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Highlights 

• We evaluate Multi-criteria decision making tools for their usefulness 

• We used incentive-based experiments 

• The usefulness of different tools slightly varied but overall were found good 

• Participants followed the toolǯs recommendation whilst revising their ranking 

• Inconsistency level in judgments had no effect on the usefulness of these tools 
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Are multi-criteria decision-making tools useful? 

An experimental comparative study of three 
methods 

Alessio Ishizaka1,* and Sajid Siraj2,3 

¹ Portsmouth Business School, Centre for Operational Research & Logistics (CORL), University 
of Portsmouth, Portsmouth, PO1 3DE, United Kingdom 

2 Centre for Decision Research, Leeds University Business School, Leeds, United Kingdom 
3 COMSATS Institute of Information Technology, The Mall, Wah Cantonment, Pakistan 

 

Abstract:  

Many decision makers still question the usefulness of multi-criteria decision-making methods 

and prefer to rely on intuitive decisions. In this study we evaluated a number of multi-criteria 

decision-making tools for their usefulness using incentive-based experiments, which is a novel 

approach in operations research but common in psychology and experimental economics. In 

this experiment the participants were asked to compare five coffee shops to win a voucher for 

their best-rated shop. We found that, although the usefulness of different multi-criteria 

decision-making tools varied to some extent, all the tools were found to be useful in the sense 

that, when they decided to change their ranking, they followed the recommendation of the 

multi-criteria decision-making tool. Moreover, the level of inconsistency in the judgements 

provided had no significant effect on the usefulness of these tools. 

Keywords: Decision analysis; SMART; AHP; MACBETH; Experimental evaluation. 

1 Introduction 

It is often the case that a single criterion is insufficient to assess a set of available alternatives. 

Multi-criteria decision making (MCDM) is the field of operational research wherein the decision 

alternatives are analysed with respect to a set of multiple (and often conflicting) criteria. 

Although MCDM remains an active area of research in management science (Wallenius et al., 

2008), a recent survey carried out on information technology (IT) companies (Bernroider & 

Schmollerl, 2013) reported that 71.9% of those companies knew of the existence of MCDM 

                                                             
* Correspondance: Phone: +44 (0)23 92 84 41 71; email: alessio.ishizaka@port.ac.uk 
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methods yet only 33.3% actually used them. This gap between known and used methods is much smaller for the traditional financial methods of costԟbenefit and SWOT analysisǢ that isǡ 
89.5% of companies know financial methods and 74.6% use them. Since considerable effort has 

been put into teaching these methods (Figueira, Greco, & Ehrgott, 2005; Ishizaka & Nemery, 

2013), it is now also important to investigate the usefulness of MCDM methods and to highlight 

the benefits of using these methods for the actual practitioners. 

According to the technology acceptance model, the intention of users to adopt new technology 

has two main extrinsic drivers: perceived usefulness and perceived ease-of-use (Davis, 1989; 

Venkatesh & Bala, 2008). One of the possible reasons that MCDM methods often remain within 

the academic community is that practitioners do not clearly perceive the added value 

(perceived usefulness). This perception/confusion of users can be linked to the following two 

major issues reported in the literature: 1) the methods are difficult to understand for non-

experts (Giannoulis & Ishizaka, 2010) and 2) in many cases different methods do not necessarily 

recommend the same solution for the same problem, which adds to the confusion about which 

method to choose for a particular type of problem (Ishizaka & Nemery, 2013). Moreover, Bond, 

Carlson, and Keeney (2008) found empirically that the knowledge and values of decision 

makers (DMs) are under-utilized when they define their criteria for a given problem. 

This situation leads us to the following two inter-connected questions:  

(1) Are the MCDM methods useful?  

(2) Which MCDM method is more (or less) useful?  

 

MCDM methods have been evaluated in different contexts. For example, Hülle, Kaspar, and 

Möller (2011) performed a bibliometric analysis to examine the use of MCDM methods in the 

field of management accounting and control and revealed that the Analytic Hierarchy Process 

(AHP) is the single most popular tool in this field. Ozernoy (1987) proposed a framework to 

evaluate MCDM methods and to choose the most appropriate method in a given scenario. 

Triantaphyllou (2000) compared several real-life MCDM issues and highlighted a number of surprising ǲabnormalitiesǳ of some of these methodsǤ Mela, Tiainen, and Heinisuo (2012) 

conducted a comparative analysis of MCDM techniques in the context of building design. The 

two main findings were that 1) different methods provide different solutions and 2) there is no single ǲbestǳ methodǤ  
 

The novelty of this research is the verification of the practicality of MCDM methods with 

incentive-based experiments. Inspired by experimental economics studies, the behaviour of 

human subjects in real decision problems was analysed under controlled laboratory conditions. 
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To give appropriate incentives, subjects were rewarded, based on their decisions, with an 

amount of money or goods comparable to what they could gain elsewhere. 

 

Although the use of incentive-based experiments as a research tool has grown in management 

science over the years (Belot & Schröder, 2015; Corgnet, Gómez-Miñambres, & Hernán-

González, 2015), the first use of these incentive-based experiments in decision analysis was 

performed by Ishizaka, Balkenborg, and Kaplan (2011), who experimentally validated the 

suitability of AHP to support decisions. However, in their study only AHP was used in a 

particular experiment, which has a dominating criterion that receives over 50% of the weight. 

Therefore, the multi-criteria nature of the problem is challengeable.  

