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Abstract. We consider a new problem of robust trajectory planning
for robots that have a physical destination and a communication con-
straint. Specifically, the robot or automatic vehicle must move from a
given starting point to a target point while uploading/downloading a
given amount of data within a given time, while accounting for the en-
ergy cost and the time taken to download. However, this trajectory is
assumed to be planned in advance (e.g., because online computation can-
not be performed). Due to wireless channel fluctuations, it is essential for
the planned trajectory to be robust to packet losses and meet the com-
munication target with a sufficiently high probability. This optimization
problem contrasts with the classical mobile communications paradigm in
which communication aspects are assumed to be independent from the
motion aspects. This setup is formalized here and leads us to determin-
ing non-trivial trajectories for the mobile, which are highlighted in the
numerical result.

1 Introduction

Traditionally in wireless literature, the trajectory of the mobile node is assumed
to be an exogenous variable and the communication resources are optimized
based only on the wireless parameters. However, we have seen an emergence
of new technology like unmanned aerial or ground vehicles, drones and mobile
robots which have communication objectives in addition to their destination or
motion based objectives [1]. Several works have studied trajectory optimization
problems when the communication constraint is that of having a target SNR.
However, we are interested in the case where the communication requirement is
downloading a certain number of bits within a given time.

Previously, we have studied the problem where a mobile robot (MR) must
download (or upload) a given amount of data from an access point and also
reach a certain destination within a given time period in [1]. However, in [1], we
did not account for wireless channel fading and in fact assumed that the wireless
signal strength is determined purely based on the path loss. In this work, we
want to relax this strong assumption and account for small-scale fading and



shadowing effects. In this article we will show how to design offline a robust
reference trajectory under limited amount of information and high uncertainty
about the wireless channel. This trajectory will allow the MR to reach the goal
point and completely transmit the content of its buffer to the access point (AP)
with a sufficiently high probability.

In practice, this reference trajectory will be preloaded on the MR prior to the
execution on the task and it will serve the MR as guide which may need to be
slightly modified according to the wireless channel measurements collected by the
MR while executing its task. This adaptation mechanism is outside the scope of
this article and we will only focus on the design of the reference trajectory. Future
works will address the online adaptation mechanism. The main contributions of
this paper are as follows.

– Trajectory planning of a MR starting from an arbitrary point, which must
reach a certain target point and download a certain number of bits from a
nearby access point.

– Optimization of the trajectory to minimize a cost function which depends
on the amount of data left in the buffer to be downloaded and the energy
consumed.

– Considering a robust cost function which accounts for the random fluctua-
tions of the wireless channel due to small-scale fading and shadowing effects.

Note that the first two contributions were also provided in [1] for the much
more simpler case in which only path-loss is assumed to determine the wireless
signal. The rest of the paper is structured in the following manner. We provide
the model for the wireless communication system and the robot motion in Section
2. We then provide the problem statement in Section 3 and provide a solution
concept in Section 4. Finally, we provide numerical simulations in Section 5.

2 System Model

The position of the MR is given by p(t) ∈ R
2, at any time t ∈ R≥0. We assume

that the robot starts at position s, i.e. p(0) = s. The MR and the AP communi-
cate with a frame duration T during which the channel fading is assumed to be a
constant, i.e we assume a block fading model. The robot has a buffer with state
b(k) ∈ Z≥0 denoting the number of bits it must transmit at the discretized time
k = ⌊ t

T ⌋. The initial buffer size is the total file size and is assume to be given by
N , i.e., b(0) = N . The robot is equipped with a wireless system to communicate
with an access point at pAP satisfying the following properties.

2.1 Communications system

The MR will move among dynamic scatterers and the bandwidth used for the
communication will be lower than the coherence bandwidth. As a consequence
the wireless channel between the MR and the access point (AP) will experi-
ence time-varying and flat multipath (small scale) fading as well as shadowing



(large-scale fading). With loss of generality, we assume, from now on, that the
communication problem consists in uploading data from the MR to the AP. The
signal received by the AP at time t can be written as

yAP(t,p(t)) =

(
h(p(t), t)s(p(t))

