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ABSTRACT 
This paper aims to quantitatively measure the impact of different data centers networking topologies on the 

performance and energy efficiency of shuffling operations in MapReduce. Mixed Integer Linear Programming 
(MILP) models are utilized to optimize the shuffling in several data center topologies with electronic, hybrid, 
and all-optical switching while maximizing the throughput and reducing the power consumption. The results 
indicate that the networking topology has a significant impact on the performance of MapReduce. They also 
indicate that with comparable performance, optical-based data centers can achieve an average of 54% reduction 
in the energy consumption when compared to electronic switching data centers. 
Keywords: Data Center Networking (DCN), MapReduce, energy efficiency, completion time.  

1. INTRODUCTION 
The MapReduce programming model and its widely-used platform, Hadoop, are enabling several cost-

effective cloud-based big data services [1]. These services typically require extensive all-to-all communications 
between hosting servers leading to increased congestion and power consumption in data centers. Moreover, they 
result in the East-West traffic dominating over the South-North traffic. This new traffic trend has become the 
focus in designing state-of-art production data centers [2]. These challenges are increasingly motivating the 
consideration of all-optical networking in future data centers to cope with the increasing demands of big data 
applications while improving the data centers performance and decreasing their power consumption [3]. 

The processing in MapReduce is composed of map, shuffle, and reduce phases. The input data is stored in 
several servers’ local disks and is globally managed by a distributed file system (DFS) [1]. The processing starts 
by assigning map slots according to the number of input data chunks and available computing resources, and 
reduce slots according to the user’s configurations. If chunks are more than map slots, the map phase will run in 
several waves according to their scheduling [4]. Each map slot processes it assigned chunks, preferably available 
locally, and generates intermediate results in the form of <key,value> pairs. The intermediate results are shuffled 
to reduce slots according to their keys where each slot is assigned to process a unique set of keys [1]. Finally, 
each reduce slot sorts its inputs, calculates final results, and saves them in the DFS. 

Several optimization studies have been carried out by both academia and industry to enhance the 
performance and energy efficiency of big data applications (e.g. [2], [4]-[21]). The performance of big data 
applications and frameworks such as MapReduce is associated with a wide range of factors and parameters such 
as the cluster specifications (e.g. CPU, memory, networking, and disk I/O resources [9]), framework used or 
version, in addition to selected configurations and mechanisms for data and jobs placements and tasks 
scheduling [4]-[8]. Moreover, as the deployments of big data applications are evolving from dedicated clusters to 
public clouds where multi-tenants simultaneously request different big data services, additional challenges are 
encountered to orchestrate virtualized resources and lease of hybrid clusters at reduced cost and power 
consumption while avoiding under or over utilization [9]-[13].  

Most of big data applications optimization studies neglected the impact of data centers networking and 
topologies on the performance by considering single-rack setups to reduce costs and to focus on optimizing the 
framework based on CPU, I/O, and memory resources (e.g. [4]-[7]). However, with growing data volumes and 
increasing need for clusters scaling, networking resources are expected to become a severe bottleneck [8]. Few 
studies tackled optimizing data center networking and topologies for big data applications [2], [17]-[21]. The 
authors in [2] considered utilizing the Energy Efficient Ethernet (EEE) feature enabled in modern data centers 
switches to achieve up to 60% reduction in MapReduce energy consumption. The network influence on Hadoop 
performance in multi-rack clusters is considered in [17]. The energy efficiency of several switch and server 
centric data centers is evaluated in [18] under MapReduce traffic. MRPerf which is a widely-used MapReduce 
simulator considered network configurations and compared the performance of double-rack clusters with DCell 
architecture [19]. Camdoop is proposed in [20] as a MapReduce-like system to exploit in-network aggregation of 
intermediate results in CamCube which is a server-centric architecture. In [21], the performance of MapReduce 
is experimentally examined in hybrid electronic/optical switching data centers namely c-Through and Helios. 
However, their optical links were not fully utilized. 

This study aims to quantitatively measure the impact of different data centers topologies on the performance 
and energy efficiency of MapReduce shuffling operations. Different switching technologies for data centers are 
considered which are electronic, hybrid and all-optical. The rest of this paper is organized as follows. Section 2 
briefly describes the data centers architectures considered. Section 3 explains the proposed optimization models 
and shows their results, while Section 4 provides the conclusions and future work. 



 
Figure 1: Electronic, hybrid, and all-optical-based data centers models for MapReduce shuffling optimization. 

