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The Advantages of Using Excess Returns to
Model the Term Structure ∗†

Adam Goliński Peter Spencer

Abstract

We advocate the use of excess returns rather than yields or log prices in analysing

the risk neutral dynamics of the term structure. We show that under standard as-

sumptions, excess returns are affine in the risk neutral innovations in the factors. This

framework has several important advantages. First, it allows for an easy estimation of

models that are more flexible than the AR(1). Indeed, we estimate models with more

general dynamics, like ARFIMA(p, d, q), almost as easily as AR(1). Second, within our

framework the dimension of the unrestricted model is the same for the AR(1) as it is

for the richer models, and does not expand in line with the state vector as it does in a

yield or log price framework. This makes it appropriate to test all of these risk neutral

dynamic specifications against the same OLS unrestricted alternative. Our results for

the US Treasury bond market show that the unrestricted model is preferred to the

AR(1) by the Bayesian Information Criterion, but the opposite conclusion is reached

for more flexible models. A final advantage of the excess returns framework is that the

pricing errors are much lower than for the equivalent log price system.
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1. Introduction

This paper proposes a novel approach to the term structure of interest rates, which allows

the cross section of returns to be modelled easily without necessarily adopting any specific

model of the risk neutral dynamics, other than to assume them to be linear. We exploit

the fact that absent arbitrage and measurement error, the forward price of any security for

any future period is its risk neutral expectation for that period. Thus it can be used to

replace the risk neutral expectation generated by an autoregressive model in the standard

specification of the cross section, allowing less restrictive dynamic specifications to be used.

It follows that the excess logarithmic return on any security can be viewed as a risk neutral

surprise or innovation plus a Jensen term determined by its volatility. Assuming that these

excess returns have a factor structure, this approach yields an affine model that relates M

excess bond returns that are measured with error toK < M factor innovations, which can be

represented by excess returns on bond portfolios that are assumed to be measured without

error. The loadings of the excess returns on the factor innovations depend upon the risk

neutral factor dynamics, allowing these to be identified and estimated.

In the absence of no-arbitrage restrictions, this model can be estimated simply by regress-

ing the M excess bond returns on the K factor innovations using Ordinary Least Squares

(OLS ).1 ThisM×K model can be restricted by making appropriate assumptions about arbi-

trage opportunities and the risk neutral dynamics. We show that the excess return framework

easily handles ARFIMA processes, which include the various autoregressive (AR), moving

average (MA) and long memory (LM ) models that have been used in the literature. MA and

LM models are notoriously difficult to estimate, but are easily handled in the excess returns

framework.2 The unrestricted OLS excess returns model provides a convenient encompass-

1We show that if that the factor dynamics have unrestricted linear representation (allowing them to be
represented as an infinite series of current and lagged risk neutral innovations) and the no-arbitrage restriction
that follows from the factor structure is neglected, this generates the M ×K unrestricted benchmark OLS

model of the cross section of returns. In contrast, it seems hard to interpret the unrestricted OLS yield level
benchmark as a model of the factor dynamics.

2Goliński and Zaffaroni (2016) model yields with long memory dynamics using infinite-dimensional state
vectors and estimate the system using a state-space truncation.
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ing model for testing such restrictions and in particular the first order autoregressive AR(1)

arbitrage-free specification used extensively in the term structure literature.

As Bams and Schotman (2003) and others have noted, a variant of the excess returns

model can be obtained simply by forward-differencing the standard AR(1) affine term struc-

ture model (ATSM ), which relates the M log prices or yields to the values of the K factor

portfolios.3 However, we show that this forward-difference relation only holds for the AR(1)

specification; richer dynamic specifications increase the dimensions of the yield ATSM but

not the return ATSM. For example, if the risk neutral dynamics are second order autoregres-

sive (AR(2)) this doubles the number of lagged state variables in the risk neutral dynamics

and means that the M yields are not properly explained by the K factor portfolios; another

K factors are in principle needed to do this.4 However, working with innovations removes

the second and higher order lags (and, in the case of MA models, lagged error terms) from

the risk neutral dynamics and preserves the M ×K structure of the excess returns model.

This is the key message of this paper: the return or forward-difference format provides a

very convenient framework for testing risk neutral models of the factor dynamics because it

is not necessary to restrict attention to the AR(1) model analyzed by Bams and Schotman

(2003), Bauer (forthcoming), Adrian et al. (2013) and others who use returns data. Moreover,

we find that empirically the measurement errors in the return framework are much smaller

than in the corresponding yield model (see Figure 5). Also, as found by Dai and Singleton

(2000), Duffee (2011a) and Adrian et al. (2013), the yield pricing errors exhibit a large degree

of autocorrelation, which disappears when working with returns (see Table 3). These results

suggest that the latter provides a more powerful framework for asset pricing and model

testing. We use this framework to re-assess the performance of AR(1) and other ATSMs.

Several researchers have noted that the factor loadings estimated for an AR(1) yield

model are typically very close to those of an unrestricted OLS regression and that the

3Thus the factor loadings matrices of these systems should in principle be identical.
4Duffee (2011b) and Adrian, Crump, and Moench (2013) have suggested that the performance of the

AR(1) model might be improved by introducing more factors, but this would also increase the stochastic
dimension of the cross section (see Section 3.2.1).
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measurement errors are only a little larger. Hamilton and Wu (2014) and Duffee (2011a)

compare these specifications and show that the AR(1) restrictions are nevertheless strongly

rejected statistically: the differences between the AR(1) and OLS benchmark are numerically

small but statistically significant. Balduzzi and Chiang (2012) also find strong evidence

against the AR(1) ATSM when testing it against the OLS. These findings reflect the fact that

the pricing errors in the Treasury bond market are very small, which means, as Cochrane and

Piazzesi (2008) observe, that the risk neutral model parameters are very precisely determined,

making data for this market very good at comparing the performance of rival models.

We confirm the rejection of the AR(1) restrictions in our data set but, in a more con-

structive way, we show that richer dynamic models with parameters that are constrained by

asset pricing theory can beat the unrestricted benchmark model. Figure 2 shows the return

loadings for the AR(1) model alongside the unconstrained OLS return loadings and their 95

percent confidence interval. As in previous models, the fit looks reasonable, but many of the

AR(1) loadings on the first two factors lie outside the confidence interval. More worrying,

Figure 1 shows that the intercept coefficients of the AR(1) model are visibly and significantly

flatter than those of the OLS benchmark.5 However, the more flexible models do a better

job, generating loadings that largely coincide with the OLS estimates. Reflecting these ob-

servations, on the basis of the Bayesian Information Criterion, the AR(1) specification is

rejected against the OLS benchmark in both yields and returns models, while the AR(2)

returns model is accepted against the benchmark. Further significant improvements in fit

can be obtained by introducing MA and LM factor dynamics as suggested by Fenou and

Meddahi (2009) and Backus and Zin (1993), respectively.

[Insert Figure 1 near here]

[Insert Figure 2 near here]

5Hamilton and Wu (2014) also find that the badly fitting intercept is the main reason that the AR(1)
model is rejected against the OLS model.
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Although it is very strong, the statistical rejection of the AR(1) model is very subtle. It

is tempting to think that the AR(1) model could be used for pricing other securities without

incurring economically significant losses. However, Bams and Schotman (2003) provide a

more worrying rejection. They use a fixed effects panel data model to test the three factor

AR(1) model in yields and forward differences and find that although the factor loadings

should be the same, they are visibly as well as statistically very different (see their Figure

5). Our findings echo this result, showing that the loadings of the OLS log price model

differ significantly from those of the OLS returns model. As Bams and Schotman argue,

derivative pricing models based on the two different formulations of the AR(1) model would

give different results, particularly for longer maturities.

The paper is set out as follows. The next section sets out the theoretical model of excess

returns, supported by Appendix A. Section 3 shows how we use conventional yield factor

techniques to make this model operational and derive its likelihood function. Section 4

reports the empirical results and compares them with those from conventional yield models.

Section 5 offers a conclusion and some suggestions for future research.

2. A Dynamic Term Structure Model for excess re-

turns

This section sets out the theoretical model of excess returns. This is a dynamic term

structure model (DTSM ), which combines an ATSM that specifies the cross section under

the risk neutral measure with the return forecasting regression that models the real world

dynamics. We follow Duffee (2011b) in assuming in Section 2 that the returns have an exact

factor structure, before introducing measurement errors in Section 3. That section shows

how we take the model to the data and compares it with existing models.
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2.1. Cross section of excess returns

Let Pm,t be the price of the m−maturity zero coupon bond at time t, pm,t ≡ log(Pm,t)

its natural logarithm and pt = [p1,t, p2,t, . . . , pM,t]
′ an M−vector of stacked log prices

representing the cross section. The standard ATSM specifies a linear relation between these

log prices (or equivalently, yields) and a set of K < M linear factors zt = [z1,t, z2,t, . . . ,

zK,t]
′. The spot rate, rt ≡ −p1,t, is modelled as the sum of the factors:

rt = µr + 1′zt, (1)

where, assuming that the factors are mean-reverting, µr is the risk neutral mean of the short

rate and 1 denotes a vector of ones.