‖p(t)− pAP‖
α/2
2

)
x(t) + nAP(t), (1)

where pAP is the location of the AP, h(p(t), t) represents the time-varying small-
scale fading which we assume to be Nakagami distributed and s(p(t)) represents
the shadowing term which we assume to be lognormal distributed [2]. Nakagami
fading is well suited to model the behavior of the multipath fading in many
practical scenarios [3]. Without loss of generality we assume E[|h(p(t))|2] = 1
and so the p.d.f. of |h(p(t))| becomes

fh(z,m) =
2mm

Γ (m)
z2m−1 exp

(
−mz2

)
, (2)

where m is the shape factor of the Nakagami distribution. As mentioned before,
the shadowing term s(p(t)) is lognormal distributed and so we have log (s(p(t))) ∼
N
(
0, σ2

s

)
with σ2

s being the its variance. Also, the normalized spatial correlation
of the shadowing is

r(p,q) = exp

(
−
‖p− q‖2

β

)
, (3)

where β is the decorrelation distance which will be unknown to the MR prior
to the execution of the trajectory. Now, the coefficient α in (1) is the power
path loss coefficient which usually takes values between 2 and 6 depending on
the environment; x(t) is the signal transmitted by the robot with average power
E[|x(t)|2] = P and nAP(t) ∼ CN (0, σ2

n) is the zero mean additive white Gaussian
(AWGN) noise at the AP’s receiver. From (1) we have that the signal-to-noise
ratio (SNR) at the AP (in dB) is:

ΓdB(p(t)) = 10 log10

(
P

σ2
n

)
+ 20 log10 (s(p(t))) + 20 log10 (|h(p(t), t)|)

− 10α log10 (‖p(t)− pAP‖2) .

(4)

As a result, the number of bits in the MR’s buffer is given by:

b(k) =



N −

k∑

j=0

R
(
Γ̂ (p(jT ))

)



+

(5)

where and ⌈a⌉+ = a for a > 0 and ⌈a⌉+ = 0 for a ≤ 0; Γ̂ (p(jT )) is the estimate
of Γ (p(jT )) which is ΓdB(p(jT )) in linear scale, N is the initial number of

bits in the buffer and R
(
Γ̂ (p(kT ))

)
is the number of bits in the payload of

the packet transmitted during the duplexing period k. As mentioned above, the



number R
(
Γ̂ (p(kT ))

)
of bits transmitted in the payload is computed by the

MR according to its most recent SNR estimate. So we have (for b(k) 6= 0):

R
(
Γ̂
)
= Rj , ∀ Γ̂ ∈ [ηj , ηj+1), j = 0, 1, · · · , J (6)

with Rj < Rj+1, ηj < ηj+1, R0 = 0, η0 = 0 and η1 must be above the sensitivity
of the AP’s receiver.

2.2 Mobile robot

We assume the MR to be omnidirectional and its velocity is assumed to be
controlled directly. This results in its motion described by

ṗ(t) = u(t), (7)

where p(t) is the MR position at time t and u(t) is the control input which is
bounded by:

‖u(t)‖2 ≤ umax, (8)

Finally, the mechanical energy spent by the MR between t0 and t1 while using
the control signal u(t) is:

Emechanical(t0, t1,u) = m

∫ t1

t0

‖u(t)‖2dt. (9)

where m is the mass of the MR.

3 Problem statement

The objective of the robot is to depart from a starting point s to a goal point
g within a time tf and transmit the all the content from its buffer to the AP.
The desired trajectory is such that it consumes little mechanical energy from
the robot and also allows the robot the transmit all the content of the buffer
quickly. In addition we want that when the MR follows this trajectory it succeeds
in emptying its buffer with a high probability.

We assume that the only knowledge available to the MR (and the designer)
about the environment (prior to the execution of the trajectory) is the position of
the starting and goal points (i.e., s and g); an estimate of the path loss coefficient
α, but we assume no knowledge about the severity of the small-scale fading
(i.e., about the shaping factor m in (2)). Solving the general problem with no
approximation is very hard due to the large amount of stochastic perturbations,
the shadowing correlation and the large number of terms in the sum of (5). This
results in a very complicated expression for the probability of the buffer to be
empty at tf . Therefore, we look at the most likely buffer state given by

b̃(k) =



N −

k∑

j=0

R̃ (Γ (p(jT )))




+

(10)



where R̃ (Γ (p(jT ))) is the statistical mode of R (Γ (p(jT ))), i.e.,

R̃ (Γ (p(kT ))) = max

(
argmax

R∈{Rj}J
j=0

Pr (R (Γ (p(kT ))) = R)

)
. (11)

This results in the following optimization problem

minimize
u

θ1

∫ tf

0

‖u(t)‖22
u2
max

dt+ θ2

⌊
tf
T

⌋∑

k=0

T b̃(k)

N

s.t.
ṗ(t) = u(t)
‖u(t)‖2 ≤ umax,

p(0) = s, p(tf ) = g,

⌊
tf
T

⌋∑

k=0

R̃ (Γ (p(kT ))) ≥ rRN.

