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Abstract. Traditional methods for representing motor primitives have
been purely data-driven or strongly mechanistic. In this work a differ-
ent probabilistic motor primitive parameterization is proposed using la-
tent force models (LFMs). The sequential composition of different motor
primitives is also addressed using hidden Markov models (HMMs) which
allows to capture the redundancy over dynamics by using a limited set
of hidden primitives. The capability of the proposed model to learn and
identify motor primitive occurrences over unseen movement realizations
is validated using synthetic and motion capture data.
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1 Introduction

The movement representation problem is at the core of areas such as robot imi-
tation learning and motion synthesis. In these fields, approaches oriented to the
definition of motor primitives as basic building blocks of more complex move-
ments have been extensively used. This is supported by the fact that using a
limited set of adjustable primitives tremendously reduces the number of param-
eters to be estimated for a particular movement and it seems to be the only way
to cope with the movement high dimensionality [10].

Particularly, in the context of motor learning in humanoid robotics, motor
primitives have been defined based on the theory of dynamical systems. The
dynamical motor primitives (DMP) make use of the basic nonlinear dynamical
systems behaviors represented by second order differential equations to encode
a particular movement [5]. DMPs have been used extensively in the context of
imitation learning [5]. However, a relevant limitation of these approaches is that
the trajectory represented by DMPs is fixed and non-reactive to variations over
the environment they were learnt from [9]. Also, the way DMPs are represented
does not allow to take advantage of the potential correlation between the different
modeled entities (e.g. robot joints).

In this work, a novel parameterization of motor primitives is proposed relying
on the LFM framework [2]. The proposed solution represents a contribution along
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the same line of the switched dynamical latent force model (SDLFM) introduced
in Álvarez et al. [1]. However, the main difference lies in the composition mecha-
nism for different LFMs because in the SDLFM these primitives are articulated
via switching points which become hyper-parameters of a Gaussian process co-
variance matrix. This covariance matrix grows quadratically on the length of the
movement time series and as a consequence, the method is unscalable for long
realizations of movement. HMM are used for composing different LFMs which
allows to have a fixed-length covariance matrix for each primitive, and a simpler
representation of the sequential dynamics of motor primitives. HMMs have been
used before in the context of motor primitives [4, 11] to combine them either
sequentially or simultaneously.

This paper is organized as follows. In Section 2 the probabilistic formulation
of the motor primitive representation and the composition mechanism is intro-
duced along with the inference algorithm. In Section 3 we show experimental
results over synthetic and real data, with the corresponding discussion. Finally,
some conclusions are presented in section 4.

2 Materials and Methods

2.1 Latent Force Models

The definition of motor primitives is done using the latent force model framework
which was introduced in Álvarez et al. [2] motivated by the idea that for some
phenomena a weak mechanistic assumption underlies a data-driven model. The
mechanistic assumptions are incorporated using differential equations. Similarly
to the DMP approach, a primitive is defined by a second order dynamical system
described by

d2yd(t)

dt
+ Cd

dyd(t)

dt
+Bdyd(t) =

Q
∑

q=1

Sd,quq(t), (1)

where Cd and Bd are known as the damper and spring coefficients respectively,
and {yd(t)}Dd=1 is the set of D outputs of interest. In order to keep the model
flexible enough to fit arbitrary trajectories even under circumstances where the
mechanistic assumptions are not rigorous fulfilled [3], a forcing term is added and
it is shown in the right side of equation (1). This forcing term is governed by a

set of Q latent functions {uq(t)}Qq=1 whose contribution to the outputs dynamics
is regulated by a set of constants {Sd,q} which are known as the sensitivities.
Note that the fact of having multiple outputs governed by the same set of la-
tent functions induces correlations between those outputs which can be of great
benefit when motor primitives are used to model the movement of a set of robot
joints.

