This is a repository copy of *Impact on short-lived climate forcers (SLCFs) from a realistic land-use change scenario via changes in biogenic emissions*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/116690/

Version: Accepted Version

Article:
Scott, CE orcid.org/0000-0002-0187-969X, Monks, SA, Spracklen, DV et al. (7 more authors) (2017) Impact on short-lived climate forcers (SLCFs) from a realistic land-use change scenario via changes in biogenic emissions. Faraday Discussions, 200. pp. 101-120. ISSN 1359-6640

https://doi.org/10.1039/c7fd00028f

© 2017, The Royal Society of Chemistry. This is an author produced version of a paper published in Faraday Discussions. Uploaded in accordance with the publisher's self-archiving policy.

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Impact on short-lived climate forcers (SLCFs) from a realistic land-use change scenario via changes in biogenic emissions

C. E. Scott1*, S. A. Monks2,3, D. V. Spracklen1, S. R. Arnold1, P. M. Forster1, A. Rap1
K. S. Carslaw1, M. P. Chipperfield1, C. L. S. Reddington1, C. Wilson1

1Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK
2Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
3Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado, USA

*Corresponding author: c.e.scott@leeds.ac.uk

Abstract

More than one quarter of natural forests have been cleared by humans to make way for other land-uses, with changes to forest cover projected to continue. The climate impact of land-use change (LUC) is dependent upon the relative strength of several biogeophysical and biogeochemical effects. In addition to affecting the surface albedo and exchanging carbon dioxide (CO₂) and moisture with the atmosphere, vegetation emits biogenic volatile organic compounds (BVOCs), altering the formation of short-lived climate forcers (SLCFs) including aerosol, ozone (O₃) and methane (CH₄).

Once emitted, BVOCs are rapidly oxidised by O₃, and the hydroxyl (OH) and nitrate (NO₃) radicals. These oxidation reactions yield secondary organic products which are implicated in the formation and growth of aerosol particles and are estimated to have a negative radiative effect on the climate (i.e. a cooling). These reactions also deplete OH, increasing the atmospheric lifetime of CH₄, and directly affect concentrations of O₃; the latter two being greenhouse gases which impose a positive radiative effect (i.e. a warming) on the climate.

Our previous work assessing idealised deforestation scenarios, found a positive radiative effect due to changes in SLCFs; however, since the radiative effects associated with changes to SLCFs result from a combination of non-linear processes it may not be appropriate to scale radiative effects from complete deforestation scenarios according to the deforestation extent. Here we combine a land-surface model, a chemical transport model, a global aerosol model, and a radiative transfer model to assess the net radiative effect of changes in SLCFs due to historical LUC between the years 1850 and 2000.

We find that LUC between 1850 and 2000 has reduced both BVOC emission and subsequent SOA formation by 13%. The positive aerosol radiative effects associated with a reduction in biogenic SOA (0.02 W m⁻² and 0.008 W m⁻² for the DRE and AIE respectively) outweigh the negative radiative effects due to a reduction in O₃ and CH₄ (-0.02 W m⁻² and -0.007 W m⁻² respectively), resulting in a small net SLCF RE of 0.004 W m⁻².
Introduction

Land-use change (LUC) has accompanied population growth for several thousand years, and particularly the past 300 years. Prior to 1850, deforestation occurred predominantly in the temperate regions of Europe, Asia and North America; from around 1900 onwards, the majority of deforestation has occurred in tropical regions, specifically South and Central America, South-east Asia and Central Africa. Whilst tropical deforestation continues to drive high rates of forest loss globally (a total of 2.3 million km² between 2000 and 2012), afforestation and natural forest regrowth due to agricultural abandonment have led to gains in forest cover (0.8 million km² between 2000 and 2012). Projections of future LUC vary widely in terms of spatial extent and timing, and a thorough understanding of the climatic impacts of LUC is needed to inform climate mitigation policies.