Assumption 1 There are no arbitrage opportunities and there is a risk neutral probability

measure such that each price is equal to the discounted expectation of the price under this

measure.

Assumption 2 The yield curve is spanned by K factors.

The risk neutral expectations of the factors must be unbiased:6

zt = EQ
t−1[zt] + uQ

t , uQ
t ∼ i.i.d.NQ(0,Σ) (2)

where uQ
t is a K−vector of mean-zero risk neutral innovations, which we additionally assume

are i.i.d. Gaussian. In this paper we propose an ATSM based on affine relation between the

risk neutral innovations in the log prices and the factors:

pm,t − EQ
t−1[pm,t] = b′

mu
Q
t , m = 1, ...,M. (3)

Section 3.2 explores the relation between this and the standard AR(1) ATSM.

6In this paper expectations and other terms defined under the risk neutral measure are denoted with a Q
superscript. The lack of superscript means that the object is defined with respect to the real-world measure.
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We can estimate this model by making a few minimal assumptions, consistent with

linearity and the absence of arbitrage. Appendix A shows that because forward prices are

risk neutral expectations in this setting, the log excess return on a bond with maturity m+1,

rxm,t = pm,t − pm+1,t−1 − rt−1, is equal to the risk neutral innovation in the log price plus a

convexity term αm:

rxm,t = αm + pm,t − EQ
t−1[pm,t]

= αm + b′
mu

Q
t .

(4)

The convexity term αm depends on the loadings on the risk neutral innovations in (3):

αm = −
1

2
b′
mΣbm (5)

and comes in because we are working with log prices.

We assume that the factors are mean-zero and characterised by the mean-independent

linear representation under the risk neutral measure:7

zk,t =
∞∑

i=0

βk,iu
Q
k,t−i, for k = 1, ..., K, (6)

where uQ
k,t are the i.i.d. Gaussian innovations. This allows the spot rate to be represented

as

rt = µr +
∞∑

i=0

β′
iu

Q
t−i, (7)

where βi = [β1,i, . . . , βK,i]
′.

Assumption 3 Under the risk neutral probability measure the term structure factors have

Gaussian linear dynamics and are mean-independent.

7In other words, as in Joslin, Singleton, and Zhu (2011), the factors have independent dynamics but their
innovations may be correlated as indicated in (2).
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Appendix A shows that the factor innovation loadings in (4) satisfy

bm = −
∑m−1

i=0
βi. (8)

The cross section of M excess returns (4) can be stacked and represented in vector notation

as:

rxt = α+B′uQ
t , (9)

with B =[b1, . . . ,bM ] and, in the absence of arbitrage,

α = −
1

2
Diag(B′ΣB), (10)

where for any square matrix S, Diag(S) is the column vector formed from its diagonal

elements.

2.2. Return forecasting regressions

Under the real world measure P excess returns are not necessarily mean-zero white noise.

We allow for this by changing measure and specifying the difference between the risk neutral

(uQ
t ) and real world (ut) innovations as:

uQ
t = ut +Σ′λt−1, (11)

where the K−vector λt contains the ‘prices of factor risk’.8 These are specified following

Duffee (2002) as:

Σ′λt = λ0 +Λ′
1xt, (12)

where xt is potentially an (K+N)−vector of risk factors. These can include the K principal

components of yields that span the term structure as well as N macroeconomic and other

8See appendix B for details.
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variables that are unspanned, meaning that they affect future returns but not current yields

(Joslin, Priebsch, and Singleton (2014)). Substituting (11) and (12) into (9) gives the return

forecasting regressions (RFRs):

rxt = α+B′λ0 +B′Λ′
1xt−1 +B′ut, (13)

where ut ∼ N(0,Σ).

The details of the change of measure are set out in Appendix B. (9) and (13) constitute a

complete DTSM.

Assumption 4 Under the real world probability measure there can be factors that are not

spanned by the term structure of interest rates but are correlated with the term structure

factors.

3. The econometric specification

This section shows how we model the risk neutral dynamics using conventional yield

factor techniques to make the excess returns model operational.

3.1. An approximate factor model

Our theoretical model assumes that the excess returns have an exact factor structure and

can be explained by K risk neutral shocks (9). However, in practice this model is unlikely

to fit perfectly, because bonds are mis-priced or their prices are observed with measurement

error. There may also be model misspecification errors, due to arbitrage opportunities or the

use of an inappropriate model of the dynamics. To allow for this we follow Duffee (2011b),

denoting observed excess returns with a superscript ‘o’ and assuming these are driven by an
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approximate factor structure which includes so-called return pricing errors vt.
9 These are

assumed to be Gaussian with zero mean:

rxo
t = rxt+vt = α +B′uQ

t + vt, (14)

where vt ∼ i.i.d.N(0,Ξ)

and E(vt|u
Q
t ) = 0.

Assumption 5 Bond returns are measured with independent and identically distributed

Gaussian measurement errors that are independent of the factor innovations.

Because these pricing errors are not part of the formal model of Section 2, they are

not priced. Thus, they have the same distribution under both the risk neutral and real

world probability measure. The factor model assumes that they are orthogonal to the factor

innovations. Also, for convenience, we assume that they have a zero conditional mean.

To estimate the model we assume that excess returns on K bond portfolios are observed

without measurement error. The portfolio weights are derived from an analysis of principal

components of yields. We select the first K principal components of yields, qy,t = W′yt,

where yt is a vector of yields with the same maturities as pt andW is a matrix of eigenvectors

or holdings that defines these portfolios. Applying this matrix to (14) gives the excess returns

on these portfolios qx,t:

qx,t = W′rxo
t = αW +B′

WuQ
t +W′vt. (15)

where αW = W′α, B′
W = W′B′. We assume that these excess return portfolios are measured

without error (W′vt = 0) and can be used as observable factor innovations.

9These measurement errors are small but play a non-trivial role, allowing the cross section to be repre-
sented by an approximate factor model with much lower dimension. As Duffee (2011b) notes, they allow
other ‘knife-edge’ properties like the assumption that some factors are unspanned (influence returns but not
yields) to be used as an approximation. Similarly, Bauer and Rudebusch (2015) argue that small measure-
ment errors in yields can obscure the effect of macroeconomic variables on the yield curve, helping to explain
the empirical finding that they are not ’spanned’ by the yield curve.

10



Assumption 6 There exist K portfolios of bond log excess returns that are measured without

error.

We can then back out the set of unobservable factor innovations uQ
t :

10

uQ
t = B′−1

W (qx,t − αW), (16)

Substituting (16) back into (14) gives the ATSM :

rxo
t = (I−B′B′−1

W W′)α+B′B′−1
W qx,t+vt. (17)

Pre-multiplying (13) by the principal component weights W′ (and using again W′vt = 0)

gives our factor RFRs :

qx,t = c+Cxt−1 + et, (18)

et ∼ N(0,Ω).

where: c = αW + B′
Wλ0, C = B′

WΛ′
1, et = B′

Wut and Ω = B′
WΣBW . Since c and C

are unrestricted (maximally flexible in the terminology of Joslin et al. (2011), henceforth

JSZ), the Zellner (1962) theorem allows us to estimate them by OLS. We denote these OLS

estimates as ĉ and Ĉ. The price of risk parameters λ0 and Λ1are just-identified and can be

backed out separately. Like the model of the cross section, this RFR system (18) could be

estimated as a stand-alone model. However we estimate it jointly with the model of the

cross section (17), exploiting the fact that the variance matrix Σ is the same under both

measures. The likelihood function of the DTSM is set out in Section 4.2.

10Invertibility of BW implicitly depends on the assumption that the factors have distinct dynamics. Joslin
et al. (2011) show that the problem of repeated autoregressive roots can be dealt with using the Jordan
decomposition.
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3.2. Restricting the risk neutral factor dynamics

Unrestricted OLS estimates of the ATSM (9) provide unrestricted estimates of the bk,m

coefficients that can be differenced using (8) to retrieve the parameters βk,m of the un-

restricted impulse responses (6). This model is the most general specification satisfying

Assumptions 2-6. We now specialise this using ARFIMA models to represent the loadings

bk,m and using Eq.(10) to make the model arbitrage-free and thus satisfy Assumption 1.

