
This is a repository copy of Disposable Testing: Avoiding Maintenance of Generated Unit 
Tests by Throwing Them Away.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/116993/

Version: Accepted Version

Proceedings Paper:
Shamshiri, S., Campos, J., Fraser, G. et al. (1 more author) (2017) Disposable Testing: 
Avoiding Maintenance of Generated Unit Tests by Throwing Them Away. In: 39th 
International Conference on Software Engineering. 39th International Conference on 
Software Engineering, 20-28 May 2017, Buenos Aires, Argentina. IEEE , pp. 207-209. 
ISBN 978-1-5386-1589-8 

https://doi.org/10.1109/ICSE-C.2017.100

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Disposable Testing: Avoiding Maintenance of

Generated Unit Tests by Throwing Them Away

Sina Shamshiri, José Campos, Gordon Fraser, and Phil McMinn

Department of Computer Science, University of Sheffield, UK

{sina.shamshiri, jose.campos, gordon.fraser, p.mcminn}@sheffield.ac.uk

Abstract—Developers write unit tests together with program
code, and then maintain these tests as the program evolves. Since
writing good tests can be difficult and tedious, unit tests can
also be generated automatically. However, maintaining these tests
(e.g., when APIs change, or, when tests represent outdated and
changed behavior), is still a manual task. Because automatically
generated tests may have no clear purpose other than covering
code, maintaining them may be more difficult than maintaining
manually written tests. Could this maintenance be avoided by
simply generating new tests after each change, and disposing
the old ones? We propose disposable testing: Tests are generated
to reveal any behavioral differences caused by a code change,
and are thrown away once the developer confirms whether
these changes were intended or not. However, this idea raises
several research challenges: First, are standard automated test
generation techniques good enough to produce tests that may be
relied upon to reveal changes as effectively as an incrementally
built regression test suite? Second, does disposable testing reduce
the overall effort, or would developers need to inspect more
generated tests compared to just maintaining existing ones?

I. INTRODUCTION

As software programs evolve over time, tests are used to

check that existing functionality is not broken, and to capture

the behavior of newly introduced functionality. In the context

of object-oriented programming, these tests are implemented

as automated unit tests that can be frequently and quickly

executed. Every time the program is changed, the tests are

re-executed. If a test fails after a change, then it exposes a

difference in behavior. If the difference is intended, then the

test needs to be updated to reflect the correct behavior, else

the test has revealed a regression fault that needs to be fixed.

Because deriving a good set of unit tests is difficult, tests can

be generated automatically instead. A standard approach to do

so is to take a version of a class as input, use some technique

to exercise a wide range of behavior (e.g., randomly [7], or

driven by code coverage [3]), and then to add test assertions

that capture the current behavior of the class under test. The

resulting tests need to be maintained alongside the evolving

program, just like manually written tests. However, maintaining

generated tests can be tedious and challenging, since they

are often lengthy and have no clear purpose. For example,

Figure 1 shows a test case generated by EVOSUITE [2] for the

Apache Commons Lang library. This is an effective test, since

it succeeds at revealing bug Lang-8 from the DEFECTS4J [5]

repository of bugs. However, the non-sensical string input and

seemingly arbitrary combination of calls make it difficult to

1 String string0 = "Z,˜jsZ/7’{p!wd";

2 int int0 = 0;

3 SimpleTimeZone simpleTimeZone0 = new SimpleTimeZone(int0,

string0);

4 Locale locale0 = Locale.GERMAN;

5 String string1 = "*z";

6 FastDatePrinter fastDatePrinter0 = new FastDatePrinter(

string1, simpleTimeZone0, locale0);

7 MockGregorianCalendar mockGregorianCalendar0 = new

MockGregorianCalendar(locale0);

8 String string2 = fastDatePrinter0.format((Calendar)

mockGregorianCalendar0);

9 assertEquals("*GMT", string2);

Figure 1: A test case generated by EVOSUITE that can detect

a bug in Apache Commons Lang (DEFECTS4J, Lang-8) [9]

discern what the objective of the test is — a problem that is

inherent in using any automatic unit test generation tool.

This leads us to the question of whether developers actually

need to keep and maintain automatically generated tests. We

propose disposable testing as an alternative approach: Instead

of maintaining tests, completely new tests are generated every

time the program under test is changed. Developers are only

shown the tests that reveal a behavioral difference caused by the

change. They then decide whether this difference is intended

or not — as per usual following the execution of a regression

test suite. Following this, the generated tests are thrown away.

In Figure 2 we illustrate the approach in a practical setting.

After a new change has been made to the program (e.g.,

new code is committed to the version control system), a test

generation tool generates tests intended to reveal behavioral

differences between the previous and changed versions of the

program. If a difference is found, a developer can inspect the

tests to find if a regression has occurred. If so, the tests may be

used to identify and fix the fault. The tests are then discarded.

Figure 2: Overview of the process of disposable testing



The concept of disposable testing may at first seem counter-

intuitive to developers, who usually like to keep as many tests

as possible. Indeed, the idea of disposable testing raises several

questions: Can generated tests find all the changes between

two versions of a program? By throwing away all tests rather

than adding to a test suite, do we run the risk of missing

bugs? Would we have to inspect more test cases overall when

applying disposable testing? That is, for disposable testing to

be feasible and practical, two conditions need to hold:

1) We must be able to generate effective change-revealing

tests on demand.

2) The manual effort involved must be less than that for a

traditional “generate-and-maintain” approach.

The next section discusses how disposable testing may be

applied in practice, and how we might evaluate its effectiveness.