The impact of LUC on climate is determined by several biogeophysical and biogeochemical interactions between vegetation and the atmosphere. The process of converting vegetated land from one type to another can alter the surface albedo and modify evapotranspiration (biogeophysical interactions), as well as resulting in the emission of carbon dioxide (CO₂; a biogeochemical interaction). Forests are darker in colour than crop or pastureland so conversion of forests to agricultural land tends to increases surface albedo, exerting a negative radiative effect on the climate. Emission of CO₂ from LUC, either through forest burning or removal and decay of wood products, increases the concentration of CO₂ in the atmosphere exerting a warming effect on the climate.

In addition to these effects, forests and vegetation have an influence on the composition of the atmosphere through the emission of biogenic volatile organic compounds (BVOCs). If LUC alters the emission of BVOCs, it may affect the climate by changing the concentrations of short-lived climate forcers (SLCFs) including ozone (O₃), methane (CH₄) and aerosols; an additional biogeochemical interaction. BVOCs are rapidly oxidised by the hydroxyl radical (OH), the nitrate radical (NO₃) and O₃, affecting the oxidative capacity of the atmosphere and therefore concentrations of the greenhouse gases O₃ and CH₄. In the presence of nitrogen oxides (NOₓ), BVOCs also contribute to the production of O₃ in the troposphere, complicating their impact on climate.

The oxidation of BVOCs generates products with low enough volatility to enter the particle phase, as secondary organic aerosol (SOA). These oxidation products may participate in the formation of new particle and condense onto existing particles in the atmosphere, aiding their growth to larger sizes. These particles can interact directly with incoming solar radiation (a direct radiative effect or forcing) and also modify the microphysical properties of clouds (an indirect radiative effect or forcing). Biogenic SOA very likely exerts a negative radiative effect on the climate, via both the direct and first aerosol indirect (i.e., cloud albedo) effect.
Assessments of the overall impact of LUC have traditionally considered the balance between carbon cycling and alterations to surface fluxes of energy and water. Recently, studies have begun to quantify the impacts of deforestation and LUC associated with changes to the concentration of SLCFs.

In an integrated study of the impacts of historical LUC on SLCFs, Unger found that the reduction in BVOC emissions due to LUC since 1850 may have caused an overall climate cooling due to reductions in O$_3$ and CH$_4$ concentrations, outweighing the (direct radiative) impact of decreased biogenic SOA formation. Using the same historical land-use trajectory but a different land surface model, Heald and Geddes diagnosed a much smaller cooling associated with O$_3$ reduction (than ref), but a much stronger cooling effect due to increased ammonia emission from agriculture and subsequent nitrate aerosol formation. Conversely, Ward et al. simulate a LUC related increase in O$_3$ concentration over the historical period, and therefore warming effect, attributed to changes in fire related emissions. This range of published values highlights the complexity associated with diagnosing radiative impacts from any amount of LUC.

Here, we explore the effect of historical LUC (1850 - 2000) on BVOC emissions, and the radiative impacts of subsequent changes to SLCFs. To do this we evaluate O$_3$, CH$_4$ and aerosol concentrations in the year 2000 using either year 2000 land-cover (experiment 2000_2000LC) or 1850 land-cover (experiment 2000_1850LC). Our focus is on the impact of changes in BVOC emissions and so we do not include trace gas emissions associated with subsequent agricultural activities. Our study builds on previous analyses of the impacts of historical LUC via changes in BVOC emission by also considering the strength of the aerosol indirect effect which may enhance the positive direct radiative effect due to decreased SOA production.

Experimental

To estimate the radiative impacts of land-use change we combine a land-surface model with a chemical transport model, global aerosol model, and radiative transfer model. The land surface model is used to estimate the changes in BVOC emissions that have occurred due to LUC. We use a global chemical transport model including a detailed description of aerosol microphysics to calculate the impacts of altered BVOC emissions on atmospheric chemistry and aerosol. We then use the radiative transfer model to calculate the radiative impacts of the altered chemistry and aerosol. In this work we focus on the impact that historical LUC has had in the present day atmosphere.

Land surface model

We use the Community Land Model (CLMv4.5; ref), coupled to the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1; ref), to quantify the effects of LUC on the emission of BVOCs.