3.2.1. The autoregressive process of order p

In our model the latent factors zt are mean-zero and mean-independent, described by

the MA representation (6). In the AR(1) model the MA coefficients decline exponentially:

βk,i = βi
k. In the absence of repeated roots, each of these components can be integrated to

return the risk neutral factor dynamics:

zk,t = EQ
t−1[zk,t] + uQ

k,t, k = 1, ..., K, (19)

where:

EQ
t−1[zk,t] = βkzk,t−1. (20)

Stacking these gives:

EQ
t−1[zt] = K1zt−1, (21)

where βk is the k−th diagonal element of the K ×K diagonal matrix K1. This specification

makes zero coupon bond prices log-linear in the levels of the factors:

pt = a+B′zt. (22)

JSZ and others assume that the first K principal components of yields qy,t = W′yt are

measured without error and can be used as observable factors in the cross section, allowing
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the latent factors to be represented by a rotation similar to ours in (16):11

zt = B′−1
W (qy,t − αW). (23)

Forward differencing (22) then gives the excess returns relation (9). The intercept coefficients

are lost in this transform but the loadings matrices B in the log price and excess return

representations are in principle identical as noted by Bams and Schotman (2003). The

AR(1) model is unique in this respect. For example, consider the AR(2) model:

EQ
t−1 [zt] = K1zt−1 +K2zt−2, (24)

where zt is still the K×1 vector of current state variables and K1 and K2 are K×K diagonal

matrices. This can be written in a companion form as a restricted 6 factor AR(1) model:




zt

zt−1


 =




K1 K2

I 0







zt−1

zt−2


+




uQ
t

0


 , (25)

The second superrow of this system incorporates a dynamic identity, which makes it less

flexible than an unrestricted 6 factor AR(1) model. Given our other assumptions, it can be

shown that the log bond prices are affine in the state vector zt and its lagged value:

pt = a+B′
1zt +B′

2zt−1, (26)

where B1 and B2 depend upon K1 and K2 (see e.g. Ang and Piazzesi (2003)). Relaxing

these restrictions would give a conformable OLS encompassing model with 2K × M free

loading parameters. Naturally, the dimension of the model increases in proportion to that of

11Although JSZ specify their model in terms of yields rather than returns, our model frameworks are
in other respects similar. We both use factors that are mean-independent under the risk neutral measure.
Like their VAR model of the real world dynamics, the RFRs that we use to handle the price of risk are
unrestricted and estimated by OLS at a preliminary stage, greatly reducing the number of parameters that
we need to optimize in the maximum likelihood routine.
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the state vector, which is an undesirable feature when it comes to model selection. However,

forward-differencing has the effect of removing the higher order lags from any AR(p) system:

pt − EQ
t−1 [pt] = B′

1

(
zt − EQ

t−1 [zt]
)
= B′

1u
Q
t . (27)

Thus, for more general dynamics than AR(1), the loading matrix B for prices in (22) will be

misspecified and will, in principle, differ from the loading matrix for excess returns in (27).

3.2.2. Autoregressive fractionally integrated moving average models

In addition to the AR class of models, we also consider the more general autoregressive

fractionally integrated moving average ARFIMA(p, d, q) model (see Granger and Joyeux

(1980), Hosking (1981)):

Φk(L) (1− L)dk zk,t = Θk(L)u
Q
k,t, k = 1, ..., K, (28)

where Φk(L) and Θk(L) are polynomials of order p and q, respectively, d is the long memory

parameter and L is the lag operator. This allows us to specify (6) as:

βk(L)u
Q
k,t = Φk(L)

−1 (1− L)−dk Θk(L)u
Q
k,t. (29)

The process is stationary if the autoregressive roots lie outside the unit circle and the long

memory parameter is smaller than 1/2. For example, the ARFIMA(2, d, 2) process with zero

mean for zk,t is given by:

(
1− φk,1L− φk,2L

2
)
(1− L)dk zk,t =

(
1 + θk,1L+ θk,2L

2
)
uQ
k,t, (30)

14



To specify the values of βk used in estimation as a function of ARFIMA parameters we first

note that:

(1− L)−dk = 1 + dkL+ dk (dk + 1)L2/2! + dk (dk + 2) (dk + 3) /3! + . . . , (31)

which can be substituted (together with similar expansions of Φk(L)and Θk(L) in terms of

L) into (29). The β′s are then determined by matching the coefficients on both sides of (29)

at each lag (or power of L). In practice, we only need to compute these coefficients up to

the maximum lag given by the highest maturity of the bond (excess return) in the sample.

This allows the likelihood of the model to be written in terms of the parameters (β) of the

MA process (7) driving the spot rate.

3.3. The dynamic and stochastic dimensions of an AR model

Because the dimension of the ATSM in returns (9) is not affected by the dynamic

specification, this allows different specifications to be tested against the same parsimonious

(K + 1) × M OLS benchmark. Crucially, we do not lose any information about the risk

neutral factor dynamics using this transform. That is because we can use the Yule-Walker

equations to rewrite any AR model like (24) as a moving average process (6), letting the

βk,m parameters and hence the αm and bm coefficients of (4) depend upon AR parameters in

K1 and K2.
12 Maximum likelihood estimates of the latter can then be obtained by fitting

the model to the data and optimizing the likelihood function.

When working with prices rather than returns higher order risk neutral factor dynamics

mean that, besides contemporaneous factor values, their lags are reflected in prices. For

example, the AR(2) model implies that bond prices are affected by both contemporaneous

and once-lagged factor values (26). With K = 3, its companion form (25) is of dimension

6 × 6, which (after rotation) means that prices could be spanned by six noiseless principal

12For example in the case of the mean-independent AR(2) model (24), we write these as: βk,1 = K1,kβk,0,
βk,m = K1,kβk,m−1 +K2,kβk,m−2 for m > 1, where Ki,k is the kth diagonal element of Ki.
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components. However, there is an important distinction from the richer AR(1) model, which

relaxes the dynamic identity: the six factor AR(1) model has a full stochastic span because

it incorporates six factor innovation terms rather than the three incorporated into uQ
t in

(25). It would generally take six principal components or other factor portfolios to hedge

any price in this model, whereas three portfolios (held with the weights b′
mB

′−1
W defined in

(4) and (16)), are sufficient in the 3 factor AR(2) model.

3.4. Identification

We have adopted a series of normalization restrictions to identify the model. First, the

short rate has unit factor loadings, as in JSZ. Second, as in Dai and Singleton (2000), Single-

ton (2006) and JSZ the factor means are assumed to be zero under Q, allowing the central

tendency to be determined by the short rate equation (1). Finally, the factors are ranked ac-

cording to their persistence, as in Hamilton and Wu (2012).13 Other equivalent identification

schemes are possible by invariant transformation (rotation) of the factor dynamics.

We also assume that the factors are mean-independent, as in JSZ. This model is maxi-

mally flexible in the sense of Dai and Singleton (2000)) for AR(1) dynamics (21). However, it

is an over-identifying restriction in richer ARFIMA specifications.14 In other words, it does

not allow for the most general (maximally flexible) specification of the factor dynamics. For

the VAR(2) with K = 3 dynamic model in (24), a maximally flexible specification would al-

low 6 dynamic restrictions. For example, we could follow the JSZ rotation and assume that

K1 was unrestricted and K2 diagonal. Although we can handle this in our excess return

framework by allowing in the factor dynamics in (6) to be interdependent, this additional

flexibility would come at a cost of a significant increase in computational complexity. Adding

long memory component would further complicate modelling the dynamics of the system.

As such, we use our ARFIMA specifications with mean-independent factors as a tractable,

13Specifically, the factors in long memory models are ranked in terms of their long memory and in short
memory models in terms of their highest autoregressive root.

14We are grateful to a referee for pointing this out.
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although not maximally flexible, generalization of the popular AR(1) model.

3.5. The relationship with previous models of excess returns

The excess return framework (14) has also been used by Bams and Schotman (2003),

Bauer (forthcoming) and Adrian et al. (2013) to model the cross section under the AR(1)

assumption.15 However, the framework developed in this paper is novel in two respects.

First and foremost, we use the excess return representation to handle higher order autore-

gressive models as well as ARFIMA models that encompass the AR and ARMA models used

previously in this literature. 16 Second, we use excess returns to model the innovations on

the right as well as the left hand side of (14), mimicking the JSZ assumption that some

portfolios of yields are observed without error by assuming that the returns on these port-

folios are measured without error. This allows us to exploit the consistency between excess

returns that follows from the assumption of no-arbitrage when these have an approximate

factor structure. In contrast, the standard approach completely ignores the information in

the forward rate structure, using the AR(1) specification (21) to model the risk neutral ex-

pectations instead. Bams and Schotman (2003) model the forward difference system on the

right hand side of (14) but use a specific effects panel data model to represent the innovations

uQ
t , while Bauer (forthcoming) uses macro ‘news’ to do this.

Like Bams and Schotman (2003) and Bauer (forthcoming) we model the cross section

under the risk neutral measure, exploiting the precision given by the small pricing errors. In

contrast, Adrian et al. (2013) estimate the parameters of the system under the real world

probability measure P . Under this measure the excess return on the m−period bond in (13)

15Bauer models innovations in forward rates rather than forward log prices, but his specification is similar
to (9).

16Unlike the AR model, these more general specifications do not allow a representation of the cross section
in terms of levels of yields or log prices like (22). However, as we shall see, it is much easier to work with
the forward difference equation when working with more general dynamic specifications (13).
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can be written as:

rxm,t =
1

2
b′
mΣbm + b′

m (λ0 + Λ′
1xt−1) + b′

mut + vm,t (32)

Adrian et al. (2013) adopt the AR(1) assumption, modelling the factors xt−1 under P using

a vector autoregression (VAR). They fit (32) using residuals from this VAR to represent the

priced return innovations ut. The regression coefficients on this vector give an estimate of

bm and the other parameters can be estimated using cross-section regressions.17 These can

be used to construct a model of the AR(1) risk neutral dynamics in (21) and hence estimates

of the factor loadings in the ATMS (22).

