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 
Abstract—By deploying pressure sensors on insoles, the forces 

exerted by the different parts of the foot when performing tasks 
standing up can be captured. The number and location of sensors 
to use is an important factor in order to enhance the accuracy of 
parameters used in assessment while minimizing the cost of the 
device by reducing the number of deployed sensors. Selecting the 
best locations and the required number of sensors depends on the 
application and the features that we want to assess. In this paper 
we present a computational process to select the optimal set of 
sensors to characterize gait asymmetries and plantar pressure 
patterns for stroke survivors based upon the total variation and 
L1 distances. The proposed mechanism is ecologically validated in 
a real environment with 14 stroke survivors and 14 control users. 
The number of sensors is reduced to 4, minimizing the cost of the 
device both for commercial users and companies and enhancing 
the cost to benefit ratio for its uptake from a national healthcare 
system. The results show that the sensors that better represent 
the gait asymmetries for healthy controls are the sensors under 
the big toe and midfoot and the sensors in the forefoot and 
midfoot for stroke survivors. The results also show all four 
regions of the foot (toes, forefoot, midfoot and heel) play an 
important role for plantar pressure pattern reconstruction for 
stroke survivors while the heel and forefoot region are more 
prominent for healthy controls. 
 

Index Terms— insole pressure sensors, stroke survivors, 
optimal sensor selection.  

I. INTRODUCTION AND RELATED WORK 

The use of insole pressure sensors for the analysis of 
gait is increasing [1][6][12][14][25][28]. Insole pressure 
sensors provide researchers and clinicians with a tool to 

improve efficiency, flexibility and reduce costs (by 
automating the measurement of gait related features with a 
limited number of sensors [1]). Different patterns and 
strategies for executing a range of functional tasks can be 
assessed by using insole pressure sensors [7]. Extracting and 
comparing features and time patterns from people with certain 
medical conditions with data from healthy controls could be 
the basis for their use in areas such as rehabilitation and pre-
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habilitation [7][13]. Assessing gait and movement related 
features can also be applied to sport training [2]. Insole 
pressure sensors have been used in a wide range of different 
areas such as Tai-Chi Chuan learning [3], ulcer prevention [4], 
monitoring elderly people who have a high risk of falling and 
other mobility problems [5], assessing long-term chronic 
conditions that affect the elderly population such as Dementia, 
Parkinson's disease, Cancer, Cardiac Disease, Diabetes and 
Stroke [6]. Insole pressure sensors have also been used to 
assess the walking strategies used by stroke survivors who are 
following a rehabilitation program [7]. 

Stroke is of particular importance and relevance since the 
global incidence of stroke is set to rise from 17 million to 23 
million by 2030, and it is one of the largest causes of adult 
disability [8][9]. Approximately two out of three stroke 
survivors experience impaired walking ability with subsequent 
falls risk and associated social isolation [10] [11]. Therefore, 
the relearning of walking is a major component of stroke 
rehabilitation with a self-managed rehabilitation paradigm 
being advocated by many [12]. Assessing walking strategies 
from data captured from insole pressure sensors, and using 
automatically computed distortion indexes, could be a 
valuable tool to help stroke survivors to improve their gait [7]. 
Furthermore, feedback from the insole can be used to provide 
motivation through self-managed rehabilitation during post 
discharge by the health provider [13][31-33]. 

Various types of insoles with different numbers of 
sensors have been used in previous studies to detect gait 
related features from stroke survivors. Lopez-Meyer et al [34] 
used an insole with 5 force-sensitive resistors (FSR) to 
compare the differences in the stance and swing faces between 
stroke survivors and healthy controls. Heel-strike (H) and Toe-
off (T) instants were estimated using thresholds. The results 
obtained showed that the use of FSR sensors on insoles could 
accurately identify the temporal aspects of the gait cycle in 
both healthy people and individuals with stroke but no further 
gait related features were considered neither a sensor location 
optimization was performed. Qin et al [14] present a tailor-
made 3D insole for plantar pressure measurement, comparing 
it with conventional flat insoles. Howell et al [15] investigate 
the use of a 32 sensor insole capable to replicate the shape of 
the ground reaction force and ankle moment in a stroke patient 
who has regained a more normal gait. The results present 
some limitations for stroke patients with impaired gait. Howell 
et al state that several subsets of sensors can be evaluated to 
ultimately identify an optimum set of sensors for determining 
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particular kinetic variables (that are necessary to classify the 
presence or absence of a particular gait abnormality, or other 
pathology). However, no optimization is performed. Insole 
pressure sensors have also been used to measure and 
characterize pressure patterns over time for post-stroke 
patients [14]-[16]. In the majority of these previous research 
studies, the quantity and location of pressure sensors on the 
insoles is a parameter chosen when designing the experiment 
and is not normally optimized or evaluated. 