The CLM operates at a horizontal resolution of 0.9° x 1.25° and here we use the offline configuration, i.e., not coupled to either the Community Atmosphere Model (CAM) or the Community Earth System Model (CESM),
with atmospheric forcing (precipitation, solar radiation, atmospheric pressure, specific humidity, temperature and wind) taken from an observationally derived dataset (CRUNCEP31 which is a combination of CRU TS3.2 monthly data (covering 1901 – 2002; ref32) and hourly NCEP reanalysis data (covering 1948-2010; ref33). Between 1850 and 1900, prior to the start of the CRUNCEP dataset, atmospheric forcing data 1901-1920 from the CRUNCEP dataset is repeatedly cycled.

The surface of each grid cell in the CLM is divided into 15 different plant functional types (PFTs), plus non-vegetated surface. A harmonised land-use dataset, derived from a global land model (GLM27 and based on the historical crop and pasture maps of the History Database of the Global Environment (HYDE 3.135) has been adapted specifically for the CLM36 and remains consistent with MODIS data37,38 for the year 2000. Figure 1 illustrates the area covered by groupings of the major PFTs from this dataset during the period 1850 – 2000.

![Figure 1: Total area occupied by combined PFTs, as represented in the CLM, during the years 1850 - 2000.](image)

We perform two simulations with the CLM, covering the years 1850 to 2000. In the first simulation, land-cover evolves over time according to the 1850-2000 historical land-cover dataset; climate and carbon dioxide (CO\textsubscript{2}) concentrations also vary with time (used to obtain emissions for the 2000_2000LC experiment). In the second simulation, whilst climate and CO\textsubscript{2} concentration vary with time, land-cover is held fixed with the 1850 distribution of PFTs (used to obtain emissions for the 2000_1850LC experiment). Holding land-cover fixed but allowing climate and CO\textsubscript{2} to vary means that the leaf area index (LAI) for vegetated surfaces reflects the climatic conditions in any given year of the simulation.
Within the CLM, emissions of BVOCs are calculated using the MEGANv2.1 (ref 30) algorithm, according to the PFT distribution and climatic conditions. In the simulation in which land-cover varies over time, we simulate a global total monoterpane (sum of individual monoterpenes) emission of 142 Tg(C) a⁻¹ and total isoprene emission of 400 Tg(C) a⁻¹ for the year 2000, values which lie within the very broad range of previous emission estimates (30-156 Tg(C) a⁻¹ for monoterpenes and 309-706 Tg(C) a⁻¹ for isoprene 30, 39-41).

Chemical transport model and aerosol microphysics model

To diagnose LUC induced changes to gas-phase and aerosol species we use the TOMCAT chemical transport model 42 and the GLObal Model of Aerosol Processes (GLOMAP 43, 44). All simulations are performed for the year 2000, with one year spin-up. We use a horizontal resolution of 2.8° × 2.8° and 31 pressure levels from the surface to 10 hPa; meteorology in both TOMCAT and GLOMAP is driven by European Centre for Medium-Range Weather Forecasts (ECMWF; ERA-Interim) reanalyses at 6-hourly intervals, and cloud fields are taken from the International Satellite Cloud Climatology Project (ISCCP) archive 45 both for the year 2000.

We use the modal version of GLOMAP to simulate the number, size and distribution of particles in the atmosphere. GLOMAP-mode carries information about particle composition and number in five log-normal size modes, including soluble nucleation, Aitken, accumulation and coarse modes, as well as an insoluble Aitken mode. GLOMAP includes representations of new particle formation, particle growth (via coagulation, condensation and cloud processing), wet deposition, dry deposition, and, in- and below-cloud scavenging. Material in the particle phase is classified into four components: sea-salt, sulphate, black carbon (BC) and particulate organic matter (POM; containing both primary and secondary organic species).