 

In this research we evaluated the usefulness of three decision-making techniques (AHP, SMART, 

and MACBETH) for a real multi-criteria problem, that is, with no dominating criteria, with 

incentive-based experiments. To evaluate their usefulness, their bespoke software tools were 

installed in a computer experimental laboratory and participants were asked to rank the five 

coffee shops that are available within the university campus. Three rankings were collected: 

R1. From the participant at the beginning of the experiment (a priori or initial ranking) 

R2. From the MCDM method itself (AHP, MACBETH, or SMART) (computer-generated) 

R3. From the participant, a final ranking after learning the computer-generated ranking (a 

posteriori ranking) 

The design of the experiment is based on the study performed by Ishizaka, Balkenborg, and 

Kaplan (2011) with two slight modifications. Firstly, we did not ask the participants to provide a 

new ranking just after filling in the information on the computer and immediately before seeing 

the computer recommendation. This modification was made because the previous study 

reported that this new ranking did not differ significantly from the initial ranking (R1) of the 

participants. Secondly, we introduced a self-reported questionnaire at the end of the experiment 

to assess the perceived usefulness and ease-of-use of the three software tools.  This was 

possible due to the fact that the length of the experiment was reduced slightly after the first 

modification mentioned above. These are the only differences in the design of the experiment 

from the previous study (apart from the differences in the MCDM methods tested and the 

decision problem chosen). 

As a reward, each participant was offered a voucher for the first available ranked coffee shop 

from the randomly chosen ranking R1 or R2. We say the first available because only three of the 

five shops were randomly shortlisted each time to give the participant an incentive to think 
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about the order of the lower-ranked choices and to avoid the possibility that the most-preferred 

alternative would become overweighed. If the participant was not satisfied with the reward 

received, he had the possibility to exchange it for the first option of R3 by paying a small fee 

determined by his dissatisfaction level. These three rankings were compared statistically to 

determine how the decision evolved with the use of an MCDM method. 

In our experimental findings, the MCDM software tools were found to be helpful and the 

participants were satisfied with the solutions suggested by these tools. On the feedback form, 

the majority of the participants perceived the usefulness of these software tools positively. 

Before discussing the experimental design and results, we formulate the MCDM problem below 

and present the necessary details about the methods used.  

2 Background 

Consider a finite set of discrete alternatives, ሼ ଵǡ  ଶǡ ǥ ǡ  ୬ሽ, to be evaluated using a set of 

criteria, ሼ ଵǡ  ଶǡ ǥ ǡ  ୫ሽ. Each alternative   ୧ has a performance score,  ୧୩, with respect to the 

criterion  ୩  ൌ ͳǡǥ ǡ . Given these performance scores, the MCDM problem is to order these 

alternatives from the best to the worst and in some cases also to find the overall score for each 

alternative. Several MCDM methods have been developed for this purpose (Figueira et al., 2005; 

Ishizaka & Nemery, 2013). They can be categorized broadly into three approaches (Roy, 2005; 

Vincke, 1992):  

 Approach based on synthesizing criteria: The scores for all the criteria are aggregated into 

a single overall score. Using such a method, a bad score for one criterion can be compensated 

for by a good score for another criterion. This family includes for example AHP (Saaty, 1980), 

MAUT (Keeney & Raiffa, 1976), SMART  (Edwards, 1977), MACBETH (Bana e Costa & 

Vansnick, 1994), and TOPSIS (Hwang & Yoon, 1981). 

 Approach based on synthesizing preference relations: These methods are also called 

outranking methods, which permit researchers to represent indifference, strict preference, 

and incomparability between alternatives. The most-used methods of this family are the 

ELECTRE methods (for a survey see Figueiraǡ Grecoǡ Royǡ Ƭ Słowińskiǡ ʹͲͳ͵) and the 

PROMETHEE methods (Brans & Mareschal, 1990). 

 Interactive methods: Each MCDA method requires a certain number of preference 

parameters (e.g. weights, preference or indifference thresholds, etc.). Instead of these 

parameters being given directly by the DM, they are elicited indirectly and interactively. This 

idea was first developed for multi-objective optimization, mainly in the field of linear 
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programming with multiple objective functions. For example, Geoffrion, Dyer, and Feinberg 

(1972) and Zionts and Wallenius (1976) inferred the weights of the linear combinations of 

the objectives from trade-offs or pairwise judgements given by the DM for each iteration of 

the methods. Korhonen, Wallenius, and Zionts (1984) proposed to ask the decision maker 

iteratively to compare two possible alternatives until reaching the best solution by 

convergence. Visual interactive methods have been also developed (Korhonen, 1988). Later, 

other methods were developed, such as UTA (Jacquet-Lagrèze & Siskos, 1982), UTAGMS 

(Grecoǡ Mousseauǡ Ƭ Słowińskiǡ ʹͲͲͺ), and conjoint analysis (Green & Srinivasan, 1978). 

As these approaches are based on very different assumptions, they are difficult to compare with 

each other. In this study we focus only on the methods based on synthesizing criteria. Three 

methods, which have commercial supporting software tools, were selected: 

1) The Simple Multi-Attribute Rating Technique (SMART) (Edwards, 1977), as 

implemented in Right Choice 

(http://www.ventanasystems.co.uk/services/software/rightchoice/),  

2) Measuring Attractiveness by a Categorical Based Evaluation Technique (MACBETH) 

(Bana e Costa & Vansnick, 1994), as implemented in M-MACBETH (http://www.m-

macbeth.com), and 

3) The Analytic Hierarchy Process (AHP) as implemented in Expert Choice 

(http://expertchoice.com/) (Saaty, 1977). 

The three methods have different ways of capturing the evaluations of the participants and 

calculating the priorities. SMART asks for direct ratings on a scale from 0 to 100. MACBETH 

requires pairwise comparisons on an interval scale with a strict consistency check and then uses 

linear optimization to calculate the priorities. In AHP the DM provides pairwise comparison 

judgements on a ratio scale and is allowed to be inconsistent in providing these judgements. 

Priorities are usually calculated with the eigenvalue method. As these methods required 

different inputs, their interface is necessarily different. Clearly a badly designed interface would 

disadvantage a method. Therefore, we selected only methods that have a commercial software 

package, because we believe that the implementation has been studied carefully and redesigned 

many times (several previous versions of the software exist) by the developing companies to 

suit best the particular method. The interface was designed by professionals, who carefully 

optimized it for the underlying method. The three methods are presented in the next sub-

sections. 