Optimizing the quantity and location of the sensors used 
is a very important factor to help minimize the cost of the 
devices, and therefore accelerate their mass adoption. 
Selecting the optimal sensors is a well-studied problem in 
other areas such as multi-object tracking systems in wireless 
sensor networks [17][18], in which k sensors are selected in 
order to solve localization problems within a certain error 
(choosing k sensors so as to minimize the error in estimating 
the position of a target). Finding the optimal set of sensors to 
be used for a particular application tends to be an NP-hard 
problem, and different approximation techniques have 
previously been used to find nearly-optimal solutions in other 
domains. The reduction in the entropy of the target location 
distribution is used by Wang et al [19]. Shen et al [20] propose 
the use of information gain in order to select the sensor set. 
Research by Zois et al [21] uses a selection of sensors 
mechanism based on state transition probabilities and the 
number of samples required. The use of a Binary Particle 
Swarm Optimization (BPSO) algorithm to find the best 
sensors to estimate a parameter is proposed by Naeem et al 
[22]. Stochastic distances or divergences have previously been 
used by Liu et al [23], in which a sensor selection technique 
for multi-target tracking, where the sensor selection criterion 
is based on the Cauchy-Schwarz divergence between the 
predicted and updated densities. 

Selecting the optimal set of sensors has also been applied 
to health applications as published by Santi et al [24]. Within 
the area of insole pressure sensors, the study by Kanitthika et 
al [1] uses the correlation coefficients between the positions of 
99 sensors (each foot) and 11 subjects walking at a constant 
speed on a treadmill for around 1 minute to select the optimal 
sensors. Based on the highest correlation coefficients, 4 
regions were selected in the insole. However, the study is 
limited in terms of its relevance to health and rehabilitation 
applications since only healthy controls were recruited. 
Yingxiao et al [25] propose the use of a selective sensing and 
sparsity-based signal reconstruction method to randomly 
select some sensors in a pressure insole (for longitudinal gait 
analysis), to increase the battery life while minimizing the 
reconstruction errors. From a dense smart insole equipped 
with 52*20 pressure sensors, a real-time analysis uses a Local 
Randomized Selective Sensing approach to select some 
sensors depending on the gait stage. The samples are selected 
randomly and sparsely. However, the validation of results is 
limited in terms of including people suffering any medical 
condition affecting gait. In fact, the proposed algorithm is 
based on the use of a gait model based on 4 consecutive stages 
(contact, midstance, propulsive and swing) which cannot be 
applied for the case of stroke survivors [7]. Sazonov et al. [35] 
performed a sensor optimization in an 8 sensor (5 pressure-
sensors and 3 accelerometers) insole with the objective of 

posture and activity detection. Six different postures and 
activities (sitting, standing, walking/jogging, ascending stairs, 
descending stairs, cycling) were classified from sensor data 
using a support vector machine (SVM) with a Gaussian 
kernel. An iterative process in which a sensor was remove at 
every step is presented. The proposed systems achieved a 
95.2% accuracy when using the 8 sensors and 84.4% when 
using the optimal sensor (in the heel region). However, only 
healthy individuals were used in the optimization process and 
the objective was different from the one in this paper. In our 
research study presented in this paper, we propose the use of 
the total variation and the L1 distances to characterize the 
influence of each pressure sensor to assess the gait 
asymmetries and the plantar pressure patterns during the 
stance phase for stroke survivors and healthy controls. The 
total variation distance is based on the normalized average 
activation patterns of each sensor on each foot. The greater the 
difference for each particular sensor the more significant the 
asymmetry is while walking. The L1 distance is applied to the 
combined 2-D plantar pressure plot using the activation of all 
the sensors during the stance phase compared to the same 
activation plot when removing one sensor. A greater distance 
indicates that the sensor is more fundamental when 
reconstructing the values of the 2-D pressure plot. This 
technique is extended to select an optimal subset of 4 sensors 
in the insole by adding some constraints. Previous metrics to 
assess gait asymmetries for stroke survivors such as [39] [42] 
are based on equations that use overall spatiotemporal features 
in the gait cycle (such as step length, swing time and double 
support time), in many cases not using the detailed 
contribution of each part of the foot in the final value. In this 
research study, we complement previous metrics so that 
information in the most relevant parts of the foot during the 
stance phase can be considered.  