In GLOMAP, anthropogenic emissions (BC, POM and sulphur dioxide; SO₂) from fossil and biofuel combustion are taken from ref 46, 47 with monthly varying biomass burning emissions (BC, POM and SO₂) from the Global Fire Emissions Database (GFEDv3; ref 48) for the year 2000. GLOMAP also includes SO₂ emissions from both continuous 49 and explosive 50 volcanic eruptions, and calculates emissions of dimethyl-sulphide (DMS) from phytoplankton.

Gas-phase secondary organic products are generated from the oxidation of monoterpenes and isoprene by O₃, OH and NO₃, with rate constants and molar yields (13% for monoterpenes and 3% for isoprene) from ref 20. The products of monoterpane and isoprene oxidation are tracked independently and are assumed to be non-volatile, condensing irreversibly onto existing particles according to their Fuchs-Sutugin-corrected surface area 51; in previous work we explored the sensitivity of aerosol radiative effects to this approach to partitioning 52.

The new particle formation rate is assumed to be dependent upon the concentration of both sulphuric acid and the secondary organic product from monoterpane oxidation 13. The new particle formation rate (J⁺) is parameterised according to Eqn. 1 with \(k = 5 \times 10^{-13} \text{ s}^{-1} \); only the secondary organic product from monoterpane oxidation may
participate as the nucleating organic (NucOrg) in this process, the product of isoprene oxidation contributes only to condensational growth. J^* represents the formation of particles at 1.5 nm, with their growth to 3 nm parameterised according to ref. 53 and described in ref. 20, 52.

\[J_{\text{ORG}}^* = k [H_2SO_4][\text{NucOrg}] \]

GLOMAP uses 6-hourly monthly-mean oxidant concentrations (O$_3$, OH, NO$_3$, HO$_2$ and H$_2$O$_2$), from equivalent LUC simulations performed with the TOMCAT chemical transport model; this simplification means that changes to aerosol processes due to LUC do not feedback onto tropospheric chemistry. In GLOMAP O$_3$, OH and NO$_3$ take part in the oxidation of BVOCs and formation of SOA, whereas HO$_2$ and H$_2$O$_2$ concentrations are used in the in-cloud oxidation of SO$_2$, described in ref. 43. H$_2$O$_2$ is treated semi-prognostically, being replenished by HO$_2$ self-reaction.

We use the TOMCAT chemical transport model, described in detail in ref. 54, 55, to simulate the impact of LUC on tropospheric chemistry. The model includes extended VOC degradation chemistry (ExTC) which simulates the oxidation of several C$_2$ to C$_7$ hydrocarbons. Isoprene oxidation follows the Mainz Isoprene Mechanism 56 and monoterpene oxidation is based on the MOZART-3 scheme 57. Gas-phase emissions are those prepared for the POLARCAT Model Intercomparison Project (POLMIP) taken from the Streets v1.2 anthropogenic emissions inventory 48 and the GFEDv3.1 biomass burning emission inventory 49. In addition to the BVOCs calculated offline by MEGAN, natural ocean and soil emissions are included from the POET emission inventory 61 and lightning emissions are calculated online. NO$_x$ emissions total 143.5 Tg(NO$_x$) yr$^{-1}$. The tropospheric burden of O$_3$ is 290 Tg (in our year 2000 simulation that includes present-day LUC). Methane (CH$_4$) emissions include GFEDv3.1 fire 48, EDGARv3.2 anthropogenic 62, wetland and rice 63, and other natural emissions (treated as in refs. 64, 65), totalling 544.9 Tg(CH$_4$) yr$^{-1}$. These are emitted into the boundary layer of the model and the surface concentrations are scaled at every time step to match a global mean concentration of 1800 ppbv, allowing a realistic spatial distribution, consistent with high and low emission regions. A diurnal cycle in the BVOC isoprene emissions is imposed online in the model to reflect the variability in isoprene emission with daylight. Loss of N$_2$O by aerosol uptake is calculated using size-resolved aerosol from the GLOMAP model 43; these do not vary between the different LUC scenarios.

Since the nature of the land-surface affects the dry deposition of both gases and aerosol, the characteristics of the model land-surface are modified to reflect the simulated pattern of LUC. In GLOMAP, roughness lengths and characteristic radii for different land surface types are taken from ref. 66. In TOMCAT, the land type classification map used to calculate the dry deposition of relevant gas phase-species is altered to reflect the distribution of land-cover types for the relevant year.