2.1 SMART 
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In SMART criteria and alternatives are both evaluated with a direct rating, for which the scale is 

usually between 0 and 100. The score of 0 implies that the alternative has no merit, while the 

score of 100 means that the alternative is the ideal one according to the given criterion. This 

rating incorporates all the criteria on the same units and therefore allows us to aggregate all 

these partial scores into a single score.  For this aggregation the weights of the decision criteria 

are also acquired on the 0 to 100 scale. Once all the partial scores and criteria weights are 

obtained, the overall score for each alternative is calculated using the weighted sum model: 

  ୧ ൌ ୩ ୧୩୩  (1) 

where pik is the partial score for alternative  ୧ with respect to criterion  ୩ and wk is the weight 

of  ୩. 

2.2 AHP 

In AHP participants are required to give only pairwise ratio comparisons to compare either 

alternatives or criteria. Their focus is therefore only on two elements at a time, which should 

provide a more precise evaluation (Saaty, 1980, 2013). The evaluations are given on a scale 

from on to nine, where one represents indifference between two alternatives and nine 

represents extreme preference for one alternative over the other (Table 1). The comparisons 

are gathered in a matrix A. Local priorities or weights are calculated from the comparison 

matrix with the eigenvalue method: 

  ή  ሬറ ൌ ௫ߣ  ή  ሬറ   (2) 

where  

A is the pairwise comparison matrix 

  ሬറ is the priorities/weight vector  

 Ȝmax is the maximal eigenvalue 

As the comparison matrix contains redundant information, we can check whether the 

participant has been consistent during the exercise with the consistency index (CI), which is 

related to the eigenvalue method: 

 CI = 
ఒೌೣିିଵ , (3) 

The consistency ratio is given by: 

 CR = CI/RI, (4) 

where RI is the random index.  
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The random index (RI) is usually calculated as the average of the CI values generated from 500 

randomly filled matrices. As a rule of thumb, it has been determined that matrices filled by a DM 

should not be more than 10% inconsistent compared with the RI (Saaty, 1980). Therefore, it is 

recommended that matrices with a CR > 0.1 are revised to decrease the inconsistency. As with 

the SMART method, the local priorities are aggregated using the weighted sum model to 

generate the final scores (si), as given in (1). 

When using AHP, it is assumed that the participants are able to express their preferences on a 

ratio scale (given in Table 1). As this assumption is not always correct,Ș the MACBETH method 

has been developed for participants who prefer interval scales. 

Table 1 Pairwise ratio comparison scale for AHP  

Intensity Definition 

1 Equally preferable or important 

2 Equally to moderately 
3 Moderately more preferable or important 

4 Moderately to strongly 
5 Strongly more preferable or important 

6 Strongly to very strongly 
7 Very strongly more preferable or important 

8 Very strongly to extremely 
9 Extremely more preferable or important 

  

2.3 MACBETH 

In MACBETH the DM is asked to compare each pair of elements (alternatives or criteria) (xm, xn) 

on an interval scale of seven semantic categories Catk, k α Ͳǡǥǡ  ȋas shown in Table 2). In the 

case of hesitation, the DM is allowed to choose a range of successive categories. 

Table 2 Seven semantic categories            Semantic categories 
Cat0 Equal preference 
Cat1 Very weak preference 
Cat2 Weak preference 
Cat3 Moderate preference 
Cat4 Strong preference 
Cat5 Very strong preference 
Cat6 Extreme preference 

 

                                                             Ș Some persons prefer to evaluate ratios, while others prefer intervals. The preference depends on the 

type of problem and on the habit of the person. 
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The attractiveness of each element is given by solving the linear programme (Bana e Costa, De 

Corte, & Vansnick, 2012), where Ȱȋxj) is the score derived for element xj, x+ is at least as 

attractive as any other element xj, and x- is at most as attractive as any other element xj: 

Minimize [Ȱ(x+)  Ȱ(x-)] 

 under the constraints 

ĭ(x-) = 0 (arbitrary assignment) 

ĭ(xx)  ĭ(xy) = 0   xx, xy ג Cat0  

ĭ(xx)  ĭ(xy) ≥ i   xx, xy ג Cati …  Cats with i,s ג and i ≤ s 

ĭ(xx)  ĭ(xy) ≥ ĭ(xw)  ĭ(xz) + i  s’,  xx, xy ג Cati …  Cats and  xw, xz ג Cati …  

Cats with i, s, i’, s’ ג , i ≤ s, i’ ≤ s’ and i > s’. 

If the linear programme is infeasible, this means that the pairwise comparisons are inconsistent. 

MACBETH is at first glance very similar to AHP. However, the two main differences from the 

user perspective are the evaluation scale (interval instead of ratio) and the need to be 

consistent in providing judgements. In MACBETH the priorities cannot be calculated at all when 

the DM is inconsistent.  

We installed these software tools in our computer experimental laboratory and conducted a 

series of experiments to evaluate the supported methods, as discussed in the next section. 

3 Description of the experiment 

In our laboratory experiment, university staff and students were invited to make a 

straightforward but not necessarily easy choice in a real decision problem: to choose a £10 

voucher for one of the coffee shops on the campus. The five coffee shops proposed were the 

Library Café, Park Coffee Shop, St. Andrews Café, Café Coco, and The Hub. Although there are 

more than five shops on the campus, these five were shortlisted due to the fact that they had no 

planned construction work, refurbishment, or any other activity that might have changed their 

properties during the experiments. 

The selection criteria were explored and short-listed in a brain-storming session with ten regular users of the campus coffee shopsǤ The following six criteria were shortlistedǣ ǲgood locationǳǡ ǲproduct qualityǳǡ ǲatmosphereǳǡ ǲwaiting timeǳǡ ǲspace availableǳǡ and ǲrange of productsǳǤ The other criteria included opening time, price, and hospitality. The price criterion 

   1,2,3,4,5,6

   

 1,2,3,4,5,6
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was not included due to the fact that all the shops are managed by the university catering 

service, which enforces the same prices across the campus. Hospitality was not considered to be 

important by the users, as the coffee shops are self-service. The opening and closing times were 

found to be similar, with a minor difference of half an hour; therefore, the opening time criterion 

was also not included. 

