
This is a repository copy of CODE DEFENDERS: A Mutation Testing Game.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/116454/

Version: Accepted Version

Proceedings Paper:
Rojas, J.M. and Fraser, G. (2016) CODE DEFENDERS: A Mutation Testing Game. In: 
2016 IEEE Ninth International Conference on Software Testing, Verification and Validation 
(ICSTW). ICST 2016 : IEEE International Conference on Software Testing, Verification and
Validation (ICST) 2016, 10/04/2016-15/04/2016, Chicago, Illinois. Institute of Electrical and
Electronics Engineers , pp. 162-167. ISBN 978-1-5090-1826-0 

https://doi.org/10.1109/ICSTW.2016.43

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


CODE DEFENDERS: A Mutation Testing Game

José Miguel Rojas, Gordon Fraser

Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom

{j.rojas,gordon.fraser}@sheffield.ac.uk

Abstract—Mutation testing is endorsed by software testing
researchers for its unique capability of providing pragmatic esti-
mates of a test suite’s fault detection capability, and for guiding
testers in improving their test suites. In practice, however, wide-
spread adoption of mutation testing is hampered because any
non-trivial program results in huge numbers of mutants, many
of which are either trivial or equivalent, and thus useless. Trivial
mutants reduce the motivation of developers in trusting and
using the technique, while equivalent mutants are frustratingly
difficult to handle. These problems are exacerbated by insufficient
education on testing, which often means that mutation testing is
not well understood in practice. These are examples of the types
of problems that gamification aims to overcome by making such
tedious activities competitive and entertaining. In this paper, we
introduce the first steps towards building CODE DEFENDERS, a
mutation testing game where players take the role of an attacker,
who aims to create the most subtle non-equivalent mutants, or
a defender, who aims to create strong tests to kill these mutants.
The benefits of such an approach are manifold: The game can
serve an educational role by engaging learners in mutation testing
activities in a fun way. Experienced players will produce strong
test suites, capable of detecting even the most subtle bugs that
other players can conceive. Equivalent mutants are handled by
making them a special part of the gameplay, where points are
at stake in duels between attackers and defenders.

I. INTRODUCTION

Testing is an essential activity in any software development

process, with the aim to ensure that software is of a sufficient

quality for its intended application. The quality of test suites

is usually estimated with unreliable proxy measurements such

as line coverage. In contrast, mutation analysis has the unique

advantage of measuring not only how much of a program

is executed, but it also provides an estimate of how well

the test suite performs at detecting faults in the code that is

covered. This is achieved by seeding artificial faults, the so

called mutants, and determining how many of them a test suite

can distinguish from the original program, which is typically

captured quantitatively in the mutation score. Mutants that are

not detected can serve to guide a tester in improving the test

suite and to improve its fault detection ability.

Although empirical results have confirmed that test suites

that are good at detecting mutants are also good at detecting

faults [1], [2], mutation testing is still rarely applied in practice.

There are multiple different conjectures why this is the case:

First, the number of mutants generated for any non-trivial

program can be inhibitively large, creating scalability problems.

Second, only a few of these mutants are typically useful—many

mutants are trivially easy to detect and/or redundant, skewing

the mutation score and providing false confidence in test suites.

Third, some of the mutants are equivalent, which means that

there exists no test case that could distinguish them from the

original program. Although testers can in principle write new

tests to kill mutants not yet detected, the existence of these

types of mutants makes this a frustrating activity. Finally, the

concept of mutation testing can be somewhat confusing to

developers first introduced to it; this may be influenced by

mutation testing not being a well established component of

programming and testing education, which in turn may be due

to the lack of supporting educational mutation testing tools [3].

Gamification [4] is an approach where difficult tasks are con-

verted to components of entertaining gameplay; the competitive

nature of humans is exploited to motivate them to compete

and excel at these activities and to apply their creativity. This

is known to be beneficial in an educational setting [5], but

can also be applied to overcome hard computational problems.

Gamification has been successfully applied in domains such as

character recognition [6] and language translation [7], and has

also been investigated in the context of software engineering,

for example to support version control [8] and testing [9]

activities. The problems of mutation testing seem well suited

for gamification: Generating subtle, non-trivial mutants is a

creative task, as is generating efficient test data to detect these

mutants. Also, as the equivalent mutant problem is undecidable

in general [10] human effort is typically required to solve it.

