exactly
the nonzero inward facing tangent cones; however, because of the shift
in the dimension the rank of the cut is the dimension of the face plus
one. So, by Equation (12) the sum over the nonempty cuts is giving
a contribution of −Xγ(T ), which exactly cancels the contribution from
the empty cut.

Let H0 be the hyperplane parallel to H that passes through the
origin, and H+

0 the half-space bounded by H+
0 and containing Xγ(T ).

Then from the above, we have that
∑

C∈P (T )(−1)rk(C)KC ∩ H+
0 = 0.

Now translate the hyperplane H past the origin, keeping its normal
direction fixed: the resulting P shrinks to a point, and then become a
transverse slice of H∩Xop

γ(T ). The cones in the sum are now the outward

pointing tangent cones, and so we essentially have the sum in Equation
(13), but again with the signs shifted. This gives us a contribution of
(−1)dimP+1Xop

γ(T ) = (−1)tXop
γ(T ). We have

∑

C∈P (T )(−1)rk(C)KC∩H−
0 ) =

(−1)tXop
γ(T ) (where H−

0 denotes the other half-space), and the claim

follows.
�

Example 8.6. In this example, we demonstrate that the light formula
(see 1.5) cannot be proved with a bijection between cut and reglued
graphs and chambers contributing to the Gauss-Manin connection as
in Lemma 6.12 and Remark 4.4. Consider the graph Γ from Figure
18 and the wall WI with I = {1, 2}. The wall crossing contribution
of this graph equals twice the sum of ϕΓ over the lattice points in A,
since −〈B,∇∗

Γ,12(A)〉 = 1. Lemma 6.12 tells us that we can interpret
this 1 as the minus the number of ways to cut Γ and reglue it to ΓB,
for which all interior edges are reversed. Figure 19 shows all I-cuts of
Γ with the sign corresponding to minus their rank in the poset. We
can see that the only cut which allows to reglue to ΓB is the last one,
since this is the only cut which cuts all four edges that we need to
reverse. So minus the number of ways to cut and reglue to ΓB equals
1 = −〈B,∇∗

Γ,12(A)〉. For our light formula, we don’t allow to cut edges
which are not connected to the top or the bottom part. All the light
cuts of Γ are depicted in Figure 20. These cuts are weighted with a sign
corresponding to the number of vertices of the middle components. We
can see that there is no bijection as for the heavy cuts, since there is
no way to cut the graph in a light way and still cut the four edges we
need to reverse. If we take vertex orderings into account however, we
can still recover the 2 = 1 − (−1) with which chamber A contributes
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x3

x1 + x2

x1 + x2 − i

x1

x1 + x2 < 0 x1 + x2 > 0

AB

0 x1 + x2

−x4

−x2

i

x1 + x2

Figure 18. An x-graph with reference orientation and
the two hyperplane arrangements AΓ(x1) and AΓ(x2) left
and right of the wall x1 + x2 = 0.

++ −+ − −

Figure 19. All I-cuts of Γ.

++ −− +

Figure 20. All thin cuts of Γ.

to the wall crossing: Count each light cut with the binomial factor
corresponding to the number of vertex orderings of the disconnected
graph. This contribution is

(

4

1

)

+

(

4

3

)

+

(

4

2

)

−

(

4

1, 1, 2

)

−

(

4

2, 1, 1

)

+

(

4

1, 2, 1

)

= 2.
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