Registered staff and students were invited through advertisements in different buildings, 

twitter broadcasts, and the university website. Participants were asked to contact us directly for 

booking and/or any information on the experiments. They were provided with an information 

sheet that included the campus map with the location of each coffee shop along with brief 

information about the products offered and their marketing statements. 

Each participant was asked to give three sets of rankings: 

1. A priori ranking (R1). Each participant was asked to rank the five coffee shops according to 

their own understanding and personal preferences and to write their order of ranking on the 

information sheet. 

2. Computer ranking (R2). One of the three decision-making software tools was assigned to 

each participant. They were then asked to provide the required information for the algorithm 

to calculate a ranking.  Each participant was provided with a step-wise guide to facilitate the 

use of the software tool. 

3. A posteriori ranking (R3). After seeing the results from R2, the participants were again asked 

to rank the five shops, as in the first phase. This ranking was used to test whether the MCDMǯs advice influenced the participantsǯ prioritiesǤ 
After capturing the three sets of rankings, the final phase involved a payoff session. Three out of 

the five shops were randomly shortlisted in front of the participants. We introduced this step to 

encourage people to pay attention to all the assessments instead of only those related to their 

favourite shop. The participants were made aware of this process at the beginning of the 

experiment so that equal attention was given to the lower-ranked options and they had a 

reasonable likelihood of being selected.  

Each participant was offered a £10 voucher for his most-preferred choice, which was taken 

from either R1 (a priori ranking) or R2 (computer-generated ranking) by tossing a coin.  )f the selected voucher did not match the participantsǯ final ranking ȋR͵Ȍǡ they were offered the 
chance to exchange it with another one for a small price. This procedure is called the BeckerȂDe 

GrootȂMarschak (BDM) method (Becker, Degroot, & Marschak, 1964). The participants were 

asked to choose the maximum amount of money (between 0 and £1) that they would be willing 
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to sacrifice to receive the voucher of their final choice. We term this amount the willingness to 

swap. A random number between 0 and 1, representing the transaction fee, was generated with 

uniform distribution, and the voucher was swapped only if the number generated was equal to 

or below the willingness to swap. In this case the transaction fee was deducted from the initial 

£10 voucher. 

This measure was used to capture the participantsǯ disagreement with either ranking Rͳ or 
ranking R2. For example, if the voucher was offered using R1 and the participant disagreed with 

a willingness to swap equal to £1, this means that the participant definitively wanted to swap 

his voucher, as he/she was in total disagreement with his/her original ranking (any random 

generated number was below or equal to 1). On the other hand, if the voucher was offered using 

R2 and the willingness to swap was again equal to 1, then the participant appeared to be in total 

disagreement with the computer-generated ranking. In the former case, the participant 

appeared to have changed his decision after using the software tool, supporting its usefulness. 

Any other amount between 0 and £1 indicated the intensity of the partial disagreement. 

The experiments were scheduled as a series of one-hour sessions in computer experimental 

laboratories. To avoid maturation bias, each participant was restricted to evaluate only one 

software tool, and the participants were not allowed to reappear in subsequent sessions. The 

participants were asked to read the information sheet carefully and then to give their consent to 

participate before the start of the actual experiment. 

4 Results 

4.1 Participants 

The participants were recruited on a voluntary basis. Advertising was targeted towards all the 

staff and students of the university; therefore, the subjects were diverse (the demographics are 

summarized in Table 3). We registered 146 participants, 70 (47.9% of the sample) of whom 

were male and 76 (52.1%) female. The participants were from 31 different nationalities, and 78 

participants (53.4% of the sample) were found to be British/English nationals. Regarding age, 

97 participants (65%) were between 18 and 22 years old and only 7 participants (4.8%) were 

above 40 years old. The majority of the participants were students at the undergraduate level 

(119 participants, 81%), while very few staff members participated (9 participants, 6%). 

Although people from 27 different academic disciplines participated, the participants from the 

business/management discipline (35 in total, 24%) outnumbered those from other 

departments. A possible reason could be that the experimental laboratories were situated in 
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their academic building, so it was relatively more convenient for them to participate. A total of 

145 participants successfully completed the experiment. Only 1 participant did not complete the 

experiment due to a technical issue; specifically, the software stopped responding twice and the 

respondent was not willing to repeat the experiment a third time. Expert Choice (for AHP) and 

RightChoice (for SMART) were each evaluated by 50 participants, while M-MACBETH (for 

MACBETH) was evaluated by 45 participants. 

Table 3 Demographic details of the participants (the numbers of participants are shown in brackets) 

Software Expert Choice (50) M-MACBETH (46) RightChoice (50) 

Education PhD (2), PG (6), UG (36), Staff (6) PhD (2), PG (6), UG (35), Staff (3) PhD (1), PG (4) , UG (44), Staff (1) 

Nationality British (18), Bulgarian (1), Chinese (3), 

English (6), French (2), German (2), 

Greek (1), Indian (4), Italian (1), 

Kenyan (1), Lithuanian (1), Malaysian 

(1), Nigerian (1), Norwegian (1), 

Romanian (2), Spanish (2), 

Tanzanian(2) 

Albanian (1), Argentinian (1), 

Austrian (1), British (19), Bruneian 

(1), English (3), Ethiopian (1), French 

(1), Gibraltarian (1), Greek (2), Italian 

(1), Japanese (1), Lithuanian (2), 

Nigerian (1), Romanian (4), UK (1), 

Zimbabwean (2) 

British (28), Chinese (1), English (3), 

Filipino (1), German (3), Hong Kong 

(1), Hungarian (1), Italian (2), 

Malaysian (1), Polish (1), Romanian 

(5), Spanish (1), Swiss (1) 

Gender Male (21), Female (29) Male (26), Female (20) Male (23), Female (27) 

Age 24.2 (± 7.6 s.d.) 24.3 (± 8.3 s.d.) 21.5 (± 3.1 s.d.) 