The remainder of this paper is organized as follows. The 
methodology is presented in section II . The description of the 
sensors used is captured in section III. The proposed algorithm 
is detailed in section IV. Section V details the results of the 
study which was conducted using healthy controls (n=14) and 
stroke survivors (n=14). Finally, section VI presents the 
authors concluding remarks. 

II. METHOD 

Stroke survivors (n=14) and healthy controls (n-14) were 
recruited from the Sheffield area in the United Kingdom. Each 
participant performed a 10-meter walk test (repeated 6 times) 
while resting between repeats. Data was captured to record the 
pressure signals over time in both insoles. Stroke survivors 
were undergoing a program of rehabilitation and were able to 
walk without the assistance of a carer. 

The study took place in the Centre for Assistive Technology 
and Connected Healthcare (CATCH) HomeLab, in the 
University of Sheffield. The CATCH HomeLab simulates the 
home environment, allowing participants to experience a 
setting that represents their daily lives at home. The HomeLab 
provided a unobtrusive, level, and consistent surface for 
participants to carry out their walking tests. 

Table I and Table II provide a summary of participant 



demographics showing their gender, age, insole size, weight, 
and affected side for stroke survivors. 

 

 
The participants wore insoles equipped with pressure 

sensors distributed as shown in Fig. 1 and a small ankle 
attachment. The insoles hardware and associated recording 
software were provided by a company in Portugal called 
Kinematix[36]. The insole comprises a network of 8 force 
sensitive resistors per foot/insole (Fig 2). 

The first and last steps from each walking segment were 
omitted from the calculations to analyze steps executed in 
similar circumstances (the first step tends to have greater 
forefoot pressure due to the acceleration of the walking speed 
and the last step the opposite due to deacceleration as shown 
in Fig 3). 

All the data was captured using a laptop application 
provided by Kinematix which was able to generate a comma 
separated  file containing the raw sensor data. The raw data 
was then further processed and analyzed using Matlab[38]. 

 

 
Fig. 1.  Smart Insole Technology: Left - FSRs showing a typical layout, Right 
- Donning arrangements of ankle strap and accompanying footwear 
 

 
Fig. 2.  Initial sensor distribution 
 

The initial design of the location of the 8 insole sensors 
were distributed to facilitate coverage of the entire foot (two 
located in the heel region, one in the midfoot, three in the 
forefoot and two under the toes) as illustrated in Fig. 2. The 
cost of the insole is one of the major factors in determining its 
mass dissemination and use in applications such as self-
rehabilitation [26]. The aim of this paper is to analyze the 
relative importance of each sensor in this initial design to 
assess gait asymmetries and pressure patterns with the goal to 
select a minimal set of sensors for use with stroke survivors. 
The influence of the contribution of each sensor as compared 
to the composed data from the 8 sensors is assessed to 
evaluate the expected degradation in the system performance 
when executing the sensor optimization. 

III.  SENSORS 

This section provides further elaboration and about the 
hardware details of the device used to record plantar foot 
pressure as well as the sensors used in that device. 

A. Sensor technology 

The insoles used were provided by Kinematix [36] using 
sensors from IEE (a Luxembourg based company founded in 
1989,[37]). IEE’s Force Sensing Resistor (FSR) uses electrical 
resistance, which varies as a function of the pressure applied 
to the sensor cell. The sensor can measure punctual plantar 

TABLE I 
DEMOGRAPHICS FOR HEALTHY PARTICIPANTS IN THE STUDY 

ID Gender Age 
(years) 

Insole Size Weight (kg) 

1 F 45 M 63.5 
2 M 44 L 69.9 
3 F 46 S 64.8 
4 F 55 M 64.1 
5 F 54 M 75 
6 M 45 XL 80 
7 F 52 S 64.2 
8 F 50 M 72 
9 M 46 M 70 
10 F 51 S 54 
11 M 44 XL 88 
12 M 45 L 79 
13 M 69 M 72 
14 M 58 L 75 