Calculation of radiative effects
We calculate the radiative impact of LUC-induced changes to the concentration of SLCFs using the Suite Of Community RAdiative Transfer codes based on Edwards and Slingo (SOCRATES) with nine bands in the longwave (LW) and six bands in the shortwave (SW). We use an offline configuration with a monthly mean climatology (temperature and water vapour concentrations) based on ECMWF reanalysis data, with cloud fields from the ISCCP-D2 archive for the year 2000 (described in ref. 19). To isolate the impact of changes to SLCFs, surface albedo is held fixed at year 2000 conditions. The sensitivity of direct and indirect aerosol radiative effects to the cloud climatology used (i.e. single year v. multi-annual mean) has previously been shown to be small.

Aerosol radiative effects

Aerosol radiative effects are calculated by considering the difference in net (SW + LW) top-of-atmosphere all-sky radiative flux between each experiment. The direct radiative effect (DRE) for each experiment is obtained using the aerosol optical properties (scattering and absorption coefficients and the asymmetry parameter), computed for each size mode and spectral band. The aerosol first indirect effect (AIE), or cloud albedo effect, is determined from the radiative perturbation induced by the change to cloud droplet number concentration (CDNC) associated with LUC. This approach has been described in previous studies.

Cloud droplet number concentrations are calculated from the monthly mean aerosol size distribution, assuming a uniform updraught velocity of 0.15 m s\(^{-1}\) over sea and 0.3 m s\(^{-1}\) over land. The critical supersaturation is calculated using the hygroscopicity parameter (\(\kappa\)) approach. A multi-component \(\kappa\) is obtained by weighting individual \(\kappa\) values by the volume fraction of each component. We assign the following individual \(\kappa\) values: sulphate (0.61, assuming ammonium sulphate), sea-salt (1.28), black carbon (0.0), and particulate organic matter (0.1); there is substantial uncertainty associated with the hygroscopicity of organic material observed in the atmosphere, but \(\kappa\) values close to 0.1 have been reported for organic aerosol produced from the oxidation of BVOCs.

To calculate the first AIE, a uniform control cloud droplet effective radius (\(r_{e1}\)) of 10 µm is assumed to maintain consistency with the ISCCP derivation of the liquid water path, and for each deforestation experiment the effective radius (\(r_{e2}\)) is calculated as in Eqn. 2, from monthly mean cloud droplet number fields CDNC\(_1\) and CDNC\(_2\) respectively (where CDNC\(_1\) represents the control simulation (2000_2000LC), and CDNC\(_2\) represents the scenario in which LUC has not occurred (2000_1850LC)).

\[
r_{e2} = r_{e1} \times \left(\frac{CDNC_1}{CDNC_2}\right)^{\frac{1}{5}}
\]

The first AIE associated with LUC is then calculated by comparing net radiative fluxes using the varying \(r_{e2}\) values derived for the above perturbation experiment, to those of a control simulation with fixed \(r_{e1}\). In these offline experiments, we do not calculate the second aerosol indirect (cloud lifetime) effect.
O₃ and CH₄ radiative effects

The radiative forcing associated with changes to tropospheric O₃ concentrations are calculated using the radiative kernels developed by ref. [78]. It has been shown that O₃ radiative effects calculated using the kernel approach are in very good agreement to radiative effects calculated using the SOCRATES radiative transfer model, both for O₃ concentrations from the TOMCAT model and those calculated using O₃ retrieved from Tropospheric Emission Spectrometer (TES) satellite measurements [78].

Changes to O₃ concentration also induce a change in the concentration of the hydroxyl radical (OH), and therefore CH₄ which in turn affects peroxy radical production and has an impact on O₃. We calculate a change in O₃ concentration in response to this “primary mode” of tropospheric photochemistry following ref. [79] and diagnose an appropriate radiative effect using a value of 0.032 W m⁻² DU⁻¹ (following ref. [25, 80]). We add this primary mode response to the RE diagnosed directly from O₃ changes using the radiative kernel.