The main difference of the LFM approach in contrast with the classical DMP
is that it assumes Gaussian process priors with RBF covariance over the latent
forcing functions. As a consequence of this assumption, it turns out that outputs
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are jointly governed by a Gaussian process as well and the corresponding covari-
ance function can be derived analytically. The cross-covariance between outputs
yp(t) and yr(t) under the dynamical model of equation (1) can be computed
with

kyp,yr
(t, t′) =

Q
∑

q=1

Sp,qSr,qlq
√
π

8ωpωr

k(q)yp,yr
(t, t′), (2)

where k
(q)
yp,yr

(t, t′) represents the covariance between outputs yp(t) and yr(t) as-
sociated to the effect of the uq(t) latent force and its exact form, along with
definitions for constants ωp, ωr and lq can be found in [2]. Remarkably, many of
the desired properties of a motor primitive representation such as co-activation,
modulation, coupling and learnability naturally arise as a consequence of the
probabilistic formulation [6] which also allows to quantify the uncertainty over
the learned movements.

2.2 Hidden Markov Models

Formally, an HMM models a sequence of observations Y = {y1,y2, . . . ,yn} by
assuming that the observation at index i (i.e yi) was produced by an emission
process associated to the k-valued discrete hidden state zi and that the sequence
of hidden states Z = {z1, z2, . . . , zn} was produced by a first-order Markov pro-
cess. Therefore, the complete-data likelihood for a sequence of length n can be
written as

p(Y,Z|A,π,θ) = p(z1|π)p(y1|z1,θ)
n
∏

i=2

p(zi|zi−1,A)p(yi|zi,θ), (3)

where A = {aj,j′} denotes the hidden state transition matrix, π = {πj} is the
initial hidden state probability mass function and θ represents the set of emis-
sion parameters for each hidden state. The problem of how to estimate the HMM
parameters ζ = {A,π,θ} is well-known and solutions for particular choices of
emission processes have been proposed [8]. However, the use of novel probabilis-
tic models as emission processes bring new challenges from the perspective of
probabilistic inference and it also broadens the horizon of potential applications.

2.3 HMM and LFM

In this work HMMs are used differently by introducing a hybrid probabilistic
model as emission process to represent motor primitives, namely the latent force
models. The proposed model is based on the idea that movement time-series
can be represented by a sequence of non-overlapping latent force models. This
is motivated by the fact that movement realizations have some discrete and
non-smooth changes on the forces which govern the movements. These changes
can not be modeled by a single LFM because it generates smooth trajectories.
Moreover, the use of HMM and LFM emissions enables us to capture the existing
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redundancy in dynamics over a movement trajectory since the whole trajectory
is explained by a limited set of hidden primitives.

Formally, the overall system is modeled as an HMM where the emission dis-
tribution for each hidden state is represented by a LFM. Therefore the complete-
data likelihood still fulfills the equation in (3) but the emission process is per-
formed as follows

p(yi|zi,θ,χ) = N (yi|f(χ), Iσ2), f(t) ∼ GP(0, kyp,yr
(t, t′;θzi)), (4)

where kyp,yr
(., .) represents the second order LFM kernel already defined in equa-

tion (2) with hyper-parameters given by θzi and σ2 denotes the noise variance.
Notice that the HMM framework allows the observable variables to have a dif-
ferent dimensionality with respect to the latent variables, in this case yi is a
continuous multivariate vector whereas zi is univariate and discrete. It should
also be noticed that there is an additional variable χ conditioning the emis-
sion process, this variable denotes the set of sample locations where the LFMs
are evaluated and this set is assumed to be independent of the hidden variable
values.

2.4 Learning the model

A common approach for estimating HMMs parameters is maximum likelihood
via the expectation-maximization (EM) algorithm which is also known as the
Baum-Welch algorithm. It can be shown that the E-step and the update equa-
tions for the parameters associated to the hidden dynamics {A,π} are un-
changed by the use of LFMs as emission processes and their exact form can
be found in [8]. In order to update the emission process parameters θ, only one
term of the Q(ζ, ζold) equation of the EM algorithm must be taken into account.
This term is basically a weighted sum of Gaussian log-likelihood functions and
gradient ascent methods can be used for optimizing and updating the emission
parameters in the M-step.