 

TABLE II  
DEMOGRAPHICS FOR STROKE SURVIVOR PARTICIPANTS IN THE STUDY 

ID Gender Age 
(years) 

Affected 
Side 

Insole 
Size 

Weight 
(kg) 

15 F 64 Right L 105 
16 M 61 Right M 85 
17 F 66 Right M 75 
18 M 50 Left XL 90 
19 F 79 Left S 64.8 
20 F 72 Right M 73 
21 M 64 Left XL 90.8 
22 F 75 Right L 114.3 
23 M 75 Left L 80 
24 F 68 Both M 95.3 
25 F 69 Left M 66 
26 M 84 Right XL 95.3 
27 M 39 Both L 84.1 
28 M 64 Right XL 87.3 

 



pressure up to 6 Bar. The cell response has a low hysteresis. 
The sensor cell can withstand more than one million activation 
cycles[37]. Each sensor weights 5 grams and covers a sensing 
area of 200 mm2. In addition, it houses an accelerometer and 
magnetometer both of which are not used in this study. Force 
Sensitive Resistors (FSR) have been previously used in related 
studies in order to extract temporal parameters such as 
cadence, step time, stance time and others for gait monitoring 
using sampling frequencies from 25 to 200 Hz. [27].  IEE’s 
Force Sensing Resistor (FSR) sensors provide an up-to-date 
tradeoff in terms of battery life, sampling frequency, and 
accuracy for gait monitoring and plantar pressure 
measurement [27]. FSR have been previously selected in order 
to build low-cost smart insoles [28]. 

B. Smart insole 

The smart insole comprises an array of 8 Force Sensing 
Resistor sensors that provides a novel approach to gait 
monitoring and can be used in a free-living context which 
promotes its ecological validity. It is a wearable device that 
attaches to a users’ ankle via a Velcro strap. The device 
integrates into standard footwear through a network of 
pressure sensors positioned on a standard insole and connects 
to the ankle by means of a ribbon cable and terminating 
connector. The smart insole is capable of capturing data from 
8 recording sites on the sole of the foot using the piezo 
resistive sensors or Force Sensitive Resistors (FSR) as 
described in the previous sub-section and shown in Fig. 1. 
Samples are taken at a rate of 100 Hz and at a resolution of 8 
bits and are transmitted using Bluetooth to a nearby computer 
such as a laptop or smart phone. The electronics is powered by 
a 16 bit mixed signal microcontroller from Texas Instruments 
(M420 family of processors). It supports a 12 bit 14 channel 
analogue to digital converter and offers ultra-low power 
consumption. The device runs from a rechargeable lithium-ion 
battery which provides 3.7v at a capacity of 890 mAh yielding 
200 hours of standby and 40 hours in use. 

IV.  PROPOSED ALGORITHMS 

This section provides details on the proposed algorithms to 
assess the most significant sensors in terms of discrimination 
of gait asymmetries and plantar pressure 2D plot 
reconstruction. An introductory subsection about data 
gathering and preprocessing follows: 

A. Data Gathering and Pre-processing 

The insoles are able to sample the 8 pressure sensors at 
100Hz. The information was transmitted in real time to a 
laptop computer using Bluetooth. The laptop stored the 
received data into a csv file containing the data for each foot 
on alternate lines one after the other. The csv file was 
imported into Matlab [38] in order to prepare the data for the 
chain of processing steps. The pressure data was imported into 
two N*8 matrixes (one for each foot) in which each column 
contains the information for a particular sensor and each row 
represents a particular sample.  

Let’s assume that we have a total of N samples 

(representing N/100 seconds of recorded data, since the data 
was sampled at 100Hz). The first pre-processing task for the 
imported data was to select and isolate the steady walking 
sections from the rest of the data. Our definition of steady 
walking refers to all the walking data but with the first and last 
step removed. The first and the last steps in each segment are 
atypical (accelerating or deaccelerating) as shown in Fig. 3 
and therefore should not be compared with the other steps. Fig 
3 shows the total pressure captured by the 8 sensors for the left 
foot of a healthy control during one of the walking segments. 
The length and the pressure patterns for the first and the last 
steps are visually different from the middle steps. The stance 
phase is calculated by marking the start when there is set of 10 
samples with a total pressure value greater than a threshold 
and marking the end when there is a set of 10 samples below 
that activation threshold (we have used 0.2 kg/cm2 as the 
working threshold). Computing the t-test for the duration of 
the stance phase for the participant in Fig 3 and isolating the 
first and last steps from the rest of the steps from the left foot a 
p-value of 0.00000004 is obtained. 