 

4.2 Criteria weight analysis 

The average criteria weights captured by the three software tools are given in Table 4, along 

with the overall average and standard deviation. All six criteria were assigned weights of more 

than 12% on average, which implies that the weights were fairly distributed. The criteria of ǲgood locationǳ and ǲproduct qualityǳ were found to be the two most-weighted criteria for 

choosing a coffee shop. Although there was no dominating criterion (having more than 50% 

weight), those participants who used M-MACBETH assigned a much greater weight to their top criterionǡ that isǡ ͵ͺǤͺΨ for a ǲgood locationǳǤ  
Table 4 Weights assigned to different criteria (mean ± standard deviation) and ANOVA results for the three 

tools 

Criterion Expert Choice M-MACBETH RightChoice Overall F-test p 

Good Location 18.5% ± 13.9 38.8% ± 17.4 20.4% ± 10.9 25.5% ± 16.8 28.76 0.000 

Product Quality 25.8% ± 14.0 19.6% ± 14.1 20.5% ± 08.5 22.0% ± 12.6 3.415 0.036 

Ambience 11.4% ± 09.6 12.6% ± 13.3 12.0% ± 07.4 12.0% ± 10.2 0.159 0.853 

Waiting Time  13.8% ± 11.3 11.5% ± 10.5 15.1% ± 07.6 13.5% ± 09.9 1.518 0.223 

Space Available 12.2% ± 08.6 07.9% ± 08.8 15.9% ± 09.8 12.1% ± 09.6 9.231 0.000 

Range of Products 18.3% ± 11.9 09.6% ± 10.2 16.2% ± 08.3 14.9% ± 10.8 9.293 0.000 
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The weights from the participants using Expert Choice and RightChoice are more evenly 

distributed and have a high rank correlation (Kendall coefficient of 0.87). The weights given by 

M-MACBETH have a low rank correlation with Expert Choice (Kendall coefficient of 0.33) and 

RightChoice (Kendall coefficient of 0.2). The ANOVA results (Table 4) for the three software 

tools suggest that the weights for ambience and waiting time are similar while the other four 

criteria have significantly different weights generated by different software tools. 

The Leveneǯs test suggested that the variances for the three groups were significantly different; 

however, the ANOVA test is still considered to be appropriate due to the facts that: 

 1) The ratio of the largest to the smallest group size is 1.08, which is considerably less than the 

acceptable threshold of 1.5; 

2) The number of samples for all the groups is higher than 5 (as the 3 groups have sample sizes 

of 50, 46, and 50); 

3) The ratio of the largest to the smallest variance is 1.79, which is smaller than the widely 

accepted threshold of 9.1.  

As equal variances were not assumed, we performed the GamesȂHowell test, which is 

considered to be appropriate in such conditions. The pairwise GamesȂHowell test results are 

provided in Table 5 for comparing the means of the criteria weights.   

Shown in bold, the weights generated by M-MACBETH were found to be significantly different 

from the other two methods. Each case concerns a weight calculated by M-MACBETH. Since the 

demographics were not significantly different for the three groups, we believe that this is due to 

the fact that the MACBETH technique uses a different scale for acquiring user preferences; 

therefore, the preference weights have different values from those obtained through AHP and 

SMART.  

Table 5 GamesȂHowell test to compare the means of criteria weights for the three software tools 

Criterion Pairwise Comparison Mean Difference p 

Good Location Expert Choice M-MACBETH -0.20314 0.000 

 
Expert Choice RightChoice -0.01912 0.731 

 
RightChoice M-MACBETH -0.18402 0.000 

Product Quality Expert Choice M-MACBETH 0.06132 0.095 

 
Expert Choice RightChoice 0.05285 0.070 

 
RightChoice M-MACBETH 0.00847 0.934 
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Ambience 
 

Not required 
  

Waiting Time 
 

Not required 
  

Space Available Expert Choice M-MACBETH 0.04299 0.051 

 
Expert Choice RightChoice -0.03747 0.115 

 
Right Choice M-MACBETH 0.08046 0.000 

Range of 
Products 

Expert Choice M-MACBETH 0.08838 0.001 

 
Expert Choice RightChoice 0.02215 0.541 

 
RightChoice M-MACBETH 0.06623 0.003 

 

At the end of the experiment, the participants were asked to comment on the selected criteria 

for ranking the coffee shops. Most of the participants suggested that there was no missing 

criterion and that the selected criteria were helpful in the decision process. A number of 

participants (24 out of 146) suggested that price could have been included. We also believe that 

price is a very important criterion, but, as stated earlier, all the selected coffee shops are run by the universityǯs catering service with identical pricesǢ it is therefore not important in this studyǤ 
Observation 1: This is a real multi-criteria problem and not a single-criterion problem in the 

sense that there is no criterion with over 50% weighting on average and the least important 

criteria have above 12% weighting.  

4.3 Alternativesǯ score analysis 

According to the computer-generated rankings, 66 (45.5%) participants selected The Hub as 

their most-preferred shop, while 53 (36.5%) participants considered St. Andrews Café to be the 

least-preferred shop. The Hub was the coffee shop that received the largest number of first 

rankings from all 3 software tools: 20 out of 50 by Expert Choice, 25 out of 45 by M-MACBETH, 

and 21 out of 50 by RightChoice. Table 6 shows the ANOVA results for the scores assigned to 

different shops, which suggest that the scores generated by different software tools were not 

significantly different. This indicates that the software tools have similar behaviour in assigning 

scores to the available alternatives. 