As the lifetime of CH₄ is approximately 10 years, our one-year TOMCAT simulations cannot be used to determine the effect of the changing source of BVOCs on CH₄ concentrations. Therefore, to determine the radiative effect due to a change in CH₄ concentration, the change in global annual mean (CH₄ reaction weighted, using a climatological tropopause [81]) concentration of OH in the troposphere is used to estimate the change in the tropospheric chemical CH₄ lifetime, and hence the change in steady-state CH₄ concentration [82, 83], assuming a feedback factor of 1.34 (ref. [84]). The change in steady-state CH₄ concentration is used to quantify the global annual mean radiative effect [85], assuming a present-day N₂O concentration of 324.2 ppb (ref. [86]).
Results & Discussion

Historical land-use change

Table 1 provides the global total area represented by groupings of the 15 PFTs represented in the CLM. Land-use change between 1850 and 2000 is characterised by global forest loss (a reduction of approx. 5.6 million km2) and an expansion of cropland (an increase of approx. 9.5 million km2).

Figure 2 illustrates the spatial distribution of LUC between 1850 and 2000. Both temperate and tropical regions experience predominantly forest loss, but west Europe and the eastern coast of North America see expansion of both broadleaf and needleleaf forest due to agricultural abandonment and reforestation.

<table>
<thead>
<tr>
<th>Plant functional type (PFT)</th>
<th>Area occupied by PFT (10^6 km2)</th>
<th>1850</th>
<th>2000</th>
<th>Change from 1850 to 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadleaf forest</td>
<td>(combined total of tropical evergreen / temperate evergreen / tropical deciduous / temperate deciduous / boreal deciduous forest)</td>
<td>39.2</td>
<td>35.0</td>
<td>-4.3 (-10.9%)</td>
</tr>
<tr>
<td>Needleleaf forest</td>
<td>(combined total temperate evergreen / boreal evergreen / boreal deciduous forest)</td>
<td>17.5</td>
<td>16.2</td>
<td>-1.3 (-7.6%)</td>
</tr>
<tr>
<td>Total forest</td>
<td>(combined total of broadleaf and needleleaf forest)</td>
<td>56.7</td>
<td>51.1</td>
<td>-5.6 (-9.9%)</td>
</tr>
<tr>
<td>Total grass</td>
<td>(combined total of C3 Arctic grass / C3 grass / C4 grass)</td>
<td>32.6</td>
<td>29.5</td>
<td>-3.1 (-9.5%)</td>
</tr>
<tr>
<td>Total crop</td>
<td></td>
<td>5.4</td>
<td>14.9</td>
<td>+9.5 (+175.6%)</td>
</tr>
</tbody>
</table>
Globally, LUC between 1850 and 2000 has reduced isoprene and monoterpene emissions both by 13%, with a subsequent reduction in SOA production from 42 Tg(SOA) a\(^{-1}\) to 37 Tg(SOA) a\(^{-1}\). The amount of SOA produced in the present-day atmosphere is poorly constrained, with estimates ranging between 12 and 1870 Tg(SOA) a\(^{-1}\). The reduction in BVOC emission and SOA production simulated due to LUC occurs as a result of the much lower BVOC emission factors assigned to cropland as compared to either grass or forested land.

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Isoprene emission (Tg(C) a(^{-1})) and % change due to LUC</th>
<th>Total monoterpene emission (Tg(C) a(^{-1})) and % change due to LUC</th>
<th>SOA generated (Tg(SOA) a(^{-1})) and % change due to LUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000_1850LC (year 2000 climate and CO(_2) concentration; land-use configuration from 1850)</td>
<td>460</td>
<td>164</td>
<td>42</td>
</tr>
<tr>
<td>2000_2000LC</td>
<td>400 (year 2000 climate and CO(_2) concentration)</td>
<td>142 (year 2000 climate and CO(_2) concentration)</td>
<td>37 (year 2000 climate and CO(_2) concentration)</td>
</tr>
</tbody>
</table>
Aerosol radiative effects due to land-use change