In this paper, we introduce CODE DEFENDERS, a web-based

game that implements the idea of gamification of mutation

testing. Two players compete over one program under test: an

attacker, who tries to create subtle mutants, and a defender,

who tries to create the best possible test suite. The attacker

scores points by creating mutants that are not detected by the

test suite; the defender scores points by adding mutant-killing

tests. At face value, the player with the higher score in the end

is the winner. However, both players hone their testing skills,

and the real winner is the developer of the program under test,

who gains great tests and subtle mutants. The gamification can

also tackle the equivalent mutant problem: If defenders suspect

mutants to be equivalent, they can challenge the attacker to a

duel, and whoever can prove non-equivalence with a new test

or convince the opponent of the equivalence gains extra points.

CODE DEFENDERS is currently an early prototype that we

are using to explore how to make mutation testing fun, and to

gather feedback from practitioners and other mutation testing

researchers. The game targets Java classes and JUnit tests,

and provides basic gameplay. However, there remain several

challenges to be tackled, ranging from a fair but competitive

scoring system, over modes of entertaining gameplay, to scaling

the approach up to larger programs.



II. BACKGROUND

A. Mutation Testing

Mutation testing is a structural software testing technique

used to evaluate the fault-detection capabilities of a test suite.

In a nutshell, the process consists of seeding artificial faults

(“mutants”) in the program, and measuring how many of them

are found (“killed”) by the test suite. Mutants that remain “alive”

after the test suite execution can be used as testing targets to

create additional tests that kill them, hence enhancing the

existing test suite.

Although evidence suggests that mutation testing is effective

at finding real faults (e.g., [1], [2]), it is not currently widely

adopted by software engineers, due in part to the following

two fundamental technical aspects:

(a) Large number of mutants. The mutation testing process

is driven by a range of mutation operators. The broad

diversity of mutation operator groups soon leads to

producing a high number of mutants even for simple

pieces of code, many of which can be trivially killed or are

simply redundant. Whereas automated approaches exist to

reduce the number of mutants and produce only the most

relevant ones (e.g., [11]), this process is computationally

expensive and in practice it requires commitment from

developers who needs to decide which mutants their test

suites should be run against, and which mutants to use as

target to produce new tests.

(b) Equivalent mutants. Equivalent mutants are arguably one

of the main drawbacks of mutation testing: determining

if a mutant is equivalent by hand can be a challenging

task even for seasoned programmers [12], while doing

so automatically is an undecidable problem in general

[10], [13]. An equivalent mutant, although syntactically

different, is semantically identical to the original program

and therefore no test suite is capable of distinguishing

between them. In practice, the later equivalent mutants are

identified, the more detrimental they become to the overall

cost-effectiveness of the technique: they skew the fault-

detection effectiveness estimates and unavailing effort is

put in trying to create tests to kill them. While several

techniques and systems have been developed to reduce or

detect equivalent mutants (e.g., [14]–[16]), their success

is generally limited to certain types of mutants and human

intervention is still required to discern hard-to-kill (or

“stubborn”) mutants from equivalent ones [17].

Tackling these two intrinsic limitations of mutation testing, at

least given the current state of the art in automation, inevitably

requires human intelligence, creativity, and experience in

mutation testing. Although mutation testing is increasingly

finding its way into programming and testing education [3],

not least because of the active engagement of members of the

mutation testing community, it remains a peripheral, often

cursory, part of the testing curriculum. Consequently, its

effect on the learning processes of novice programmers and

by extension on the performance of professional software

developers remains unclear. Are software developers sufficiently

trained to apply mutation testing in their day-to-day tasks? Can

they choose the most adequate mutation operators depending

on the context of the software under test? Can they distinguish

equivalent mutants? In the absence of any conclusive empirical

study answering these questions, we venture to propose a

gamification approach to familiarise developers with the main

concepts of mutation testing and to contribute to increasing

the adoption level of mutation testing amongst practitioners.