Table 6 Scores assigned to the alternatives (mean ± standard deviation) with the ANOVA results 

Alternatives Expert Choice M-MACBETH RightChoice Overall F-test p 

Library 0.170 ± 0.104 0.207 ± 0.087 0.185 ± 0.062 0.187 ± 0.087 2.170 0.118 

Park 0.213 ± 0.136 0.197 ± 0.096 0.197 ± 0.060 0.203 ± 0.102 0.397 0.673 

St. Andrews 0.160 ± 0.104 0.136 ± 0.096 0.178 ± 0.059 0.159 ± 0.089 2.664 0.073 
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Coco 0.173 ± 0.122 0.189 ± 0.099 0.197 ± 0.057 0.187 ± 0.096 0.789 0.456 

Hub 0.284 ± 0.151 0.271 ± 0.148 0.243 ± 0.057 0.266 ± 0.126 1.366 0.258 

 
Observation 2ǣ The alternativesǯ scores are similar regardless of the software usedǤ 
4.4 Assessing the three different rankings  To measure the agreement between two rankingsǡ we used the Spearmanǯs rank correlations 
between each pair of rankings, that is, ɏଵଶ for the correlation between R1 and R2, ɏଶଷ for the 

correlation between R2 and R3, and ɏଵଷ for the correlation between R1 and R3. In our 

experiment five scenarios involving R2 (as we were testing the usefulness of the computer 

ranking, a scenario without R2 would not bring any information) are plausible: 

Scenario 1) ɏଶଷ  ɏଵଷ 

This implies that the computer-generated ranking was different from the one that was initially 

provided and that the computer-generated ranking was found to be closer to the finally selected 

one. In this case the software helped the DM in selecting his/her final choice. 

Scenario 2) ɏଶଷ ൏ ɏଵଷ 

This implies that the computer-generated ranking was different from the one that was initially 

provided but that the initial one was closer to the final set of rankings. In other words, the 

software was of little or no help to the DM, as it somehow suggested a ranking that was different 

from his/her final selection. 

Scenario 3) ɏଵଶ ൏ ͳ and ɏଵଷ ൌ ɏଶଷ 

This is possible when the initial and computer-generated rankings were different yet happened to be equidistant from the DMǯs final choiceǤ This is a situation in which it cannot be said 

whether the final preferences were closer to the computer-generated ones or the initial ones. 

However, as the software generated a different ranking, it partially helped the DM in revising 

his/her choices. 

Scenario 4) ɏଵଶ ൌ ͳ and ɏଵଷ ൌ ɏଶଷ ൏ ͳ 

This is a situation in which the software suggested the same as the a priori rankings but the final 

ranking was different from both. This is a strange situation, in which the ranking provided by 

the software does not influence the final decision but the process of using a software tool does.  

Scenario 5) ɏଵଶ ൌ ɏଶଷ ൌ ɏଵଷ ൌ ͳ  

This is a situation in which the software suggested the same ranking as the initial and the final 

one. Although one may argue that the software did not help the DM in the decision-making 

process, it is fair to conclude that the software successfully reproduced the preferences of the 
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DM. Regardless of whether the tool helped the DM or not, it clearly provided a way to justify 

his/her choices in a structured manner. 

 

Table 7 Visualizing the five scenarios 

       

   ɏଶଷ  ɏଵଷ ɏଶଷ ൌ ɏଵଷ ɏଶଷ ൏ ɏଵଷ  

 
 ɏଵଶ ൌ ͳ 

R1 = R2 = R3 NOT POSSIBLE Scenario 5 NOT POSSIBLE  Rͳ α Rʹ β R͵ NOT POSSIBLE Scenario 4 NOT POSSIBLE  

 ɏଵଶ ൏ ͳ  Scenario 1 Scenario 3 Scenario 2  

 

The five scenarios are shown in Table 7. In our experiment, out of all these five scenarios, 

Scenario 1 was found to be the most frequent one. The details for each scenario are provided in 

Table 8. A two-tailed binomial test was carried out to gain statistical evidence on the usefulness 

of the three software tools. The scores for Scenarios 1, 3, and 4 were combined and categorized as successful ȋlabelled as ǲ(elpedǳȌǡ while Scenario ʹ was counted as unsuccessful ȋlabelled as ǲFailedǳȌǤ As discussed earlierǡ Scenario ͷ does not provide clear support in favour of or against 
the software; therefore, it was excluded from this test. The results are provided in the last 

column of Table 8. The table shows that all three software tools were found to be useful at the 

significance level of 5%. The evidence obtained for RightChoice and Expert Choice were 

significant at the 1% level, while the evidence obtained for M-MACBETH was not found to be 

significant at the 1% level. The chi-squared test showed that the results for the three software 

tools were not significantly different (ɖଶ ൌ ͳǤͶͶʹ, p = 0.837).   

 

Table 8 The five scenarios and their frequencies of occurrence 

 Scenario  

1 

Helped 

Scenario 

2 

Failed 

Scenario 

3 

Helped 

Scenario 

4 

Helped 

Scenario 

5 

Not sure 

Helped/ 

Failed 

p 

Expert Choice 24 13 6 1 6 31/13 0.006 

M-MACBETH 20 13 4 1 7 25/13 0.036 

RightChoice 28 12 6 2 2 36/12 0.001 

Overall 73 38 16 4 14   

 
Observation 3: The three software tools helped users in their decision making.  

4.4.1 Payoff threshold exercise 

The payoff game was designed for participants who were unsatisfied with their current 

voucher. In our study 93 participants were eligible to participate (that is, R3 was different from 

the one offered: R1 or R2 based on the coin toss). Among them only 9 participants requested an 
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exchange. They exchanged the voucher straightaway by paying the penalty of £1 or by playing 

the game of choosing a number between 0.01 and 0.99 (see section Error! Reference source 

not found. for the BDM procedure).  

Out of the 38 cases belonging to Scenario 2 (Table 8), in which the software did not appear to 

help the DM, 3 participants asked to exchange the voucher by paying the penalty of £1 

straightaway. Regarding Scenario 1, 2 participants, whom the software did appear to help, 

asked for an exchange of vouchers; that is, they were offered their second-best choice of their 

final ranking but they wanted to exchange it for their first final ranked choice. 