Globally, LUC since 1850 has had a positive direct radiative effect (DRE) of 0.025 W m$^{-2}$ due to reduced production of biogenic SOA. This positive RE occurs because fewer particles grow large enough to interact directly with radiation in the atmosphere. Figure 3 (left) shows the spatial distribution of the DRE which coincides with the regions of greatest forest loss (Figure 2). The largest DRE occurs over tropical regions, exceeding 0.5 W m$^{-2}$ over parts of Southeast Asia and South America. The DRE we simulate is comparable in magnitude to that calculated by Heald and Geddes (0.017 W m$^{-2}$), but smaller than that calculated by Unger (0.09 W m$^{-2}$); this reflects the greater reduction in BVOC emissions (-35%), and therefore SOA production, due to land-use change simulated by Unger.

Globally, LUC since 1850 has had a small positive first aerosol indirect effect (AIE; or cloud albedo effect) of 0.008 W m$^{-2}$ due to an overall reduction in the number of particles able to form cloud droplets. Figure 4 illustrates the spatial distribution of the change to cloud droplet number concentration (CDNC) that leads to the AIE shown in Figure 3 (right). Reductions in CDNC are greatest (up to 40%) over the regions of forest loss, but the simulated AIE is greatest in regions where a reduction in CDNC coincides with high cloud fraction and low background CDNC (i.e. regions with high percentage decreases in Figure 4 (right)).

A small increase in CDNC over the North Atlantic ocean (< +0.5%; Figure 4 (right)) leads to a small negative regional AIE (< -0.05 W m$^{-2}$; Figure 3 (right)). As described previously, changes to the source of condensable material in the atmosphere (such as sulphuric acid and secondary organic species) can affect particle
concentrations in geographically distant locations by altering the condensation sink and subsequent rate of nucleation in the upper troposphere, or by enhancing the aging rate of non-hydrophilic particles.

Impact of land-use change on gas-phase species

In most locations, NO\textsubscript{x} concentrations are sufficiently high that BVOCs, particularly isoprene, contribute to the production of O\textsubscript{3}. The reduction in BVOC emissions associated with LUC therefore leads to a decrease in surface O\textsubscript{3} concentration across much of the planet (Figure 5 (left)). Where modelled NO\textsubscript{x} concentrations are lower, direct reaction of BVOCs with O\textsubscript{3} out-competes O\textsubscript{3} production from BVOC oxidation; in these locations, the reduction in BVOC emission associated with LUC leads to an increase in annual mean O\textsubscript{3} concentrations at the surface (up to 4 ppbv). This effect is combined with the decrease in O\textsubscript{3} dry deposition associated with conversion from forests to crop or grassland, enhancing any increases in O\textsubscript{3} concentrations. However, any increases in O\textsubscript{3} concentration diminish with altitude (Figure 5 (right)) and the zonal mean change in O\textsubscript{3} is negative throughout the troposphere at all latitudes (Figure 6).
The reduction in BVOC emissions due to LUC since 1850 has led to a global annual mean tropospheric O$_3$ radiative effect of -0.02 W m$^{-2}$ (direct O$_3$ RE plus “primary mode” response). Our simulated O$_3$ RE due to historical LUC, is lower in magnitude than that diagnosed by Unger23 (-0.13 W m$^{-2}$) which may reflect the smaller perturbation to BVOC emissions in our study or differing model sensitivities to perturbations in O$_3$ precursors.

The reduction in BVOC emission associated with global LUC leads to an increase in annual tropospheric mean OH concentration, from 7.51× 10^5 to 7.55× 10^5 molecules cm$^{-3}$, which reduces the lifetime of CH$_4$ from 10.64 years to 10.55 years (within the range of values simulated by the ACCMIP models24). This change in CH$_4$ lifetime is used to diagnose a reduction in steady-state CH$_4$ concentration of 20 ppb due to global LUC, and an RE of -
0.007 Wm$^{-2}$. However, uncertainties remain in our understanding of the role of OH during isoprene oxidation, which will influence the sensitivity of CH$_4$ concentrations to changes in BVOC emissions.