II. RESEARCH CHALLENGES

Challenge 1: Generating effective change-revealing tests

The first challenge lies in generating effective tests on

demand, that is, after a change has been made. To make the idea

of disposable testing work, automated test generation techniques

need to be as effective at revealing behavioral differences as a

well-maintained regression test suite. A number of automated

unit test generation tools and techniques exist. However, they

tend to be directed towards generating high coverage test suites.

Although coverage-driven test generation approaches have

been shown to be effective at finding real faults (e.g., [9]),

coverage alone is not a strong indicator of the effectiveness

of the generated tests [4]. However, traditional test generation

approaches usually rely on only one version of a program,

whereas in the regression testing scenario considered by

disposable testing we always have two versions of a program —

before and after a change. This raises the question of whether

Differential Testing [1], [6] may be better suited to implement

disposable testing. With differential testing, a test generator

receives two program versions, before and after a change, as

input, and derives tests that demonstrate behavioral differences.

Therefore, to address the first research challenge, we need to

empirically evaluate (1) whether using differential testing can

generate tests that are more effective at revealing behavioral dif-

ferences than coverage based tests, and (2) whether behavioral

differences can be found reliably enough to a level at which it

could be considered that “good” tests can be generated at any

time. The latter result is important since it means that tests

could be regenerated whenever they are needed, and thereby

disposed of following their inspection, rather than being kept

and maintained as part of an evolving test suite.

However, test generation does not only need to be effec-

tive, but also efficient enough to provide quick feedback to

developers. While generated tests are not maintained during

disposable testing, throwing these tests away does not mean

that the data and insights gained by the tools internally (e.g.,

symbolic insight on how to cover certain branches, or test

data for seeding [8]) need to be discarded as well. By keeping

this information internally, test generation tools can potentially

become quicker and more effective.

Challenge 2: Is the maintenance effort really reduced?

With disposable testing, generated tests are not integrated

into the test suite, and so any maintenance effort related to

these tests is avoided. However, effort is still required to inspect

the change-revealing tests before they are disposed. As with

traditional regression test suites, a developer needs to inspect

test cases failures to determine whether it is because of an

intended change or a regression fault. The question, therefore,

is whether disposable testing will result in an increase in the

number of tests that need to be inspected, compared to a

traditional generate-and-maintain approach.

The manual effort required for a traditional generate-

and-maintain approach involves both inspecting failing tests

as well as maintaining the test code. The best way to directly

compare maintenance effort for such an approach versus

the effort spent on inspecting tests with disposable testing

would be to perform a controlled human study. However, an

approximate comparison could be performed by counting the

number of tests that need to be inspected when applying the two

different approaches. We can make a conservative comparison

by assuming that every inspected test in a traditional generate-

and-maintain approach reveals intended behavior, and the

maintenance action consists of deleting the test. Although

in practice tests may be modified and retained, this scenario

gives us a lower bound on the maintenance effort. This is

because if tests were retained rather than deleted, test suites

would grow bigger over time, increasing maintenance effort.

For disposable testing, we can assume a scenario where

developers have to inspect all behavioral differences. The

number of failing tests in this case should provide an upper

bound for the human effort of disposable testing. Comparing

this against the lower-bound of the maintenance effort in

the traditional generate-and-maintain approach provides us

a conservative indication of the extent to which manual effort

may be reduced through disposable testing.

III. CONCLUSIONS AND FUTURE WORK

In this paper we proposed disposable testing as an alternative

way of using automated test generation tools: Instead of

generating unit tests automatically and integrating them into

the code base, disposable testing involves generated new tests

every time a program is changed. Tests that reveal changes

between the two versions of the program (original and changed)

may be inspected by developers and then thrown away. The

advantage of disposable testing is that it avoids the effort of

maintaining automatically generated test code, which tends to

be difficult for humans to understand.

In order to implement disposable testing and to demonstrate

its feasibility, there are a number of challenges that need to be

overcome. We plan to investigate these challenges based on the

approaches outlined in this paper. We will further investigate

refinements of existing test generation approaches, in order to

develop new, more effective testing techniques that will make

disposable testing as efficient as possible.

2



REFERENCES

[1] R. B. Evans and A. Savoia. Differential testing: a new approach to change
detection. In The 6th Joint Meeting on European software engineering

conference and the ACM SIGSOFT Symposium on the Foundations of

Software Engineering: Companion Papers, pages 549–552. ACM, 2007.
[2] G. Fraser and A. Arcuri. EvoSuite: automatic test suite generation for

object-oriented software. In Proc. of the Symposium on the Foundations

of Software Engineering (FSE), pages 416–419. ACM, 2011.
[3] G. Fraser and A. Arcuri. Whole test suite generation. IEEE Transactions

on Software Engineering (TSE), 39(2):276–291, 2013.
[4] L. Inozemtseva and R. Holmes. Coverage is not strongly correlated

with test suite effectiveness. In Proc. of the Int. Conference on Software

Engineering (ICSE), pages 435–445. ACM, 2014.
[5] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A database of existing

faults to enable controlled testing studies for Java programs. In Proc.

of the Int. Symposium on Software Testing and Analysis (ISSTA), pages
437–440. ACM, 2014.

[6] W. M. McKeeman. Differential Testing for Software. Digital Technical

Journal, 10(1):100–107, 1998.
[7] C. Pacheco and M. D. Ernst. Randoop: feedback-directed random testing

for Java. In Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA), pages 815–816. ACM, 2007.
[8] J. M. Rojas, G. Fraser, and A. Arcuri. Seeding strategies in search-based

unit test generation. Software Testing, Verification and Reliability (STVR),
2016.

[9] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri.
Do automatically generated unit tests find real faults? an empirical study of
effectiveness and challenges. In Proc. of the Int. Conference on Automated

Software Engineering (ASE). IEEE, 2015.

3