3 Experimental Results

3.1 Synthetic data

A particular instance of the model was used for generating 20 trajectories with
20 segments each. This data-set was divided in two parts. One half was used for
learning the motor primitives and the rest was used for validation (i.e. motor
primitive identification). Notice that, as the model was formulated in section 2.3,
it does not necessarily generate continuous trajectories, thus the synthetic tra-
jectories were generated in such a way that the constant mean of each segment
is equal to the last value of the last segment which produces real-looking real-
izations. To generate the synthetic trajectories, we consider an HMM with three
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Fig. 1: Primitives identification over a synthetic trajectory. In the top, the most
probable hidden state sequence {z0, z1, . . . , z9} given by the inferred model is
shown. The predictive mean after conditioning over the hidden state sequence
and observations is also depicted with error bars accounting for two standard
deviations.

hidden states with transition matrix A and initial state probability mass func-
tion π. The same parameters inferred from training data are shown alongside
(i.e. A∗ and π∗)

A =





0.8 0.1 0.1
0.6 0.3 0.1
0.3 0.2 0.5



 ,π =





0.1
0.3
0.6



 , A∗ =





0.83 0.08 0.09
0.63 0.27 0.1
0.27 0.25 0.48



 ,π∗ =





0.0
0.4
0.6



 .

Regarding the emission process, a LFM with 4 outputs (D = 4), a single latent
force (Q = 1) and sample locations set χ = {0.1, . . . , 5.1} with |χ| = 20 was
chosen. The sensitivities were fixed to one and they were not estimated. The
actual emission parameters and the corresponding inferred values are depicted
in table 1, where the spring and damper constants are indexed by the output
index.

It can be argued that there is a similar pattern with respect to the origi-
nal emission values, particularly for hidden states 1 and 3. The hidden state 2
exhibits a more diverse pattern in comparison to its original parameters. Nev-
ertheless, when the inferred LFM covariances are plotted (see figure 2) for each
hidden state, it is easy to see that the underlying correlations between outputs
were successfully captured by the inferred emission processes. The poor length-
scale estimation can be explained by the fact that the range covered by the
sample locations set χ (i.e. from 0.1 to 5.1) is reduced for this property to be
noticeable and inferable.

A sample synthetic trajectory can be seen in figure 1. This is a trajectory
used to validate the model’s capability to detect motor primitives (i.e hidden
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Table 1: LFM emission parameters
Hidden State 1 Hidden State 2 Hidden State 3

Spring const. {3., 1, 2.5, 10.} {1., 3.5, 9.0, 5.0} {5., 8., 4.5, 1.}
Damper const. {1., 3., 7.5, 10.} {3., 10., 0.5, 0.1} {6., 5., 4., 9.}
Lengthscale 10 2 5
Spring const.∗ {3.21, 1.05, 2.67, 11.09} {0.67, 1.72, 3.39, 2.26} {6.92, 10.66, 6.32, 2.3}
Damper const.∗ {1.2, 3.36, 8.39, 9.61} {0.5, 2.62, 1.07, 0.27} {6.09, 5.54, 4.47, 9.76}
Lengthscale∗ 85.77 180.48 159.96

(a)

(b)

Fig. 2: Actual and inferred toy experiment covariance matrices for the 3 hidden
states. Top row (a): LFM covariance matrices used for generating the synthetic
trajectories. Bottom row(b): Estimated LFM covariance matrices.

states) given the inferred model parameters, which is achieved using the Viterbi
algorithm[8]. The resulting hidden state sequence is shown on the top of figure
1, and it turned out to be exactly the same sequence used for generation, which
was assumed to be unknown.

The Viterbi algorithm was executed for each validation trajectory and the
resulting hidden state sequences were compared against the actual values used
during the data-set generation. The correct hidden state was recovered with a
success rate of 95% failing only in 10 out of 200 validation segments.