(12)

The optimization target is a convex combination of the energy spent in mo-
tion by the robot (9) and of a second term which estimates how quickly the buffer
is emptied. This second term is a sum over the most likely number of bits left
in the buffer at time instant t = kT (i.e., E [b(k)]). The coefficients {θk}

2

k=1
of

the convex combination determine the relative importance of each optimization
criterion.

Note that due to the stochastic nature of the channel we can not ensure that
when the MR follows the reference trajectory it will always be able to empty its
buffer but we can ensure that this happens with a certain probability. As calcu-
lating the actual probability of failing to meet the communication requirement
constitutes a very hard task as explained above, we introduce rR ≥ 1 which is
an overestimation parameter selected by the designer. The final constraint in
(12) ensures that the sum of the statistical mode of the bits transmitted in the
payload over all the trajectory is equal to an overestimation of the initial number
of bits in the buffer, i.e., rRN . So when the trajectory is actually executed, the
probability that the buffer will be emptied will be high and by increasing the
overestimation parameter rR we can reduce the probability of the MR failing to
empty its buffer when it reaches the goal point g. The term b̃(t) is a discreet and
deterministic function of the MR’s position. This difference makes the problem
much more feasible to solve.

4 Proposed Solution

Now, to solve the optimization problem (12) we first define the region Aj as:

Aj = {p | R̃ (Γ (p)) = Rj}. (13)



Due to the wireless channel model the region AJ is circular while the shape of
region Aj , for j = 1, 2, · · · , J − 1, is a ring with inner and outer radii of rj+1

and rj respectively. And rj is given by:

rj = min
({

r | R̃ (Γ (r[cos(θ) sin(θ)]− pAP)) = Rj

})
(14)

The radii rj are computed from the channel statistics which can be estimated
using the techniques presented in [4]. Nevertheless, for lack of space we do not
provide here the details on how to compute it.

We also define uj(t) as any control law that takes the vehicle through the

regions {Ak}
j
k=0

. The set of all control laws uj(t) will be denoted as Uj and
U = ∪J

j=0Uj is the set of all control laws.
One simple way to solve (12) is to first solve it with the additional constraint

u ∈ Uj , once for each different value of j = 1, 2, · · · , J . We will denote as u∗
j (t)

the optimum control law that solves (12) under the additional constraint u ∈ Uj

and u∗(t) as control law that solves (12) under the constraint u ∈ {u∗
j (t)}

J
j=1.

Therefore to solve (12) we will calculate all the optimum control signals u∗
j .

In order to minimize the mechanical energy term in the optimization target
of (12) the optimum control law u∗

j (t) must make the robot enter and exit

the convex hull of each region {An}
j
n=0 at most once. These input and output

points to the convex hull of the area Aj are denoted by ij and oj respectively.
We regroup these points in the following set Cj = {s, i1, i2, · · · , ij , oj , oj−1,

· · · , o1, g} and index them as follows:

c
j
0 = s,

cjn = in, for n = 1, 2, · · · , j,
cjn = o2j+1−n, for n = j + 1, j + 2, · · · , 2j,

c
j
2j+1 = g.

(15)

where s and g are the starting and goal points for the robot. In addition, tn is
the time instant in which the robot is at pj

n and:

τntf = (tn+1 − tn), n = 0, 1, · · · , 2j (16)

where:
2j∑

n=0

τn = 1, τn > 0, (17)

Note that the coefficients {τn}
2j
n=0 determine the portion of time tf that the

robot takes to go from c
j
n−1 to cjn. Let us also write the points belonging to Cj

in polar coordinates as:

cjn = rjn[cos(φ
j
n) sin(φj

n)]
T . (18)

From the definition of in and on we know that they lie in a circle of radius
rn which can be computed from the p.m.f. of R (Γ (p(kT ))). Therefore we know
{rjn}

2j
n=1 and as a consequence the only unknowns to uniquely determine Cj are

the angles5 {φj
n}

2j
n=1, where the φj

n is the angle of cjn respect to the AP.