 

 
 
Fig 3.  Total pressure captured by the 8 sensors during one way walking. 
The second pre-processing task was to discard steps in 

which the information of one or more sensors was partially or 
entirely missing due to either a sensing or transmission error. 

Finally, the length of each steady and complete step was 
normalized (resampled) to contain 100 samples. After a 
stroke, many gait related features are asymmetrical [40]. In 
order to define assessment metrics for gait asymmetries, some 
previous studies have normalized the gait cycle into a 
percentage value (from 0 to 100) [41] or use symmetry 
indexes or ratios in order to normalize the values [39]. 
Normalizing the gait asymmetry values facilitates the 
comparison among individuals using person-independent 
scales (allowing inter-individual, intersegmental, and inter-
parameter comparisons [39]). In our case, the effect of 
walking at different speeds in each of the walking segments 
and by different participants has been accommodated by using 
a normalized stance phase of 100 samples... The resampling 
process is described by equations (1) to (4). S௝௜ሾͳǣ ͳͲͲሿሺnሻ 
represents the resampled value n in the range from 1 to 100 for 
sensor Sj (j=1:8) at step i (i=1:M or 1:M’) and S௝௜ሾͳǣ Tሿሺtሻ 
represents the real value at instant t in the sample of T 
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elements (in centi-seconds). Two final 100*M and 100*M’ 
matrixes containing all the normalized pre-filtered steps for 
each foot were generated. Each column represents one of the 
M and M’ selected normalized steps. 

 S௝௜ሾͳǣ ͳͲͲሿሺnሻ ൌ ଵܥ ቀS୨୧ሾͳǣ Tሿሺt െ ͳሻቁ ൅ ଶ൫S୨୧ሾͳǣܥ Tሿሺtሻ൯ (1) 

ݐ  െ ͳܶ ൑ ݊ͳͲͲ ൑ ݐܶ
 (2) 

ଵܥ  ൌ ܶ ή ൬ ݐܶ െ ݊ͳͲͲ൰ ଶܥ ݀݊ܽ  ൌ ͳ െ  ଵ (3)ܥ

 S௝௜ሾͳǣ ͳͲͲሿሺͳሻ ൌ ቀS୨୧ሾͳǣ Tሿሺͳሻቁ  (4) 

 

B. Assessing Gait Asymmetries 

To compute the major gait asymmetries and to assess the 
relative importance of each sensor to provide an estimation for 
such gait asymmetries, the average pressure curves are 
calculated for each sensor on each insole. The signal for the 
average pressure for sensor Sj is a vector of 100 samples 
calculated using the following equation (5). 

 S௝ሾͳǣ ͳͲͲሿ ൌ ͳM ෍൫S୨୧ሾͳǣ ͳͲͲሿ൯୑
୧ୀଵ  (5) 

 
In order to compute a stochastic distance for the signal of 

each sensor at each foot, the Sj is normalized so that the sum 
of its samples is equal to 1 as shown in equation (6). 

 

௝ܵᇱሺkሻ ൌ S୨ሺ݇ሻσ ൫S୨ሺ݅ሻ൯ଵ଴଴୧ୀଵ  (6) 

 
The gait asymmetries can then be estimated by using a 

stochastic distance or divergence on the S୨ᇱ signals (where j = 1 
to 8). The Kullback–Leibler divergence is widely used in 
information theory [29] or in variational inference [30]. The 
Cauchy-Schwarz divergence has previously been applied to 
solving the problem of sensor selection for multi-object 
tracking [23]. In this paper, we propose the use of the total 
variation distance which provides the same value for distances 
from the left foot to the right foot and vice versa (statistical 
divergences do not need to be symmetric). The total variation 
distance for the ܵோ௝ᇱ  and ܵ௅௝ᇱ  signals can be calculated as 
captured by equation (7). The R sub-index represents the 
signal for sensor j in the right foot. The L sub-index represents 
the signal for sensor j in the left foot. The values for d௝ are 
computed for each sensor. 