Figure 7: Global annual mean radiative effects (REs) associated with changes in the concentrations of SLCFs due to LUC between 1850 and 2000. Bars represent the net RE (orange) and the aerosol direct radiative effect (DRE; in red), first aerosol indirect radiative effect (AIE; in blue) and RE due to changes in O$_3$ (green) and CH$_4$ (purple).

We calculate the combined impact of LUC on the concentration of SLCFs through the combination of aerosol (DRE and AIE), O$_3$ and CH$_4$ REs (Figure 7). The combined RE from SLCFs is a balance between a warming aerosol RE and a cooling due to reductions in O$_3$ and CH$_4$. We estimate that LUC since 1850 has had an overall positive RE of 0.004 W m$^{-2}$ due to changes in these SLCFs.

Our study demonstrates the importance of considering aerosol-cloud effects, which other recent studies have not included if we do not include the first AIE, our combined SLCF RE is negative (-0.003 W m$^{-2}$). Previous studies of the impact of LUC on SLCFs did not include the first AIE, and may therefore have attributed too much of a negative RE, or cooling effect, to changes in SLCFs from LUC.

Land-use change can dramatically alter fire activity, with associated changes in emissions of trace gases and aerosol, which we do not account for here. We also do not yet consider changes to agricultural emissions that accompany LUC which may be important for nitrate aerosol formation and subsequent radiative impact. Future work needs to explore a representation of the complex relationships between land-use change, agriculture and fire with a coupled earth-system approach.
There remain many uncertainties that affect our ability to estimate the impact of changes to BVOC emission on
the concentration of SLCFs, these include: the wide range of estimates of present-day global BVOC emission
fluxes\[9\], the role of other reactive BVOCs (e.g., sesquiterpenes\[98,99\] and the mechanisms of tropospheric oxidation
of BVOCs\[95,96\]. Uncertainties also remain in our understanding of the interaction of biogenic oxidation products
with other atmospheric constituents\[100\] and their role in SOA formation\[101\], new particle formation\[15,102\] and
aerosol microphysical processes\[18\].

Conclusions

We combined a land-surface model with a chemical transport model, global aerosol model, and radiative transfer
model to diagnose the radiative effects associated with perturbations to SLCFs (aerosol, O$_3$, and CH$_4$) due to a
change in BVOC emissions induced by historical LUC.

We find that LUC between 1850 and 2000 has reduced both BVOC emission and subsequent SOA formation by
13%. The positive aerosol radiative effects associated with a reduction in biogenic SOA (0.02 W m$^{-2}$ and 0.008
W m$^{-2}$ for the DRE and AIE respectively) outweigh the negative radiative effects due to a reduction in O$_3$ and
CH$_4$ (-0.02 W m$^{-2}$ and -0.007 W m$^{-2}$ respectively), resulting in a small net SLCF RE of 0.004 W m$^{-2}$.

Whilst we have diagnosed the global mean REs associated with changes to SLCF due to historical LUC, policy
discussions around future land-use change will require additional information on the sensitivity of the overall
climate impact to the specific location of the land-use change.

Data Availability

The datasets generated, and analysed, during the current study are available from the corresponding author on
reasonable request.
References

Acknowledgements

We acknowledge support from EU Horizon 2020 (SC5-01-2014; grant agreement no 641816), NERC (NE/H524673/1, NE/J004723/1, NE/G015015/1, NE/K015966/1), EPSRC (EP/I014721/1) and the United Bank of Carbon (UBoC). This work used ARC, part of the High Performance Computing Facilities at the University of Leeds, UK.

Author Contributions

C.E.S. and D.V.S. designed the experiments. C.E.S. and S.A.M. performed the model simulations. A. R., M. P. C., C.L.R., and C.W. provided data for model simulations and subsequent calculations. C.E.S. performed the analysis. All authors contributed to scientific discussion and helped write the manuscript.

Competing Interests

The authors declare no competing financial interests.