5 Since φ0 and φ2j+1 are the angles of s and g they are also known.



Now, the optimum control law u∗
j (t) takes the robot from c

j
0 up to c

j
2j+1 in

ascending order through each point in Cj . We can also see that the second term
in the optimization target of (12) depends only the time spent in each region Aj

(i.e., on the durations τktf ) and not on the shape of the particular path followed
by the robot nor by its velocity profile. So, the velocity profile and the path
must be selected to minimize the mechanical energy (i.e., the first term in the
optimization target (12)). To do so the vehicle must go from c

j
n−1 to cjn in a time

τntf (to be determined) using minimum energy. Using calculus of variations [5]
we can show that this is achieved by:

uj(t) =
cjn − c

j
n−1

τn−1tf
∀ t ∈ [tn−1, tn). (19)

Therefore if we add the constraint u ∈ Uj and then we optimize {τn}
2j
n=0 and

the angles {φj
n}

2j
n=1 we obtain u∗

j (t). Now, if we use the constraint u ∈ Uj and
select uj(t) to take the form (19) then the optimization target of problem (12)
becomes:

J
(
{τn}

2j
n=0, {φ

j
n}

2j
n=1

)
= θ1

2j+1∑

n=1

‖cjn − c
j
n−1‖

2

u2
maxτn−1tf

+ θ2

⌊
tf
T

⌋∑

k=0

T b̃(k)

N
. (20)

And using (13), (19) and the constraint in (12) we have the following approxi-
mation:

τjtf

T
Rj +

j−1∑

n=0

(
(τ2j−n + τn)tf

T

)
Rn ≥ rRN (21)

So, taking into account (19)-(21) the optimization problem (12) becomes:

minimize
{τn}

2j
n=0

,{φj
n}

2j
n=1

J
(
{τn}

2j
n=0, {φ

j
n}

2j
n=1

)

s.t.
2j+1∑

n=1

τn = 1, τn > 0,

r2n+r2n−1
−2rnrn−1 cos(φj

n−φj
n−1)

τ2
nt

2

f

≤ u2
max, n = 0, 1, · · · , 2j

cjn = rjn[cos(φ
j
n) sin(φj

n)]
T ,

c
j
0 = s c

j
2j+1 = g,

τjtf
T Rj +

j−1∑

n=0

(
(τ2j−n + τn)tf

T

)
Rn ≥ rRN

(22)

where the first line of constraints ensures that the coefficients {τk}
2j
k=0

determine
the portion of the total time tf taken to go from one point in Cj to the next one.
The next line of constraints establishes the maximum velocity of the robot. The
final constraint is the robust constraint which will allow the designer to obtain
a high probability of the MR emptying completely its buffer.



Table 1. Performance of different trajectories

trajectory E[tempt] (s) PS Energy/(mλ2) (J)

T0 14.46 0.0868 0.1859

T1 10.41 0.7206 0.8139

T2 7.72 0.9347 4.8924

T3 7.68 0.8652 3.8928

T4 7.59 0.9262 4.7909

To solve the optimization problem (22) we first express the angles {φj
n}

2j
n=1

as function of the durations {τn}
2j
n=0. This is achieved by deriving the optimiza-

tion target of (22), see more details in [1]. Then we use simulated annealing
algorithm (SAA) [6] to optimize the durations {τn}

2j
n=0. This concludes the dis-

cussion about the optimization of the trajectory and in the next section we
present some simulations to better understand its behaviour and observe its
performance.

5 Simulations

In this section we present some simulations to gain some insight about the trajec-

tories obtained by the method presented in this paper. We select 10 log10

(
P
σ2
n

)
=

33dB. Now, the initial number of bits in the buffer b(0) = 600Ns while the pos-
sible amount of bits transmitted in one packet can be R0 = 0, R1 = 4Ns,
R2 = 16Ns, R3 = 64Ns where Ns is the number of symbols transmitted in one
packet. Note that such values for the number of bits transmitted in the payload
can be obtained using a rectangular M-QAM modulation. Now, regarding the
thresholds {ηj}

J
j=0 we fix them so that the bit error rate is at least 10−3.

Now regarding the channel we select the path loss coefficient as α = 2,
shadowing variance σ2

s = 2.5 and then for the decorrelation distance we select
β = 10λ, where λ is the wavelength of the RF carrier used for communications.

We select the starting and the goal points to be s = [8λ 0] and g = [9 −6]λ
while we locate the access point at the origin. Then the time to reach the goal
point is tf = 20s, the period between packets T = 100ms and the maximum
velocity of the MR is 10λ per second.