3.2 Real data

The real-data experiment consists in inferring a set of motor primitives from a
group of realizations of the same particular behavior and assessing whether or
not, a similar pattern is recovered over the inferred activated motor primitives
for unseen realizations of the same behavior. To achieve this, the CMU motion
capture database (CMU-MOCAP) is used. The chosen behavior is the walking
action because it exhibits a rich redundancy over dynamics as a consequence
of the cyclic nature of gait. Specifically, the subject No. 7 was used with trials
{01, 02, 03, 06, 07, 08, 09} for training and trials {10, 11} for validation. In order
to take advantage of the multiple-output nature of LFMs a subset of four joints
was selected for the validation. The chosen joints are both elbows and both knees
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since they are relevant for the walking behavior and their potential correlations
might be exploited by the model.

The model formulation given in section 2 implies fixing some model parame-
ters a priori such as the number of hidden primitives, the number of latent forces
and the sample locations set χ used in the emission process in equation 4. Using
a number of hidden states equals to three was enough for capturing the dynam-
ics of the chosen behavior. Experiments with a higher number of hidden states
were carried out with equally good results but the local variations associated
to each observation started to be captured by the model thanks to the higher
number of available hidden states. Similarly, the use of a high number of latent
forces (e.g equals to the number of outputs) makes the model more flexible from
the point of view of regression at the expense of favoring overfitting. By using
three latent forces a good trade-off is obtained between the regression capability
and the intended behavior generalization at the motor primitive level. Finally,
the sample locations set χ was defined to cover the interval [0.1, 5.1] with 20
sample locations equally spaced (i.e. |χ| = 20). This choice was motivated by
the functional division of a gait cycle into eight phases [7]: initial contact, load-
ing response, mid stance, terminal stance, pre-swing, initial swing, mid swing,
and terminal swing. Having |χ| = 20 a complete gait cycle over the selected
observations is made up of roughly seven segments which is in accordance with
the functional subdivision given that the initial contact can be considered an
instantaneous event.

In figure 3 the identified motor primitives are shown along the resulting fit.
The resulting Viterbi sequences over training and validation observations are

50 0 50 100 150 200 2500.1

0.0
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

z0 =1 z1 =1 z2 =1 z3 =2 z4 =2 z5 =2 z6 =1 z7 =1 z8 =1 z9 =2 z10 =2

left tibia
right tibia
left radius
right radius

Fig. 3: Primitives identification over a real walking trajectory. In the top the most
probable hidden state sequence {z0, z1, . . . , z10} given by the inferred model is
shown. The predictive mean with error bars is depicted for the four joints.
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shown in table 2. From this table a cyclic sequential pattern over the identified
motor primitives can be observed with a period of seven segments as expected.
The first three segments of a gait cycle correspond to activations of the hidden
state one, and the remaining gait cycle segments are generally explained by the
hidden state two, although the last cycle segment exhibits high variability. Re-
markably, the discussed pattern was also obtained over the unseen trajectories
(i.e. No. 10, 11) which suggests that the sequential dynamics of the motor prim-
itives associated to the walking behavior of subject seven were learned by the
proposed model.

Table 2: Motor primitives identified over walking realizations.
Trial Number Motor primitives identified

01 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1

02 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1

03 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2

06 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1

07 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2

08 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2

09 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2

10∗ 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2

11∗ 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2

4 Conclusions

In this work, a novel probabilistic parameterization of motor primitives and their
sequential composition is proposed relying on LFMs and HMMs. We showed
how to estimate the model’s parameters using the EM algorithm and, through
synthetic and real data experiments, the model’s capability to identify the oc-
currence of motor primitives after a training stage was successfully validated.

For future work, alternative formulations which explicitly include the switch-
ing points as parameters are suggested to increase the model’s flexibility. A fur-
ther step in the validation might involve using it as a probabilistic generative
model in a classification task. Thereby, potential applications can be related
with distinguishing between different walking styles or identifying pathological
walking.
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