There were four cases in which participants were offered a voucher based on their initial 

rankings but wanted to exchange it for a certain amount (with penalties of £1, 80p, 50p, and 30p 

for the four cases). This implies that these participants preferred the final ranking, which was 

closer to the computer-generated one.  

Observation 4: The disagreement with the computer-generated ranking is small. 

4.4.2 Does inconsistency affect usefulness? 

AHP allows a ranking to be calculated even if the judgements are inconsistent (recall sub-

section 2.2). This raises the question of whether the software is helpful when the judgements 

are highly inconsistent. To answer this question, we grouped all the participants for Expert 

Choice according to the level of inconsistency found in their judgements. Out of 50 AHP 

participants, 5 did not report their level of inconsistency in the given questionnaire. Out of the 

remaining 45 participants, only 8 participants passed the widely accepted criterion of CR < 0.1 

(Cao, Leung, & Law, 2008; Xu & Wei, 1999). Due to very few participants meeting this criterion, 

we tested the number of acceptable cases using different levels of CR thresholds ranging from 

0.10 to 0.30 with increments of 0.05. Figure 1 shows the percentage of acceptable cases in the 2 

situations of the tool helping or failing to help. Interestingly, the 2 situations are not visibly 

different, as indicated below with the statistical tests as well.  



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

 

 18 

 

Figure 1 Percentage of acceptable cases for using different thresholds of acceptance 

Table 9 shows the frequency of participants who found the software to be helpful (Scenarios 1, 

3, 4) or not (Scenario 2), grouped according to the two categories of whether their judgements 

were found to be acceptably consistent or not. For example, using the criterion of CR < 0.10, 

only 3 were marked as consistent while 31 were marked as inconsistent. On the contrary, when 

choosing CR < 0.3, 28 were considered to be consistent and only 6 inconsistent. 

Table 9 Frequencies of consistent and inconsistent cases regarding the usefulness of Expert Choice 

Threshold CR < 

0.1 

CR ш 
0.1 

CR < 

0.15 

CR ш 
0.15 

CR < 

0.2 

CR ш 
0.2 

CR < 

0.25 

CR ш 
0.25 

CR < 

0.3 

CR ш 
0.3 

Helped 2 20 10 12 13 9 17 5 19 3 

Failed to help 1 11 4 8 6 6 7 5 9 3 ɖଶ = 

p = 

0.311 

0.423 

0.103 

0.252 

0.022 

0.118 

0.584 

0.555 

0.129 

0.281 

 After performing Yateǯs correctionǡ the chi-squared test for independence suggested that the 

helpfulness of the tools has no significant relationship with the level of inconsistency in the 

judgements. This is an interesting finding, as, although the use of CR has been widely debated 

(Bana e Costa & Vansnick, 2008; Tomashevskii, 2015), our results experimentally invalidate the 

threshold of CR < 0.1 and suggest a much higher threshold of acceptance.  

Observation 5: AHP was helpful to the participants even with a higher level of inconsistency. 

4.5 Capture of unattractive options 

Out of 145 participants, 42 had visited all the shops. The other 103 participants had never been 

to at least 1 of the 5 coffee shops. Their judgements were based on the information provided 

just before the experiment as well as on some criteria that had already formulated their choice 

of coffee shops. However, we do not know why some coffee shops were not attractive to them; 
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maybe they were in another part of the campus. Table 10 provides the number of participants 

against the number of visited shops.  

Table 10 Number of participants categorized by number of shops visited 

Number of visited shops 0 1 2 3 4 5 

Number of participants 1 1 7 41 53 42 

 

 

Figure 2 Distribution of rankings given to the unknown shops 

There were 165 such cases in which participants evaluated a shop that they had not visited 

(Figure 2). In 114 cases the participants ranked the unknown shop in fourth or fifth place, while 

the unknown shop was ranked top in only 8 cases and in second place in only 14 cases. The 

distribution of these rankings is shown in Figure 2, which shows that higher ranks are seldom 

assigned to the unknown shops. A one-way chi-squared test statistic (ɖଶ ൌ ͻǤͳͷͳǡ  ൌ ͲǤͲͲͲ) 

confirmed that the distribution of rankings was not uniform and that lower ranks were assigned 

to the unknown shops.  

Observation 6: Previous unattractive options are ranked low. 

4.6 Participantsǯ feedback 

At the end of the experiment, the participants were asked to provide their feedback about the 

tool that they had used during the experiment. Three questions were related to the perceived 

helpfulness, while one question was related to the perceived ease-of-use, and finally an open 

question provided the participants with the opportunity to give their opinion in their own 

words. 

4.6.1 Perceived helpfulness 

The participants were given the following three statements to test whether the tools were 

perceived to be helpful: 
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Q1. The computer software was helpful in ranking my choices. 

Q2. The software helped me in the decision-making process. 

Q3. I agree with the ranking suggested by the software. The statements were scored on a Likert scale with  levels ranging from ǲstrongly agreeǳ to ǲstrongly disagreeǳ with a neutral level in the middle. Positive and negative options were 

grouped, and a binomial test was performed. Table 11 summarizes the feedback received from 

the participants on these 3 questions. The results for Expert Choice and RightChoice were found 

to be statistically significant at the 0.05 and even the 0.01 level for all 3 questions. The 

participants were happy with the ranking provided by M-MACBETH, but there was not enough 

statistical evidence for the usefulness of M-MACBETH. In other words, although the participants 

agreed with the rankings generated by M-MACBETH (recall sub-section 4.4), there was not 

enough evidence that they also agreed on the helpfulness of this method. 