 d௝ ൌ ͳʹ ෍หܵோ௝ᇱ ሺ݅ሻ െ ܵ௅௝ᇱ ሺ݅ሻหଵ଴଴
୧ୀଵ  (7) 

 

C. Estimating Plantar Pressure Patterns 

The center of pressure during the stance phase provides a 
plot for the evolution over time of the person’s weight 
distribution while walking. Each pressure sensor is located in 
a particular point in the 2-D space of the insole. The 
coordinates for sensor j can be expressed as captured in 
equation (8). 

 LሺS௝ሻ ൌ ൫ݔ௝ ǡ  ௝൯ (8)ݕ
 
In order to compensate for the effect that different insole 

sizes may have on the location of each sensor in the insole, 
and to perform the calculation of distances, we re-scale the 
locations of each sensor so that the size of the insole is 
normalized to 1 in both axes as shown in equation (9). LԢሺS௝ሻ ൌ ൬ ሻݔ௝max ሺݔ ǡ  ሻ൰ (9)ݕ௝max ሺݕ

 
The average plantar pressure pattern for each foot will then 

be calculated as shown in equation (10). ܮԢሺSሻ represents the 
center of pressure for each sample during the normalized step 
of 100 samples of duration. M is the number of pre-filtered 
steps. S୨୧ is the pressure for each sample at sensor j for pre-
filtered step i and LԢሺS௝ሻ the normalized location for sensor j 
(which does not depend on the sample or step). 

ԢሺSሻሾͳǣܮ  ͳͲͲሿ ൌ ͳM ෍ ቆσ ൫S୨୧ሾͳǣ ͳͲͲሿ כ  LԢሺS௝ሻ൯୨଼ୀଵσ ൫S୨୧ሾͳǣ ͳͲͲሿ൯୨଼ୀଵ ቇ୑
୧ୀଵ  (10) 

 
In order to assess the influence of each sensor for the 

plantar pressure pattern estimation, the LԢሺS௣ሻ is calculated by 
evaluating the expression in equation (10) leaving apart sensor 
p. By calculating a certain distance between ܮԢሺSሻ and LԢሺS௣ሻ 
the relative importance of each sensor for computing the 
plantar pressure pattern can be assessed. In our case, and 
analyzing the stochastic distance used in equation (7) a 
distance based on the L1 norm will be used as shown in 
equation (11). The greater the L1 distance d௣ the more 
important sensor p will be in reconstructing a pressure plantar 
plot with similar information as compared to the one 
calculated using the 8 sensors. 

 d௣ ൌ ͳͳͲͲ ෍หܮԢሺSሻሺ݅ሻ െ LԢሺS௣ሻ ሺ݅ሻหଵ଴଴
୧ୀଵ  (11) 

V. EXPERIMENTAL RESULTS 

This section provides the experimental results for assessing 
gait asymmetries and estimating plantar pressure patterns for 
the stroke survivor group and the healthy control group. The 
optimal sensors for each group are presented and the results 
are compared. 

A. Assessing Gait Asymmetries  

Gait asymmetries can be assessed by comparing the 



pressure captured by each sensor at each foot during the stance 
phase. In order to compensate different speeds while walking, 
the length of the stance phase for all the steps has been 
normalized to contain 100 samples. Normalizing the gait 
asymmetry values facilitates the comparison among 
individuals using person-independent scales (allowing inter-
individual, intersegmental, and inter-parameter comparisons 
[39]). After averaging the data from pre-filtered steps (not 
including the first and the last steps for each walking segment) 
the pressure per sensor plot is presented in Fig. 4 and Fig. 5 
for a healthy control and in Fig. 6 and Fig. 7 for a stroke 
survivor. By comparing the plots in Fig. 6 and Fig. 7 visually 
it is obvious that there is a significant difference between the 
symmetry of left and right foot strikes. At the beginning of the 
pressure plot in Fig. 6 the left foot of the stroke survivor 
shows less pressure in the heel region than that of the right 
foot in Fig. 7. In addition, the sensors activated in the midfoot 
do so sooner (stroke survivors showing asymmetries caused 
by hemiparesis may show a similar pattern to healthy controls 
on the non-affected site and an asymmetrical pattern on the 
affected site depending on different strategies [7]).  The design 
of the insole in both feet locates the sensors in the same 
regions on the foot in order to assess asymmetries by 
comparing the same regions (identifying the regions of the 
insole that capture the most relevant information about gait 
asymmetries). A generic approach in which different locations 
could be selected in each insole is left for further study.  