First of all we consider for references a trajectory that goes from s to g using
minimum energy. This is achieved by a linear path between both points and a
constant velocity profile. We will denote such trajectory as T0. Then we consider
a trajectory T1 optimized according to (22) with θ1 = 1, θ2 = 0 and rR = 1.
This trajectory is optimized to use minimum energy while satisfying constraint
(21). Then we also consider another trajectory T1 optimized according to (22)
with θ1 = 0, θ2 = 1 and rR = 1. This trajectory is optimized to empty the buffer
as quick as possible.



In Fig. 1 we can observe the paths corresponding to the trajectories T0, T1
and T2. We first note that the path corresponding to T1 is shorter than the
path corresponding to T2 which agrees with the fact that the trajectory T1 is
optimized to minimize the energy consumed (while satisfying constraint (21)).
Then regarding the shape of the paths we see that the path of T2 reaches A2

through the shortest path, this is done in order improve as quick as possible the
transmission rate in order to empty the buffer as soon as possible. Now, regarding
the path for T1 the robot reaches A2 by moving in an orthogonal direction with
respect to the vector g − s, by doing so the robot minimizes the amount of
deviation from g which reduces then the distance total distance travelled and
consequently the energy spent.

When we observe the velocity profiles of both trajectories in Fig. 2 we first
note that the period with highest velocity takes place from t = 0 until t = τ1
this is because the robot is rushing to get out from A0 to start transmitting as
many bits as possible. Then we also observe that the minimum velocity occurs
when the robot reaches the inner most area of the trajectory (in this case A2).
This is in order to spend as much time as possible in that area with the best
channel conditions in the trajectory.

Then, in table 1 we observe the average time in which the buffer is emptied
E[tempt], the probability of success PS (i.e., the probability of emptying the buffer
when reaching g) and the amount of mechanical energy used normalized by mλ2.
As it is expected the trajectory T0 uses minimum energy but its probability of
success is very low (0.0868). On the other hand the probability of success for the
optimized trajectories T1 and T2 is much higher, 0.7206 and 0.9347 respectively,
but due to the larger paths and velocities their energy consumption is higher.
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Fig. 1. Paths corresponding to trajectories T0 (green), T1 (blue) and T2 (magenta).
Starting point s represented by a circle, goal point s represented by a triangle and AP
location at the origin. We observe as well the delimitation of the areas {Aj}

3
j=0.
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Fig. 2. Velocity profiles of trajectory T1 (top) and T2 (bottom). The vertical dashed
lines separate the durations {τn}

2j
n=0.

Now, we observe the effect of the robustness parameter rR, see (21). To do
so we consider two more trajectories. The first one, denoted T3, is optimized ac-
cording to (22) with θ1 = 0.3, θ2 = 0.7 and rR = 1. While the second trajectory,
denoted T4, is optimized according to (22) with θ1 = 0.3, θ2 = 0.7 and rR = 1.5.
We observe in Fig. 3 that their path is really similar (the path corresponding to
T4 is slightly larger) but their velocity profiles are clearly different as we can ob-
serve in Fig. 4. The trajectory T4 spends a larger time in the area A2 in order to
increase the average data rate and therefore increase the probability of success.
But by doing so the robot has to move quicker when it gets out from A2 in order
to reach g in time. By comparing the probabilities of success of T4 with T3 in
table 1 we observe that increasing the robustness parameter rR indeed increases
the probability of success although it also increases the energy consumption.
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Fig. 3. Paths corresponding to trajectories T3 (green) and T4 (dashed red).
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Fig. 4. Velocity profiles of trajectory T3 (top) and T4 (bottom).

Note that all the optimized predefined trajectories were able to produce a
relatively large probability of success in a fading channel without the use of any
kind of diversity. This large probability of success was achieved by optimizing
the trajectories using only first order statistics of the wireless channel. In the
future we will take into account channel measurements to develop an online
mechanism which further improves the success probability while reducing the
amount of mechanical energy.

6 Conclusions

We have formulated the problem of robust trajectory optimization for an MR
with a target point to reach and a certain number of bits to transmit within a
given time. Due to small scale fading and shadowing effects, obtaining a suitable
reference trajectory offline is non-trivial. Therefore, we consider the most likely
buffer state at each time determined based on the statistical mode and optimize
the desired metric by introducing an overestimation parameter for robustness.
This approach results in an optimization problem with a feasible solution.
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