4. Estimation method and results

This section presents our results, starting with a description of the data set. It shows how

we use conventional yield factor techniques to make the excess returns model operational and

derive its likelihood function. Our empirical work starts by examining the cross-sectional

behaviour of returns, yields and log prices using (17) and (22). This strongly suggested the

use of return data in subsequent analysis. We next develop a set of RFRs that model the

behaviour of returns under the real world measure P . Then we combine the cross-section

and RFR systems and estimate them jointly as the DTSM.

4.1. Data

The empirical models are fitted to a monthly data sample extracted from two well-known

data sets. The first is that of Gurkaynak, Sack, and Wright (2007), henceforth GSW. This

has the attractive feature that it allows prices and yields to be generated at any maturity,

17The price of risk parameters λ0 and Λ1are just-identified in our framework, but are over-identified in
Adrian et al. (2013) (since the number of bonds in the sample exceeds the number of factors). Thus they
need to use a series of cross-section regressions to estimate these parameters.
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which greatly facilitates the calculation of the monthly log forward prices and returns used in

this study.18 Adrian et al. (2013) also use this source to calculate the monthly returns used

in their RFRs. Because yield data at the long end are thin (issuance of the 30 year Treasury

bond was suspended between 2002 and 2006), we restrict the analysis to maturities up to 15

years. The number of actively traded securities is also sparse at the short end. Moreover,

GSW only employ Treasury bonds in their sample (excluding Treasury bills and notes). They

do not use any bonds with a maturity of less than four months and it is sometimes hard to

reconcile their yield estimates for maturities of less than one year with data for yields on

Treasury bills and notes (which are excluded from their sample). To allow for this we follow

Duffee (2010) and others in taking our short maturity observations from the Fama Treasury

Bill Term Structure Files available from the Center for Research in Security Prices.19 We

also took the data for our one month spot interest rate from this source.

Our cross section of yields and log prices starts at the short end with the 2, 4 and 6

month maturities extracted from the Fama Treasury Bill Term Structure files and adds

those for the annual maturities 1 through 15 from GSW, giving a total of 18 maturities.

Yield portfolios, qy,t, were estimated as the first three principal components of these yields

with weights W given by the eigenvectors corresponding to the three largest eigenvalues of

the yields covariance matrix (qy,t = W′yt). The excess returns on these 18 maturities were

then calculated (rxn,t, with n = 1/6, 1/3, 1/2,1, 2, ..., 15 years) and the weights W were used

to find the noiseless portfolios of returns (qx,t = W′rxt). In view of a suspected structural

break in the time series behaviour following the end of the Volker experiment in 1982, we

used the estimation period January 1983 to December 2011.20

18Conveniently, this gives the parameters of the interpolated yield curve, allowing us to find bond
returns on a consistent time period/maturity basis. The parameters are available from from http:

//www.federalreserve.gov/pubs/feds/2006/200628/feds200628.xls.
19These estimates are obtained using the bootstrap method rather than curve fitting approximations,

which is generally thought to produce more robust estimates at the short end. For a detailed description
please see the US Treasury Database Guide at: www.crsp.com/documentation.

20Garcia and Perron (1996) using a regime switching model and structural change test found shifts in the
ex-post real rate in 1973 and 1981. Bai (1997) using daily data for changes in 3 month Treasury bills found
breaks in October 1979, December 1981, and August 1982.
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Figure 3 presents time series for the 1 month, 3 and 15 year maturity yields. It shows the

well-known downward trend in interest rates over the three decades. This trend underpinned

the handsome realized returns on bonds over this period. In Figure 4 we plot the average

annualized 1 month excess returns on zero coupon bonds over the 1 month rate. It reveals

that over our sample period the excess return on the 15 year zero coupon bond was close to

7.7%.21

[Insert Figure 3 near here]

[Insert Figure 4 near here]

4.2. The likelihood function

The set of variables observable by an econometrician consists of a time series of M excess

returns observable with errors, rxo
t , and K portfolios of these returns that are assumed to

be observed without error, qx,t. Also, an econometrician observes a number of economy-

wide variables, both spanned and unspanned by the bond market, summarized in a vector

of variables xt. The spanned yield curve factors are the first three principal components of

yields, while the unspanned factors are the fourth and fifth principal components of yields

and macro variables. The significance of the conditioning variables in xt is assessed in Section

4.4.

Under these assumptions the parameters of our model can be estimated by joint nonlinear

optimization of the likelihood of (17) and (18). Let Θ ≡ (β, Σ, Ξ, λ0, Λ1) denote the

parameters of the full model where β is a vector of parameters specifying the risk neutral

dynamics βi. Since the model is Gaussian, we estimate it by maximum likelihood (MLE ).

21In this time period the average 1 month rate was 4.15%.
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Conditional upon the lagged factors xt−1, the log-likelihood function is:

log (L(Θ)) =
T∑

t=1

log f(rxo
t ,qx,t|xt−1; Θ), (33)

where the joint conditional density of the observed period t data can be decomposed into

the likelihood (g) of observing the excess returns given the spanned factors (which is given

by (17)) and the likelihood (h) of observing the latter given the lagged factors (18):

f(rxo
t ,qx,t|xt−1; Θ) = g(rxo

t |qx,t; Θ)× h(qx,t|xt−1; Θ)

= g(rxo
t |qx,t; β,Σ,Ξ)× h(qx,t|xt−1;λ0,Λ1, β,Σ).

(34)

Since the unspanned variables are not traded (either individually or as portfolios) they do

not enter the likelihood function. Our estimation strategy is based on a direct specification

of the risk neutral dynamics and the price of risk. The real world factor dynamics can then

be determined subsequently using the change of measure technique described in Appendix

C.

As usual, the parameters of the measurement error covariance Ξ can be concentrated out

of the first (cross-section) component of (34) and, as noted above, the reduced form estimates

ĉ and Ĉ can be substituted for λ0, Λ1 and β in the second (time-series) component:

f(rxo
t ,qx,t|xt−1; Θ) = g∗(rxo

t |qx,t; β,Σ)× h(qx,t|xt−1; ĉ, Ĉ,Σ,), (35)

Thus, we use numerical methods only to find the maximum likelihood estimates of (β,Σ)

using the conditional densities given by (35). Moreover, as in JSZ, we can use a transforma-

tion of the covariance matrix of the residuals from (18) to obtain a good starting value for

Σ:

Σ = B−1
W Ω̂B

′−1
W . (36)

The consistency of the cross-section parameter estimates in (17) depends crucially upon
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our assumption that the excess portfolio returns qx,t are measured without error. This

leaves open the possibility that the portfolios of log bond prices (or yields), qy,t, could

be measured with error. Because we use them as regressors in (18), this would induce

measurement error bias in the RFRs in our framework. However, this is much less of a

problem than errors in qx,t would be. These RFRs are only used in a forecasting guise and

OLS regressions give consistent predictions even if the regressors are observed with error.22

The RFR parameters are only used in a subsidiary exercise to estimate the prices of risk

and hence the P−dynamics, as explained in Appendix C. Moreover, any parameter bias in

the RFRs should be tiny since it depends upon the ratio of the measurement errors to the

prediction errors, which is negligibly small in models of the Treasury market.

4.3. Preliminary cross-section tests

Our empirical tests start by examining the cross-sectional behaviour of yields, log prices

and returns using a conventional three factor model. At this stage we only consider cross-

sectional restrictions on the risk neutral dynamics in an ATSM framework, without imposing

restrictions on the physical dynamics of the factors. Recall that these restrictions mean that

each model of the cross section of returns is linear in variables but subject to nonlinear

restrictions across its coefficients. These models are therefore nested within an unrestricted

OLS benchmark model. Table 1 shows the basic results from these tests. It reports the log-

likelihood for each model, the number of parameters and the Bayesian Information Criterion

value (BIC ), which makes a correction for the number of parameters and sample size and

is the basic model selection criterion used in this paper.23,24 Our tables show the negative

22Johnston (1963), pages 290-291. He also notes on page 283 that decision makers are likely to use the
same mis-measured observations as the econometrician, making it reasonable to suppose this is the relevant
model, giving a plausible split of the returns into forecastable and unforecastable components.

23The weighting matrix used to calculate observable portfolios is the same for the all models: the three
eigenvectors associated with the first three principal components of yields.

24Naturally, yields are a simple transformation of log prices, ym,t = (−1/m)pm,t and, as such, it should
not matter if the model is estimated in yields or prices. The difference in our exercise comes from applying
the same weighting matrix W to find observable portfolios of yields and prices, respectively. We checked
that if we adjust the entries of W by appropriate maturities, then the estimated models are identical.
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of the BIC statistic, making it appropriate to select the model with the highest value of

(−)BIC=2 lnL− k ln(TM), where, L is the value of the maximized log-likelihood function,

k is the number of parameters and T and M are the numbers of observations in the time

series and cross-sectional dimension, respectively.

[Insert Table 1 near here]

The first panel of the table shows that the yields strongly reject the AR(1) restrictions,

reflecting the results of Hamilton and Wu (2014).25 However the second panel shows that

the difference in the test statistics for log prices is smaller than in the yields model. The

final panel of the table shows that the difference between the AR(1) and OLS models is

even smaller in the returns data, but that the latter is still preferred on the basis of the BIC

selection criterion. Further improvements can be obtained by introducing moving average

or long memory factor dynamics but we investigate these models in using the full DTSM

framework, reporting the results in Sections 4.6 and 4.7 below.