2. DATA CENTERS ARCHITECTURES: 
Data Center Networking (DCN) is an important design aspect that determines the performance and power 

consumption of data centers and defines traffic routing requirements between their servers. Data centers have 
been hosting legacy web, data management, and content distribution applications, and are currently challenged 
by the increasing need to host big data applications [14]-[16]. These applications introduce different computing 
and routing requirements with denser server-to-server communications which cause increased congestion and 
power consumption [22], and [23].   

2.1 Electronic Switching Data Centers: 
State-of-art production data centers were characterized by having 3-tiers of switches; core, aggregation, and 

access that typically interconnect the servers under large oversubscription ratios that cause poor performance 
[24]. To reduce the oversubscription and increase the bisection bandwidth, the Spine-and-leaf architecture that 
utilizes modern spine, and leaf switches with high number of ports was introduced and is commercially used as 
in [24]. To achieve the same goals while utilizing commodity switches, novel architectures such as the Fat-tree 
[25], BCube [26], and DCell [27] were proposed. The Fat-tree architecture is composed of a layer of core 
switches and a pods layer composed of aggregation and access switches connected in a folded-Clos topology. 
The interconnections in Fat-tree provide multipath routes between servers and hence, Fat-tree provides higher 
fault-tolerance [25]. BCube and DCell are recursive architectures proposed to provide scalability and fault-
tolerance in modular data centers. Both architectures utilize Network Interface Cards (NIC) attached to the 
servers in addition to few commodity switches to route traffic [26], and [27]. Example of small deployments for 
Spine-and-leaf, Fat-tree, BCube, and DCell data centers are illustrated in Figure 1 (a, b, c, and d) respectively. 

2.2 Hybrid and All-Optical Data Centers: 
To improve the performance of existing electronic switching data centers, several studies have suggested 

supporting the switching fabric with Optical Circuit Switching (OCS) capabilities such as in c-Through [28] and 
Helios [29] topologies. The high bandwidth availability of OCS is utilized for bulky transfers and slowly varying 
traffic, while the electronic packet switching is kept to handle bursty and fast-varying traffic. In these 
architectures, the OCS is realized through Micro-Electro-Mechanical System (MEMS) switches [3]. As MEMS 
switches control input to output connections by moving the mirrors mechanically, high reconfiguration time in 
the scale of few milliseconds is required. To avoid the inherit complexities of managing two systems in hybrid 
data centers, and to further exploit the capacity and speed capabilities of optical networks, several all-optical 
DCN architectures were proposed [3]. These architectures utilize optical passive and active components for 
networking such as couplers, splitters, Arrayed-Waveguide Grating (AWG), Tunable Wavelength Converters 
(TWC), and Wavelength Selective Switches (WSS). An example of all-optical data centers that uses MEMS and 
WSS technologies is Proteus [30]. Proteus is malleable to traffic as it adapts its optical connections and links 
capacities between top-of-rack (ToR) switches according to the demands. Examples of small designs based on c-
Through, Helios, and Proteus are illustrated in Figure 1 (e, f, and g) respectively. 

3. OPTIMIZING SHUFFLING OPERATIONS IN DATA CENTERS 
To quantitatively assess the impact of the data center topology on the completion time and the energy 

efficiency of shuffling operations in MapReduce, we utilized Mixed Integer Linear Programming (MILP) 
models. The MILP models aim to optimize the routing required for intermediate data shuffling in different data 
centers while maximizing the throughput (i.e. served traffic) and reducing the power consumption. 

3.1 Methodology 
Four electronic switching data centers: Spine-and-leaf, Fat-tree, BCube, and DCell, in addition to two hybrid 

architectures: Helios and c-Through and an all-optical data center: Proteus are considered. The topologies of the 



aforementioned data centers are modelled as graphs where both switches and servers are considered as graphs 
nodes, while the bi-directional links are considered as graphs edges as illustrated in Figure 1. All bidirectional 
links are considered to have 10 Gbps capacity, except for the Proteus architecture where the links connected to 
the MEMS are 30 Gbps WDM links with three wavelengths (i.e. 10Gbps per wavelength) [30]. The power 
consumption and details of the electronic and optical equipment used in each topology are summarized in Tables 
1 and 2. In all topologies, 16 servers (allocated in 4 racks or 8 racks in Fat-tree) are considered to accommodate 
the map and reduce workers. In the DCell model, 4 extra servers are considered due to the requirements of 
constructing the topology but are not assigned any additional workers. To simplify the evaluations of hybrid and 
all-optical data centers, 12×12 MEMSs are used to ensure all-to-all connectivity between ToRs without the need 
for reconfigurations. Also, fixed wavelength assignments with all-to-all ToR connectivity are assumed for 
Proteus while keeping the WSS components.  