Table 11 Participantsǯ feedback on the MCDM tools for the questions on usefulness 

 Q1 

 Negative Neutral Positive P 

Expert 
Choice 

5 4 41 0.000 

M-MACBETH 12 7 26 0.069 

RightChoice 7 2 41 0.000 

Total for Q1 24 13 108  

 Q2 

Expert 
Choice 

9 3 38 0.000 

M-MACBETH 14 6 25 0.090 

RightChoice 9 3 38 0.000 

Total for Q2 32 12 101  

 Q3 

Expert 
Choice 

8 7 35  0.002 

M-MACBETH 7 7 31 0.005 

RightChoice 7 7 36 0.001 

Total for Q3 22 21 102  

 
Observation 7: Expert Choice and RightChoice were perceived to be helpful, but this was not the 

case for M-MACBETH.  

4.6.2 Perceived ease-of-use Another question asked at the end of the experiment was ǲWas the software easy to useǫǳ The 
answer was given on a Likert scale of  levels ranging from ǲstrongly agreeǳ to ǲstrongly disagreeǳ with a neutral level in the middleǤ Of the participantsǡ ǤͳΨ agreed that the tools 
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were easy to use while 7.6% remained neutral, and the remaining 25.3% disagreed with the 

statement.  

Table 12 presents the frequencies of positive, neutral, and negative feedback received for the 3 

tools and the significance level of a binomial test. All 3 software tools are under the 0.05 

significance level. However, if we take a lower significance level of 0.01, M-MACBETH would not 

be recognized as being easy to use.  

Table 12 Participantsǯ feedback on the MCDM tools for ease-of-use 

 Negative Neutral Positive P 

Expert Choice 5 1 44 0.0000 

M-MACBETH 22 5 18 0.0488 

RightChoice 8 5 37 0.0003 

Total 35 11 99  

 
Observation 8: Expert Choice and RightChoice were perceived as being easy to use, but this was 

less the case for M-MACBETH. 

4.6.3 Qualitative feedback 

The participants were asked to comment on their experience with the tool that they had used. 

The feedback collected was then transcribed electronically to perform sentiment analysis using 

the Stanford Sentiment Tree Bank (nlp.stanford.edu). The results are shown in Table 13, in 

which the phrases are classified as carrying either positive or negative sentiments. For example, 

phrases like ǲeasy to useǳ and ǲit helpedǳ carry a positive sentimentǡ while some other phrasesǡ such as ǲa bit confusingǳ and ǲwas too complicatedǳǡ convey a negative sentimentǤ Some of the 
statements were declared as neutral, as it was hard to declare them as either positive or 

negative.   

Table 13 Textual analysis of the qualitative feedback 

 Expert Choice M-MACBETH RightChoice 

Positive terms 

easy to use; yes helpful; it helped; it was 

really helpful; software was helpful; user 

friendly; was helpful; yes it was 

21 11 17 

Neutral terms 

a bit; not sure; yes but 

2 2 3 

Negative terms 

a bit confusing; could be streamlined; difficult 

7 8 6 
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to use; hard to; it would have been; overly 

complicated; too complicated; was confusing; 

was too complicated 

p 0.00 0.28 0.024 

 

As shown in Table 13, 49 positive phrases were detected against 21 negative ones. The positive 

perception of the 3 software tools is statistically significant with a binomial 2-tail test (p = 

0.001). When considering each software tool individually, the evidence of positive feedback for 

Expert Choice and RightChoice was supported with p = 0.00 and 0.024, respectively, at the 

significance level of 0.05, as recommended by Craparo (2007). However, the statistical test for 

MACBETH failed with p = 0.28. The feedback for Expert Choice contained the highest number of 

positive comments, while M-MACBETH received the highest number of negative phrases in the participantsǯ feedbackǤ RightChoice was also found to have a positive-dominated response, that 

is, 17 positive and only 6 negative phrases.  

Observation 9: The feedback on the MCDM tools contained more words bearing positive 

sentiments than negative sentiments. 

5 Conclusion 

Making good decisions is important, and several MCDM methods have been developed to 

improve them. In this paper we used an incentive-based experiment to investigate whether 

widely used MCDM software tools really help decision makers. We observed that all three tools 

were helpful. The tools helped the participants in their decision making in the sense that they 

supported them in revising their decisions by providing recommendations that did not 

completely override their initial preferences. In the post-experiment feedback, the participants 

significantly agreed with the rankings suggested by the software tools. They perceived Expert 

Choice and RightChoice to be helpful, but not enough evidence was obtained for M-MACBETH. 

Interestingly, the software tool Expert Choice (the only one that allowed inconsistency) was 

found to be useful in both consistent and inconsistent cases. This observation suggests that the 

widely used threshold of CR < 0.1 could be relaxed and that a higher threshold would be valid.  

Another interesting observation was that those participants who reported the software tool as 

not being easy to use still accepted the rankings generated by the same tool. Therefore, it can be 

argued that the difficulty involved in the use of a decision-making tool may not diminish its 

utility. This observation may explain the study by Bernroider and Schmollerl (2013), in which 

only one-third of IT companies actually use MCDM methods  despite being aware of these 
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techniques. After investigating the question of usefulness and obtaining positive results, the 

challenge is to communicate these benefits and usefulness to the actual practitioners.  

5.1 Limitations and future work 

One of the major limitations of this work is that we applied our analysis to only one specific 

decision problem; therefore, it needs to be tested for different types of problems in different 

contexts so that the results can be generalized. In future works we plan to apply our 

experimental approach to other families of multi-criteria methods and to other decision 

problems. 

As introduced earlier, different software tools come with different user interfaces due to the 

different inputs required and hence provide different user experiences. Therefore, it is not 

possible to separate the perception of helpfulness regarding the method itself and the 

perception of helpfulness of the software interface. Ideally, participants should be offered a 

uniform user interface across these methods. Future research should develop a uniform 

interface, although the inputs required would be different.  

Future experiments could also include placebo software in which rankings are generated 

randomly without any analysis. This study would aim to test the hypothesis that participants 

trust computer-generated recommendations blindly and therefore would adopt any 

recommendation. However, additional care would be required due to the involvement of 

deception. Finally, the analysis could also be enriched further by conducting an additional 

satisfaction survey after participants have spent their voucher in the coffee shop. 
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