We subsequently re-run these tests using a two factor model. Figure 5 plots the standard

deviations of the residuals of the two factor (Panel A) and three factor models (Panel B)

estimated in yields, log prices and returns.26 Again, it is evident that the restricted AR(1)

yield and log price models have difficulty in matching their unrestricted OLS counterparts.

Although the residuals for the two factor AR(1) yields and log prices are visibly higher than

for the OLS, these differences being much higher than for the three factor tests, the difference

remains tiny for the returns model. Moreover, these residuals are surprisingly small, of the

order of 2 − 3 basis points in the 1 − 10 year maturities, hardly any higher than those for

the three factor analogue.

[Insert Figure 5 near here]

25They test these restrictions within a DTSM framework while our test is for the ATSM cross-section
model.

26The standard deviations for the yields are multiplied by maturity to make them comparable with those
for log prices and returns. All quantities are multiplied by 100.

23



Despite the statistical preference for the OLS over the AR(1) models, the response coef-

ficients for these pairs of models are numerically close in each data set, as we would expect

from previous findings reported in the literature. The standard errors are also small. How-

ever, the coefficients of the models fitted to log prices and returns data are visibly different,

as Bams and Schotman (2003) found for their yield and forward-differenced yield models.

As can be inferred from (3), if the AR(1) models replicate the OLS coefficients accurately

then the OLS coefficients of the log price in (22) and returns (9) models should be the same.

This relation holds also for rotated factors:

pt = Aqp +B′
qpqp,t +wt, (37)

and

rxt = Aqx +B′
qxqx,t + vt, (38)

where qp,t = W′pt, since the weighting matrix W is the same. In Table 2 we test the

null hypothesis that Bqp = Bqx. Under the alternative hypothesis (Bqp 6= Bqx) the joint

likelihood is the sum of the likelihoods of the two OLS models shown in Table 1 for the

model for prices and returns (39, 068.08). We compare this value with that of a joint model

that uses the same slope parameters in both log price and returns data (38, 820.81). The

likelihood ratio test rejects the null hypothesis at any conventional significance level. As

noted in Section 3.2, this could indicate dynamic misspecification. The table also shows that

the BIC value for the model under the alternative hypothesis is better than that for the

model under the null.

[Insert Table 2 near here]

It is also worth noting that the volatility of the residuals from the yield and log price

regressions shown in Figure 5, which can be interpreted as pricing errors, is much higher

than in the return regressions. Further analysis of these residuals (see Table 3) shows that
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this could largely be due to the first order autocorrelation in the levels data noted previously

by other authors (Dai and Singleton (2000), Duffee (2011a), Adrian et al. (2013), Hamilton

and Wu (2014)). The autocorrelation in pricing errors can be corrected by first differencing

the data or fitting a time series model to the errors as proposed by Hamilton and Wu.

Switching to a returns or forward difference framework as we propose surely offers a more

natural way of dealing with this problem. Table 3 shows that the return pricing errors are

not significantly autocorrelated, which is consistent with our model assumption. If this were

literally true, this would mean that the bond pricing errors were close to a random walk.27

[Insert Table 3 near here]

4.4. Modelling the price of risk

Our DTSM amalgamates the models of the returns under the risk neutral and real world

measures (respectively the cross-section (17) and RFR (18) models) and estimates them

jointly subject to the restriction that the innovation variances (Σ) are the same in both

models (see Section 4.2). This section discusses the RFRs for the excess returns on the three

noiseless portfolios qx,t (i.e. those that have returns observed without error, (18)) and the

variables driving the price of risk. The evidence on price of risk factors in the term structure

literature is mixed. Cochrane and Piazzesi (2005, 2008) claim that there is only one pricing

factor driving the risk premium that is not spanned by the first three principal components

of the term structure, which is nonetheless a combination of different yields. Duffee (2011b)

shows that the forth and fifth principal components help to forecast excess bond returns and

similar conclusion is reached by Adrian et al. (2013). Based on this evidence, we initially

included the first five principal components of yields in the xt vector in (18). The work of

Ludvigson and Ng (2009) and Joslin et al. (2014) also suggested the use of macro variables

27We are grateful to an anonymous referee for pointing this out.
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like industrial production growth (IP) and expected inflation (EI ).28

Our preliminary estimation results suggested that the second and third principal compo-

nents of yields as well as expected inflation were insignificant in the RFRs and we therefore

drop these regressors from our final model. Table 4, panel A, reports the estimates of the

RFR parameters for the remaining variables and their significance. There is no obvious

pattern of signs and significance across regressors. Panel B of Table 4 reports the F−test

of joint significance of each variable in the three regressions. It is interesting to note that

although the pricing variables are mostly individually insignificant in particular regressions

their overall effect is very significant.

[Insert Table 4 near here]

4.5. The risk neutral dynamics in the DTSM

We estimate eight models that maintain Assumptions 1-6, in which the risk neutral

dynamics are restricted using the following specifications: AR(1), ARMA(1, 1), AR(2),

ARFIMA(1, d, 0), ARFIMA(1, d, 1), ARFIMA(2, d, 0), ARFIMA(2, d, 1) and ARFIMA(2, d, 2).

In these models we parametrize all three factors in the same way, e.g. for the first model

all three factors have AR(1) dynamics. Table 5 reports the estimates of the risk neutral

parameters of these models. The asymptotic standard errors are reported in a small font.

[Insert Table 5 near here]

All models exhibit very high short memory persistence. The highest autoregressive root

is typically higher than 0.99. The models with AR(2) dynamics also display very high short

memory persistence, with roots larger than 0.99, in the second factor (ARFIMA(2, d, 1) and

ARFIMA(2, d, 2)) or in all three factors (AR(2) and ARFIMA(2, d, 0)). The models with

28IP is the monthly logarithmic growth in the seasonally adjusted industrial production index and EI is a
monthly series for the median expected price change over the next 12 months compiled by the, University
of Michigan Survey Research Center. Both series are available from the website of Federal Reserve Bank of
St. Louis.
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long memory, except for ARFIMA(1, d, 0), exhibit ‘dual persistence’ under the Q measure:

long-lasting short and long memory dynamics. The values of the long memory parameter

are different for different models. All long memory models, however, have at least one non-

stationary (i.e. with d > 0.5) and one stationary (d < 0.5) factor. For the ARFIMA(1, d, 0)

model one factor has a very persistent long memory parameter, just below 1, but its AR(1)

coefficient is negative. The most persistent factor in other models with fractionally integrated

component has long memory coefficient between 0.6 (in the ARFIMA(2, d, 0) model) and 0.9

(in the ARFIMA(1, d, 1) and ARFIMA(2, d, 1) models). Generally, the second and third

factors in long memory models also display a significant degree of long range persistence,

between 0.23 and 0.55 (except the third factor in the ARFIMA(2, d, 1) model for which

the long memory estimate is close to zero). The factor dynamics under the Q measure are

shown in Figure 6, which plots the moving average representation of the risk neutral factor

dynamics in these models (the β coefficients in (7)). These effects are depicted in the form

of an impulse response function, showing the response over time of the spot rate to a unit

shock spanned by the yield curve.

[Insert Figure 6 near here]

4.6. The real world dynamics

Appendix C shows how the model of the risk premium (12) is used to obtain the real

world short rate dynamics ((C-8) in this appendix) from the risk neutral short rate dynamics

(7). Figure 7 shows the effect of shocks backed out from the three noiseless portfolios used

as factors (the Φ’s in (C-8)) and is comparable with Figure 6 showing the impulse response

functions under Q. While the general pattern is similar to that of Figure 6, these responses

tend to be smaller and their ‘humps’ more muted, making them look more exponential

than the impulse response functions under Q. Figure 8 shows the effect of the standardized

macro and other unspanned factors (the Υ’s in (C-8)), which affect the risk premium and
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the evolution of the yield curve but not the current yield curve. As expected, an increase in

industrial production increases the interest rate.

[Insert Figure 7 near here]

[Insert Figure 8 near here]

4.7. Relative model performance

4.7.1. Likelihood comparisons

The standard errors of the cross-sectional parameters shown in Table 5 are very small.

There are two reasons for this. The first is that the likelihood of the cross section de-

pends upon measurement errors (vt) that are, as Cochrane and Piazzesi say in their 2008

paper, ‘tiny’ empirically, so that restrictions that generate tiny perturbations in the yield

curve estimates are often rejected. The second is the large sample of the panel data, which

tends to bias classical statistics such as likelihood ratio statistics toward rejection of model

simplifications (Hendry (1995), Canova (2007)). The BIC statistics adjust for this effect.

Table 6 reports the number of parameters, log-likelihood and BIC values for each model.