Table 1. Electronic-switching data centers characteristics and parameters. 

Topology 
No. of 
Servers 

No. of 
links 

Networking Devices characteristics 
Equipment Units Power Consumption per unit in Watts 

Spine-and-leaf 16 24 Nexus 3048  6 120 [24] 
Fat-tree 16 48 SG500XG-8F8T  20 95 [32] 

BCube 16 32 
SG500XG-8F8T  8 95 [32] 

NIC 16 3 [22] 

DCell 20 30 
SG500XG-8F8T 5 95 [32] 

NIC 20 3 [22] 

Table 2. Hybrid and all-optical switching data centers characteristics and parameters. 

Topology 
No. of 
Servers 

No. of 
links 

Networking Devices characteristics 
Equipment Units Power Consumption per unit in Watts 

c-Through 16 24 
SG500XG-8F8T 5 95 [32] 
12×12 MEMS 1 2.88 (0.24 per port [30]) 

Helios 16 32 
SG500XG-8F8T 5 95 [32] 
12×12 MEMS 3 2.88 

Proteus 16 20 
12×12 MEMS 1 2.88 

WSS 4 3 [30] 
 
In this evaluation, 10 servers are dedicated for map functions and 6 for reduce functions which resembles a 

typical tasks ratio in original Google’s MapReduce [1]. In this work, the placement of map and reduce workers is 
assumed to be as depicted in Figure 1. To effectively examine network bottlenecks, sort workloads are assumed. 
Sorting via MapReduce utilizes identity map functions to generate <word,1> pairs from large text files. The 
entire intermediate data is to be shuffled according to words to reduce workers in order to be sorted and finally 
saved. Hence, input, intermediate, and output data are all equal in size. The volume of total data to be sorted is 
varied from 1 GBytes to 20 GBytes and is equally distributed between map workers. The workloads are assumed 
to be from the Indy GraySort benchmark which have uniform intermediate key distributions due to balanced 
words count [31], and hence symmetric traffic is transferred from each map worker to 6 reduce workers.  

The MILP models are utilized to minimize the energy consumption of the data center while prioritizing 
maximizing the throughput. The data write and read speeds from the servers are considered in the models where 
four maximum rate/server values are used. The considered rates are 100, 300, 750, and 1000 MBytes/s, which 
can be realized by HDD, SSD, with technologies such as Redundant Array of Independent Disks (RAID), or 
with any caching capabilities in NICs. For simplicity, all map tasks are assumed to finish at the same time, and 
the ON/OFF power model is used for the switches. The models optimize routing the traffic through minimum set 
of core and aggregation switches if the network is bottlenecked at the links to/from the ToRs. Increasing the 
rate/server reduces this bottleneck and allows for higher throughput. Hence, the models optimally utilize higher 
number of core and aggregation switches resulting in lower shuffling completion time.  

3.2 Results  
 Figure 2 summarizes the shuffling completion time results, while Figure 3 provides the average power 
consumption results for different rate/server values. For 100 MBytes/s rate, the results indicate that the 
completion time is mainly determined by the I/O bottleneck at the servers to ToR switches links leading to a 
linear relation between completion time and data volume. As a result, further energy saving can be achieved 
except for BCube, DCell, and Proteus because they call for the use of all switches to accommodate the traffic at 
all rate/server values. As the rate/server increases, the DCNs increasingly become the bottleneck, and to achieve 
maximized throughput with lower completion time, more switches have to be used which leads to increased 
power consumption. For all rate/server values, the best achieved performance was for DCell, which has several 
server-to-server connections with properly placed map and reduce workers. 



 
Figure 2: Shuffling completion time for different maximum rate/server. 

 
Figure 3: Average power consumption for different maximum rate/server. 

4. CONCLUSIONS AND FUTURE WORK 
 In this paper, the impact of DCN topologies on the completion time and energy efficiency of MapReduce 
shuffling is quantified through MILP models under increasing shuffle traffic. The completion time results 
indicate that the topology of the data center and the maximum rate/server have a significant impact on the 
performance of MapReduce. Moreover, utilizing optical networking technologies in DCNs can achieve an 
average of 54% reduction in the power consumption when compared to electronic switching DCNs with 
comparable performance. The best performance was obtained by DCell, however, with larger DCell realizations, 
the performance superiority is expected to disappear as multi-hop connections are required between servers in 
different cells. Future work includes considering optimizing the power consumption and completion time while 
considering different workloads and more data center topologies.  
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