 

 
Normalizing the pressure plots so that the sum of the 

samples per sensor is equal to 1 and calculating the total 
variation distance as presented in equation (7) for each sensor 
and each participant we can try to estimate a quantitative value 
for gait asymmetries. We can also assess which sensors are 
better at representing these asymmetries. Fig. 8 shows the 
mean, maximum and minimum values for the total variation 
distance for each sensor for all healthy controls. In this case, 
the quantitative values should be small for all the sensors since 
healthy controls do not visually present important gait 
asymmetries. In Fig. 8, however, there is one sensor, sensor 2, 
which can be considered atypical, and therefore should not be 
considered for assessing gait asymmetries. In fact, sensor 2 (as 

 
Fig 4.  Pressure distribution per sensor during the normalized stance phase for 
a healthy control (left foot). 
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Fig 5.  Pressure distribution per sensor during the normalized stance phase for 
a healthy control (right foot). 
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Fig 6.  Pressure distribution per sensor during the normalized stance phase for 
a stroke survivor (left foot). 
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Fig 7.  Pressure distribution per sensor during the normalized stance phase for 
a stroke survivor (right foot). 
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shown in Fig. 2) is located under the central toes at the end of 
the shoe. We have observed that in many occasions, due to a 
moderate mismatch between the size of the shoe and the 
insole, sensor 2 did not accurately record the pressure under 
the toes but instead the pressure in the region between the toes 
and the forefoot. Leaving out sensor 2, the sensors that are 
best used to represent gait asymmetries are sensors 1 and 6. 
 

 
Fig. 9 represents a similar figure for stroke survivors. In 

comparison with the results for healthy controls the total 
variation distance is greater for all the sensors except for 
sensors 1 and 2 under the toes. In this case, sensor 6 continues 
to be the optimal sensor to assess differences in the gait. 
Sensor 3 in the forefoot region is the second-best sensor in 
terms of the total variation distance. 

 

 

B. Estimating Plantar Pressure Patterns 

Plantar pressure patterns can be reconstructed by combining 
the information of all the sensors as shown in equation (10). In 
order to assess the importance of each sensor in order to 
reconstruct the plantar pressure patterns we have applied 
equation (11) when taking out one sensor at a time and 
computing the L1 distance between the plots with all sensors 
and those with one sensor removed. The total distance has 
been calculated by adding the L1 distance for each foot for the 
same sensors. Fig. 10 shows the results for the mean, 
maximum and minimum values for healthy controls. Fig. 11 

shows the same calculations for stroke survivors group. 
 

 

 
In the case of healthy controls, sensors 3 and 5 in the 

forefoot region represent those that, when removed, provide a 
plantar pressure plot which differs the most compared with the 
pressure plot including all the sensors. Sensors 7 and 8 in the 
heel region are also important but the effect of removing one 
sensor is not as significant since the pressure patterns recorded 
by both sensors are similar and the absence of one of them is 
partially compensated by the other. Sensor 2 tends to be of a 
very limited relevance in terms of reconstructing the plantar 
pressure patterns. 

In the case of stroke survivors, the most important sensors 
to properly reconstruct the plantar pressure patterns are the 
sensors in the heel region, in particular sensor 7. In fact, one of 
the common effects suffered by stroke survivors when 
walking is the limited heel contact during the stance phase. 
Assessing this walking strategy is an important aspect in the 
rehabilitation process. Sensor 6 is of greater importance when 
compared to the case in the healthy controls group. However, 
the sensors in the forefoot region tend to be less important for 
reconstructing the plantar pressure patterns in the case of 
stroke survivors than in the case of healthy controls. Sensor 2 
continues to be of limited significance and sensor 1 has a more 
significant role in the case of the stroke survivors group. 