The most striking fact that emerges from this comparison is the very poor explanation of the

data provided by the AR(1) model. Despite the fact that it saves 57 degrees of freedom, it is

the only model that is not preferred to the OLS model on the BIC. Relaxing the tight AR(1)

dynamics results in a big increase in the likelihood function which in turn results in a better

BIC statistic. For instance, adding the moving average component MA(1) or allowing for

AR(2) dynamics increases the likelihood by 130.50 and 194.96, respectively. However, these

short memory models are still inferior to the models with long memory dynamics. The long

memory models perform much better than the rest in this comparison. According to BIC,

the ARFIMA(2, d, 0) , ARFIMA(2, d, 1) and ARFIMA(2, d, 2) have very similar performance

and are preferred to all the other models.
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[Insert Table 6 near here]

4.7.2. OLS comparisons

Hamilton and Wu (2014) note that the rejection of the AR(1) DTSM against the OLS

benchmark is to a large extent due to its tight restrictions on the intercept terms. If these

are freely estimated the likelihood of the model improves significantly, though not enough to

beat the benchmark. These restrictions stem from Assumption 1 and Jensen’s inequality and

are functions of the moving average coefficients of the factors under the risk neutral measure

(10). Figure 1 plots the intercepts (17) estimated for the AR(1), AR(2), and ARFIMA(2, d, 1)

models against those of the unrestricted OLS benchmark and its 95% confidence interval.

The estimated coefficients depend on the assumption about the weighting matrix W which

selects the noiseless portfolios. For our particular choice of the first three eigenvectors of

yields, the intercepts have a sinusoidal shape. Evidently, all of these models find it difficult

to replicate the OLS intercepts. However, the AR(2) and ARFIMA(2, d, 1) model intercepts,

display a visibly better fit than those of the AR(1) ones, especially at the long end. The

AR(1) model produces intercepts that are too flat to fit the OLS model.

Figure 2 plots the loadings (slope coefficients) on the noiseless portfolios in these models.

These loadings also have a sinusoidal shape. As noted by Cochrane and Piazzesi (2008),

the very small errors give a very tight confidence intervals for the loadings. This allows

for a powerful discrimination between particular models, as noted in the previous section.

As is evident from the figures, despite the fact that the AR(1) model yield loadings seem

to be close to those of the OLS model, these coefficients lie outside the 95% confidence

interval for most maturities. The AR(2) and ARFIMA(2, d, 1) models are able to replicate

the OLS estimates much better, lying within the confidence interval for most maturities.

Also, the ARFIMA(2, d, 1) model fits the slope coefficients slightly better than the AR(2)

model, especially for the first and second portfolios, which is the most likely the reason for

the improved performance in terms of the value of the likelihood function and BIC value.
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4.7.3. Low frequency characteristics

It is well known that interest rates are highly persistent. Usually the highest autoregres-

sive root estimated for a DTSM is very close to one (see e.g. Bauer, Rudebusch, and Wu

(2014) and references therein). Other researchers attribute the high persistence in interest

rates to fractionally integrated or long memory processes (see for example Gil-Alana (2004),

Iacone (2009), Osterrieder (2013), Goliński and Zaffaroni (2016)).

The long range behaviour of yields is best described by the shape of the periodogram

near frequency zero. In Figure 9 we plot the logarithm of the periodogram ordinates of the

standardized first principal component of yields for the first 25 Fourier frequencies. The

periodogram of a series xt is defined as:

I(λ) =
1

2πT

∣∣∣∣∣

T∑

t=1

xte
ıtλ

∣∣∣∣∣ , (39)

where ı denotes a complex unit and the Fourier frequencies are λj = 2πj/T . In the neigh-

borhood of frequency zero the periodogram displays a steep spike, a tell-tale characteristic of

a long memory processes. This is consistent with one of the definitions of the long memory

process, which defines it as having an unbounded spectral density at frequency zero (see e.g.

Baillie (1996), Diebold and Inoue (2001)). On the other hand, a stationary ARMA process

has a bounded spectral density at frequency zero.

[Insert Figure 9 near here]

Although we directly estimate the risk neutral dynamics rather than the physical dynam-

ics, Goliński and Zaffaroni (2016), Theorem 4.4, show that in the affine setting, the largest

order of (fractional) integration under the P and Q measures coincide, and this determines

the spectral density of yields at the zero, i.e.:

s (λ) ∼ cλ−2d as λ → 0+, (40)
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where ∼ denotes asymptotic equivalence and d = max (d1, . . . , dK).

Thus, to examine the ability of particular models to emulate the behavior of the peri-

odogram of yields at ultra-low frequencies, Figure 9 plots the periodogram alongside the

spectral densities of the autoregressive series:

sAR(1) =
(1− φ2)

2π

∣∣1− φeıλ
∣∣−2

(41)

with AR1 coefficient φ = 0.996, and the long memory processes:

sLM (λ) = cλ−2d, (42)

where c is some generic constant. Based on our estimates of long memory parameters, we

plot the spectral density for d = 0.9, which is close to the estimate of the largest long memory

parameter for models ARFIMA(1, d, 1) and ARFIMA(2, d, 1), and d = 0.7, which is close

to the estimate in the ARFIMA(2, d, 2) model. The size of the autoregressive coefficient

corresponds to the typical degree of persistence found in interest rates. It is close to the

highest autoregressive root estimated under the Q measure for the AR(1) model (0.9964)

and slightly higher than the estimate of the autoregressive coefficient for the first principal

component (0.9945). Figure 9 shows that despite the very high short memory persistence

the autoregressive model is not able to match the periodogram ordinates at the lowest fre-

quencies. The long memory models perform much better in this respect. The model with

d = 0.7 matches the lowest frequencies, but it flattens out too quickly for the intermediate

frequencies. It seems that the model with d = 0.9 generates the spectral density that most

closely represents the long range characteristics of these data.

31



5. Conclusion

The term structure literature has almost invariably modelled the dynamics of the yield

curve as the autoregressive process of order one despite mounting statistical evidence that

this model is misspecified (Duffee (2011a), Hamilton and Wu (2014)). It may be tempting

to think that the AR(1) model is still acceptable since the measurement errors are small and

the factor loadings are similar to those of an unrestricted OLS model. However the poor

performance of the model in Bams and Schotman (2003) type tests would caution against

that, revealing that estimating this model in levels and forward-differences has very different

implications for the pricing parameters. The fact that the pricing errors exhibit strong serial

correlation is also a concern. Hamilton and Wu circumvent this problem using an AR(1)

error model, while Adrian et al. (2013) show that formulating the model in terms of returns

eliminates serial correlation.

We find similar evidence against the AR(1) yield model in our data. Using a set of 18

maturities we strongly reject the AR(1) model against the OLS benchmark, regardless of how

it is formulated. Following Adrian et al. (2013), we also find that changing the framework

from yields to returns eliminates the serial correlation in the pricing errors. An additional

and novel result is that we find that this change greatly reduces the size of the pricing errors,

motivating the use of returns rather than yields or log prices for both research and pricing.

Although we adopted a conventional three factor approach, subsequent work on a two factor

variant suggests that the factor structure of the returns data may be of lower order than for

the yield data. We intend to investigate this further in future work. At a practical level, the

observation of Cochrane and Piazzesi (2008) that the tiny pricing error variances seen in the

Treasury bond market make the cross section very good at discriminating between different

models holds a fortiori for the returns framework on account of its lower variance structure.

These empirical findings nicely complement our observation that the return framework is

much more flexible than the affine log price or yield specification and opens the way to the

estimation and testing of a wide range of affine models. We can easily analyse higher order
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autoregressive, moving average and long memory processes, without increasing the dimension

of the model and the OLS test benchmark. It is particularly difficult to handle the long

memory feature in the level framework since this class of processes does not have a finite state

space representation. In our return framework, however, estimating long memory models

is hardly more difficult than estimating other time series models. Our results suggest that

allowing for richer risk neutral dynamics leads to a significant improvement in fit, generating

models with coefficients that are constrained by asset pricing theory and yet are preferred

to the unrestricted benchmark. Log-likelihood and other comparisons strongly support the

use of ARFIMA models, which include AR, LM and MA effects.

In sum, our results suggest that the returns framework has the twin advantages of ac-

curacy and flexibility, important features that have been overlooked in the literature. This

will surely increase its appeal, minimizing the risk of misspecification of the risk neutral

dynamics. Besides the government bond market, this forward market based framework can

contribute to better understanding of the mechanics of other financial markets, including

corporate bond and credit derivative markets. Forward rates and prices are extensively used

in other markets like foreign exchange and commodities, but their full potential for research

and pricing in our view has yet to be exploited.
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Appendix A Forward differences and the coefficients

of the ATSM

Absent arbitrage and measurement error, the one-period-ahead risk neutral expectation

of a security price like Pm,t equals its one-period-ahead forward price, Fm,t = ertPm,t. The

price revisions are affine in the Gaussian innovations in (2). Thus prices are lognormal and

their expectations are:

EQ
t−1[Pm,t] = exp

(
EQ

t−1[pm,t] +
1

2
V art−1[pm,t]

)
, (A-1)

where V art denotes the period t conditional variance. Setting this equal to Fm,t, taking logs

and rearranging gives:

EQ
t−1[pm,t] = αm + pm+1,t−1 + rt−1, (A-2)

where fm,t ≡ ln(Fm,t) and αm = V art−1[pm,t]/2. From (3) we have V art−1[pm,t] = b′
mΣbm

and thus the convexity adjustment term is given by (5). The term (αm + pm+1,t−1 + rt−1)

represents a synthetic forward log price: the value at which a risk neutral agent would price

a contract at t − 1 paying pm,t at t. Subtracting this from the outturn pm,t gives the true

(convexity-adjusted) excess return to this agent. Given (3) and (A-2), this depends upon

the convexity-adjusted excess returns on the factor portfolios: pm,t −αm − pm+1,t−1 − rt−1 =

b′
mu

Q
t . However, we follow the convention of defining the excess return gross of the convexity

adjustment to get (4).

The remaining coefficients of this relation follow from the model (7) of the risk neutral

spot rate dynamics. Advancing this to period t+m:

rt+m = µr +
∞∑

i=0

β′
iu

Q
t+m−i (A-3)
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and taking conditional expectations gives:

EQ
t−1[rt+m] = {µr + β′

m+1u
Q
t−1 + βm+2u

Q
t−2 + . . .},

EQ
t [rt+m] = {µr + β′

mu
Q
t + β′

m+1u
Q
t−1 + βm+2u

Q
t−2 + . . .}

= EQ
t−1[rt+m] + β′

mu
Q
t . (A-4)

Given these expectations and revisions, the parameters of the ATSM of returns follow as

usual from the well-known implication of no-arbitrage for the price of a an m period zero-

coupon bond:

Pm,t = EQ
t exp

[
−
∑m−1

i=0
rt+i

]
. (A-5)

Substituting this back into (A-1) and taking logs gives:

pm,t = −rt − EQ
t

[∑m−1

i=1
rt+i

]
+

1

2
V art

[∑m−1

i=1
rt+i

]
, (A-6)

The i.i.d. assumption means that the last component is independent of t. It can be shown

that (A-3) implies:

V ar
[∑m−1

i=1
rt+i

]
=

∑m−1

i=1
b′
iΣbi. (A-7)

Thus by the tower property of expectations:

EQ
t−1[pm,t] = −EQ

t−1

[∑m−1

i=0
rt+i

]
+

1

2
V ar

[∑m−1

i=1
rt+i

]
. (A-8)

Subtracting this from (A-6) and substituting (A-3) gives:

pm,t − EQ
t−1[pm,t] = −

∑m−1

i=0
(EQ

t [rt+i]− EQ
t−1[rt+i])

= −
(∑m−1

i=0
β′
i

)
uQ
t

= b′
mu

Q
t . (A-9)

35



Finally, equating this with (3) gives the expression (8) for the loadings on the innovations

in the returns ATSM.

Appendix B The change of measure

The change of measure from Q to P depends on the Radon-Nikodym derivative or

dP
dQ

(xt|xt−1) which transforms the conditional densities multiplicatively:29

fP(xt|xt−1) =
dP

dQ
(xt|xt−1)× fQ(xt|xt−1), (B-1)

where fQ and fP are densities under Q and P respectively conditional upon the information

set xt−1. We assume that this multiplier (and hence the distribution of ut under P) is

exponential affine:

dP

dQ
(xt|xt−1) = exp

(
1

2
λ′
t−1λt−1 − λ′

t−1Σ
′−1ut

)
, (B-2)

where λt−1 is the price of risk vector.30 Assuming Gaussianity of the risk neutral innovations

as in (2), the conditional density of the factor innovations under the risk neutral measure Q

is:

fQ(uQ
t ) = (2π)−

3

2 |Σ|−
1

2 exp

(
−
1

2
uQ′
t Σ−1uQ

t

)
. (B-3)

29Although there are two kinds of innovations in our model, shocks to the factors and measurement errors,
these are independent and serially uncorrelated. Consequently the latter are not priced and do not affect
this transform.

30In other words, the Stochastic Discount Function (SDF ) dP
dQ

(xt+1|xt)e
−rt is specified as exp[−rt−

1

2
λ′
tλt−

λ′
tP

′−1
ut+1].
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Substituting these two relations into (B-1) and consolidating the exponents gives the density

of the factor innovations under P conditional upon the information set xt−1:

fP(ut) = (2π)−
3

2 |Σ|−
1

2 exp

[
−
1

2
(ut −Σ′λt−1)

′
Σ−1 (ut −Σ′λt−1)− λ′

t−1Σ
′−1ut +

1

2
λ′
t−1λt−1

]

= (2π)−
3

2 |Σ|−
1

2 exp

(
−
1

2
u′
tΣ

−1ut

)
, (B-4)

which satisfies Et−1[ut] = 0 as reported in (13).

Appendix C Derivation of the dynamics under the P

measure

This appendix shows how the model of the risk premium (11) is used to obtain the model

of the real world short rate dynamics ((C-8), below) from the model of the risk neutral short

rate dynamics (7).

We focus on the relation between the moving average coefficients (or impulse responses)

under the two measures. Thus we ignore intercept terms and assume that λ0 is zero. We use

the method of undetermined coefficients to derive the relation between the moving average

coefficients of the spot interest rate under the two measures, assuming that the system is

initially in equilibrium.

The risk neutral dynamics of the vector zt follow from (6):

zt =
t−1∑

j=0

B′
ju

Q
t−j, (C-1)

where Bj is a diagonal matrix with the diagonal equal to βj. From (A-4) and (A-6) in
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Appendix A we find the price process:

pm,t = µp,m +
∞∑

j=0

(
b′
m+j − b′

j

)
uQ
t−j, (C-2)

where

µp,m = −mµr +
1

2

∑m−1

j=1
b′
jΣbj, (C-3)

bj is defined in (8) and b0 = 0. The yields are then:

ym,t = −
1

m
µp,m +

1

m

∞∑

j=0

(
b′
j − b′

m+j

)
uQ
t−j. (C-4)

It is convenient to stack these relations in a vector yt. It follows that the vector that spans

the term structure of yields, qy,t = W′yt, has the moving average representation:

qyt
= µqy +

∞∑

j=0

Γ′
ju

Q
t−j, (C-5)

where the row entries of µqy and Γ′
j are determined by the product of W′ and the corre-

sponding terms in (C-4).

Joslin et al. (2014) note that the dynamics under P can be richer than under Q in the

sense that they can be driven by the factors that span the term structure (zt) as well as

macroeconomic and other unspanned price of risk factors (mt) . Suppose that there are N

unspanned factors modelled by an AR OLS regression system for these additional variables:31

mt = Θ′
qqy,t−1 +Θ′

mmt−1 + ηt t ≥ 1, (C-6)

where we use mean-adjusted data and ηt is an error vector.

Similarly, we assume that the price of risk is driven by both the observable factors driving

the term structure of bond prices, qy,t, and other unspanned variables, mt. Splitting Λ1 into

31This is not reported but available upon request.
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parts corresponding to term structure factors and unspanned macro factors, the price of risk

can be written following (12) as:

Σ′λt = Λ′
qqy,t +Λ′

mmt. (C-7)

Together with (C-6), this implies that the dynamics of the factors under the P measure are

of the form:

zt =
t−1∑

j=0

Φ′
jut−j +

t−1∑

j=0

Υ′
jηt−j, (C-8)

where the risk neutral and real world innovations are related by

uQ
t = ut +Σ′λt−1

= ut +Λ′
qqy,t−1 +Λ′

mmt−1. (C-9)

Substituting recursively for uQ
t in (C-1) equations (C-5), (C-6), (C-7) and (C-9) we can

express the dynamics of zt by innovations ut and ηt. Thus, matching the coefficients at

corresponding terms we find the P coefficients in (C-8) as

Φ′
0 = B′

0,

Φ′
j = B′

j +

j−1∑

i=0

(
Φ′

iΛ
′
q +Υ′

iΘ
′
q

)
Γj−1−i, for j ≥ 1

(C-10)

and

Υ′
0 = 0,

Υ′
j = Φ′

j−1Λ
′
m +Υ′

j−1Θ
′
m, for j ≥ 1.

(C-11)

We can find the impulse response of the short rate to the k−th latent factor xk,t at lag

j as e′kΦ
′
j, where ek is a vector of zeros with 1 at the k−th position. Similarly the impulse

response of the short rate to the k−th unspanned variable is given by e′kΥ
′
j.
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Tables

Model logL k (-)BIC
Panel A

Yields: yt = Aqy +B′
qyqy

OLS 40, 780.54 60 81, 167.67
AR(1) 40, 533.20 10 80, 978.97

Panel B
Log prices: pt = Aqp +B′

qpqt

OLS 18, 103.61 60 35, 813.81
AR(1) 17, 823.89 10 35, 560.36

Panel C
Returns: xrt = Aqx +B′

qxqxt

OLS 20, 964.47 60 41, 404.57
AR(1) 20, 703.37 9 41, 328.10

Table 1: Preliminary cross section tests of the standard AR(1) ATSM. The table presents
tests of this model formulated in yields (Panel A), log prices (Panel B) and excess returns
(Panel C) against the corresponding OLS model. For each model the table presents the value
of the log-likelihood function (logL), the number of parameters (k), and the (negative of the)
Bayesian Information Criterion (BIC ). The equation standard errors at different maturities
are depicted in Figure 5(b). The sample period is January 1983 to December 2011.