Finding the optimal sub-set of n sensors to be used in order 
to minimize the L1 distance to the average plantar pressure 
pattern obtained from the complete sensor set will require 
trying all the possible combinations of n sensors. Several 

 
Fig 8.  Total variation distance for healthy controls. 
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Fig 9.  Total variation distance for stroke survivors. 
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Fig 10.  L1 distance for healthy controls taking out one sensor. 
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Fig 11.  L1 distance for stroke survivors taking out one sensor. 
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studies have approximated the search space in order to find a 
near optimal solution based on the reduction in the entropy 
[19], the information gain [20], using state transition 
probabilities [21], using particle swarm optimization 
techniques [22] or using stochastic distances [23]. In our case, 
we will simplify the space for searching the optimal solution 
to include one and only one sensor in each region of the insole 
(heel, midfoot, forefoot and toes). This implies searching for 
the optimal set of 4 sensors with the additional constraint of 
having one and only one sensor in each region of the foot. 
Having pressure information for the 4 longitudinal parts of the 
insole is a requirement in order to assess the different walking 
strategies commonly used by stroke survivors [7]. Having one 
sensor in each region of the insole will allow us to reproduce 
the longitudinal transition from heel to toe and the set of 4 
sensors will be selected so that the lateral transition is 
optimally captured with the minimal set of sensors. Instead of 
trying all possible combinations of one sensor in each region 
(which will require an evaluation of 2*3*1*2=12 sensor sets) 
we could simplify the search space by optimizing a region at a 
time (simplifying the search space to 3 combinations since the 
optimization of the heel and toe regions was already done in 
Fig. 11 since there are only 2 sensors in these regions) and the 
results will be the same. The optimal solution is obtained for 
sensors 1, 4, 6 and 7. In fact, sensor 6 is required by the design 
since it is the only one in the midfoot region and sensors 1 and 
7 are expected to be present in the optimal solution since they 
contribute the most when taken out in their region (each of 
only 2 sensors) as shown in Fig. 11. However, sensor 4 is the 
one which less contributes to the error in Fig. 11. However, 
due to the fact that sensor 4 is in the middle of the forefoot 
region, it is able to better represent the overall plantar pressure 
pattern when one only one of the 3 sensors in the forefoot 
region is used. The location of the selected 4 sensors 
minimizing the L1 distance with the plantar pressure pattern 
provided by the entire set of sensors subject to the constrain of 
selecting one and only one sensor in each region is shown in 
Fig. 12. The results are congruent with the plantar pressure 
plots presented in [7]. 

The L1 distance for each normalized sample for the optimal 
set of 4 sensors to the plantar pressure pattern calculated from 
the complete set of sensors is shown in Fig. 13. Except for the 
toe region, the reconstruction error is similar to the error we 
found when taking out a single sensor. 

 

 

VI.  CONCLUSIONS  

This paper has proposed and evaluated two mechanisms to 
select the optimal set of pressure sensors and their locations on 
a pressure monitoring insole in order to assess gait 
asymmetries and be able to optimally reconstruct plantar 
pressure patterns stroke survivors. A control group of healthy 
individuals has been used to assess the differences with the 
experiment group. 

Gait asymmetries have been evaluated by using the total 
variation distance for each sensor in each foot. The sensors 
that better represent the gait asymmetries for healthy controls 
are sensors 1 and 6 (sensors 3 and 6 for stroke survivors). 

Plantar pressure patterns can be optimally reconstructed for 
stroke survivors (if we restrict the set of sensors to only one 
sensor in each region of the insole) using sensors 1, 4, 6 and 7. 
Sensor 2 has less influence for stroke survivors and for the 
healthy control group. Sensors 1 and 6 are less important for 
plantar pattern reconstruction in healthy controls than in stroke 
survivors. In fact, all four regions of the foot play an important 
role for plantar pressure pattern reconstruction for stroke 
survivors while the heel and forefoot region are more 
prominent for healthy controls. 

 
Fig 12.  Optimal sensor distribution. 

 
Fig 13.  L1 distance for stroke survivors for the average step for all 
participants. 
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By reducing the set of sensors to sensors 1, 4, 6 and 7, the 
cost of the insole will be reduced by approximately a half of 
the original cost. This is an important saving for commercial 
users and companies in and enhances the cost to benefit ratio 
for uptake from a national healthcare system. Moreover, the 
information used to inform a self-rehabilitation tool for stroke 
survivors based on the reduced insole will remain similar and 
facilitate patient monitoring in the same manner as before. 
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