logL LR
p− value

(df = 18× 3)
(−)BIC

H0 38, 820.81 494.55 0 76, 855.05
H1 39, 068.08 76, 877.65

Table 2: Test of equality of the slope parameters in equations (37) as estimated by OLS.
The table reports the log-likelihood (logL), the Likelihood Ratio test (LR), its p−value and
the (negative) Bayesian Information Criterion (BIC ). The sample period is January 1983 to
December 2011.
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Maturity (in years):
Model 1/6 1/3 1/2 1 3 5 10 15
Log prices
ρ(1) 0.7177 0.7224 0.4563 0.7795 0.7820 0.8457 0.8460 0.8581
ρ(6) 0.3736 0.4898 0.2529 0.4725 0.3783 0.4514 0.5027 0.5262
ρ(12) 0.2630 0.2613 0.2952 0.2330 0.3282 0.2575 0.4464 0.4629
Returns
ρ(1) 0.5389 0.0340 0.0403 0.1414 −0.0809 0.0878 −0.0544 −0.0244
ρ(6) 0.2554 0.1061 0.1404 0.1542 −0.1093 0.0494 −0.1670 −0.1638
ρ(12) 0.4677 0.0682 0.1447 0.1159 0.0691 0.1138 0.0945 0.1190

Table 3: Autocorrelation of residuals of the AR(1) ATSM for yields, log prices and returns
for selected maturities. The 95 percent confidence interval is (−0.1072, 0.1072). The sample
period is January 1983 to December 2011.

c PCyield1 PCyield4 PCyield5 IPt R2

Regressand Panel A
x̃r1 0.0428

0.2503
0.4077
0.5091

30.1896
27.62

−66.067
49.70

6.4091
8.240

0.0122

x̃r2 0.0768
0.2018

−0.157
0.4104

−33.614
22.27

30.7493
40.06

−8.262
6.643

0.0129

x̃r3 −0.1863
0.0735

0.0103
0.1495

25.5201
8.112

13.9002
14.60

5.1634
2.420

0.0432

Joint
significance test

Panel B

F (3, 340)
p−value

20.3900
0.000

30.0011
0.000

17.2739
0.000

6.5194
0.001

7.1040
0.001

Table 4: Monthly excess return forecasting regressions (18). These regress the noiseless
portfolio returns on likely risk indicators and determine the price of risk. Standard errors of
the parameters are reported in small font. In Panel B the joint significant test is reported
with the corresponding p-value. The sample period is January 1983 to December 2011.
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Cholesky factor of Ω
φ1 φ2 d θ1 θ2 f1 f2 f3

Panel A : AR(1)
factor 1 0.9964

0.0002
0.9291
0.0003

factor 2 0.9804
0.0005

−0.7389
0.0002

0.0974
0.0000

factor 3 0.9305
0.0017

0.2315
0.0001

−0.1286
0.0000

0.0278
0.0000

Panel B : ARMA(1, 1)
factor 1 0.9965

0.0000
−0.0312

0.0519
0.9166
0.0003

factor 2 0.9682
0.0000

−0.3431
0.0000

−0.7334
0.0002

0.0976
0.0000

factor 3 0.9661
0.0000

−0.3550
0.0000

0.2345
0.0001

−0.1290
0.0000

0.0278
0.0000

Panel C : AR(2)
factor 1 1.9915

0.0000
−0.9916

0.0000
0.9510
0.0003

factor 2 0.4778
0.0002

0.5219
0.0002

−0.7696
0.0002

0.1018
0.0000

factor 3 1.8999
0.0000

−0.9004
0.0000

0.2549
0.0001

−0.1353
0.0001

0.0279
0.0000

Panel D : ARFIMA(1, d, 0)
factor 1 −0.5265

0.0439
0.9908
0.0064

0.9508
0.0003

factor 2 0.9679
0.0006

0.5431
0.0079

−0.7707
0.0002

0.1022
0.0000

factor 3 0.9904
0.0002

0.3855
0.0059

0.2568
0.0001

−0.1357
0.0000

0.0279
0.0000

Panel E : ARFIMA(1, d, 1)
factor 1 0.9101

0.0010
0.8829
0.0019

−0.8658
0.0013

0.9501
0.0003

factor 2 0.9915
0.0000

0.3192
0.0002

0.9743
0.0073

−0.7727
0.0002

0.1019
0.0000

factor 3 0.9922
0.0000

0.3006
0.0002

0.5875
0.0042

0.2598
0.0001

−0.1350
0.0000

0.0278
0.0000

Panel F : ARFIMA(2, d, 0)
factor 1 1.9752

0.0000
−0.9756

0.0000
0.5923
0.0070

0.9429
0.0003

factor 2 0.9818
0.0001

0.0103
0.0002

0.3269
0.0023

−0.7663
0.0003

0.1021
0.0000

factor 3 0.5861
0.0001

0.4068
0.0001

0.2317
0.0083

0.2573
0.0001

−0.1354
0.0000

0.0278
0.0000

Panel G : ARFIMA(2, d, 1)
factor 1 1.9765

0.0000
−0.9771

0.0000
0.8977
0.0243

−0.8984
0.0034

0.9477
0.0003

factor 2 0.2785
0.0003

0.6546
0.0003

0.5133
0.0122

−0.0511
0.0494

−0.7709
0.0003

0.1021
0.0000

factor 3 1.8714
0.0000

−0.8720
0.0000

0.0443
0.0051

−0.6406
0.0102

0.2597
0.0001

−0.1352
0.0000

0.0278
0.0000

Panel H : ARFIMA(2, d, 2)
factor 1 1.9823

0.0000
−0.9828

0.0000
0.6921
0.0093

0.0176
0.0190

−0.8452
0.0000

0.9502
0.0003

factor 2 0.9670
0.0001

0.0003
0.0000

0.4840
0.0006

0.1965
0.0019

0.0932
0.0000

−0.7738
0.0002

0.1021
0.0000

factor 3 1.3082
0.0000

−0.3296
0.0000

0.4818
0.0006

−0.0601
0.0000

−0.0475
0.0000

0.2616
0.0001

−0.1352
0.0000

0.0278
0.0000

Table 5: The risk neutral dynamic parameters of the DTSM s. The standard errors are
reported in small font and the likelihood statistics are shown in Table 6. The sample period
is January 1983 to January 2011.
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Model k logL (−)BIC

OLS 81 21, 526.09 42, 344.26
AR(1) 24 21, 165.92 42, 122.09

ARMA(1, 1) 27 21, 296.42 42, 356.87
AR(2) 27 21, 360.88 42, 485.78

ARFIMA(1, d, 0) 27 21, 370.67 42, 505.38
ARFIMA(1, d, 1) 30 21, 379.96 42, 497.73
ARFIMA(2, d, 0) 30 21, 398.08 42, 533.97
ARFIMA(2, d, 1) 33 21.410.71 42, 533.01
ARFIMA(2, d, 2) 36 21, 424.04 42, 533.45

Table 6: Likelihood statistics for different ARFIMA specification of the DTSM and their
unrestricted OLS benchmark. The columns show respectively: the number of parameters,
the loglikelihood and the (negative) Bayesian Information Criterion.
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Fig. 1. Intercept coefficients by maturity of the AR(1), AR(2) and ARFIMA(2, d, 1) excess
return DTSM models and the unrestricted OLS benchmark. The dashed lines represent the
95 percent OLS confidence interval.
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(a) First return portfolio

0 20 40 60 80 100 120 140 160 180
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Maturity (months)

%

Loadings on the second return portfolio

 

 

OLS

AR(1)

AR(2)

ARFIMA(2,d,1)

95% conf. int.

(b) Second return portfolio
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(c) Third return portfolio

Fig. 2. Slope estimates of the excess returns DTSM for the three returns portfolios as estimated by the AR(1), AR(2) and
ARFIMA(2, d, 1) models and their unrestricted OLS benchmark. The dashed lines show the 95 percent confidence intervals for
the OLS model.
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Fig. 3. Time series of 1 month, 3 year and 15 year zero coupon yields. The sample period is
January 1983 to December 2011.
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Fig. 4. Unconditional mean of excess returns, observed and implied by the AR(1) and
ARFIMA(2, d, 1) models. The dashed lines represent the 95 percent OLS confidence interval.
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Fig. 5. Standard errors of measurement errors for the AR(1) ATSM s formulated in yields,
log prices and excess returns, and their unrestricted OLS counterparts for a two factor
model (a) and three factor model (b). The standard errors for returns and log prices are
directly comparable. The standard errors from the yields model were multiplied by their
yield maturities to make them comparable. All standard deviations are then multiplied by
100. 52
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Fig. 6. Moving average representations of the factor dynamics under the risk neutral measure.
These show the response over time (measured in months) of the spot rate to innovations in
the three spanned factors.
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Fig. 7. Impulse responses showing the response over time (measured in months) of the spot
rate to unit innovations in the three spanned factors under the real world measure. The
responses are given by column sums of Φ′

j defined in C-10.
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Fig. 8. Impulse responses showing the response over time (measured in months) of the short
rate to unit innovations in the standardized unspanned factors: industrial production, fourth
and fifth principal components of yields. The responses are given by column sums of Υ′

j

defined in C-11.
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Fig. 9. Logarithm of the periodogram of the first principal component of yields for the first 25
Fourier frequencies together with spectral densities for fractionally integrated processes with
long memory parameter equal to 0.7 and 0.9 and AR(1) with an autoregressive coefficient
equal to 0.996.
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