B. Gamification

Gamification is a methodology in which game design ele-

ments (competitions with other players, game rules, point scor-

ing, fantasy scenarios, etc.) are applied in non-game contexts

in order to make unpleasant or dull tasks more entertaining and

rewarding [4]. It can serve as source of formative experiences

for educational purposes or to solve problems which are hard to

compute but relatively easy for humans to solve [6], [7]. There

are several successful examples of gamification for software

engineering, where the methodology has been applied mostly to

increase the motivation and performance of people participating

in software engineering activities [18]. For instance, the popular

FindBugs tool (http://findbugs.sourceforge.net/) was gamified

in order to motivate developers to remove warnings from

their codebase [19] the formal verification of programs was

gamified in such a way that verifying programs does not require

highly trained professionals and becomes a more cost-effective

activity [20] and finally, the web-based game CodeHunt was

developed to teach coding at different skill levels [21]. In

this paper we argue that mutation testing is also amenable

to gamification, and could potentially be an effective way

of bridging the gap between mutation testing research and

software engineering practice [4], [22].

III. CODE DEFENDERS

In this section, we describe a first approach of applying

gamification to mutation testing. This approach has been

realised as an online game available at http://code-defenders.

dcs.shef.ac.uk.

A. Gameplay

CODE DEFENDERS is a turn-based mutation testing game

for Java classes and JUnit tests. Two players are involved in

each game: an attacker and a defender. They compete against

each other by, respectively, attacking and defending a Java class

under test (CUT) and its test suite. The attacker’s role consists

in creating variants of a program under test, i.e., mutants.

Metaphorically, a mutant represents a fault in the CUT, hence

an attack to the fault-detection capability of the associated test

suite. On the other hand, the defender’s role consists in creating

unit tests that can detect, i.e., kill, those mutants. In doing so,

the defender strengthens the test suite and protects the class

under test from the faults represented by those mutants.

Attackers have the first turn in the game. Once the attacker

succeeds in producing a mutant for the class under test, the

turn is passed to the defender, who has the chance to defend

http://findbugs.sourceforge.net/
http://code-defenders.dcs.shef.ac.uk
http://code-defenders.dcs.shef.ac.uk


against the attacker’s mutant. The game develops with rounds

of attack and defence.

Equivalent mutants play an important role in the gameplay.

When a defender suspects a mutant is equivalent and claims

so, the attacker, who created the mutant in the first place, is

challenged either to accept the mutant as equivalent, or to

counter by providing a test that kills the mutant.

Two levels of difficulty are currently available, easy and

hard. The difference between the two is that in the easy mode,

the code of all mutants is revealed to the defender in the form

of contextualised diff reports, whereas in the hard mode, only

a brief description of the mutant is presented to the defender

(e.g., There was a change in line 18.). Intuitively, the easy mode

allows for a more reactive testing strategy, where defenders

would write tests targeted directly at killing mutants according

to how they differ from the original CUT. On the other hand,

the hard mode fosters a more proactive testing strategy, where

defenders would try to defend against all possible attacks

matching the mutant description.

The CODE DEFENDERS point scoring system was designed

to reflect how well the attacker and defender perform at creating

strong mutants and effective tests. Points are awarded to both

players at the end of each round. Table I summarises a game

with player Alice playing as the attacker, and player Bob

taking the role of the defender. The example demonstrates all

the components of the scoring system:

1) Upon submission of a new test, the defender gets one point

per mutant killed by the new test (rounds 1 and 3).

2) Upon submission of a new mutant, if it survives, the attacker

gets one point for each existing test the mutant has survived

(round 2).

3) When the defender claims a mutant is equivalent,...

a) If the attacker is able to submit a killing test, the attacker

gets one point (round 4).

b) If the attacker accepts the mutant is equivalent (round

5), points awarded depend on the difficulty level of the

game. In the easy level, where the defender can see the

actual mutant, the attacker keeps the points collected so

far for that mutant and the defender gets one point. In

the hard level, in contrast, the attacker loses all points

accumulated for that mutant and the defender gets two

points.

In short, attackers win if they produce mutants that survive

defenders’ unit tests longer. Alternatively, defenders win if

they produce unit tests that kill most mutants soon after they

are submitted. The mechanism to assign points in the case of

accepted equivalent mutants is intended to make both players

reflect about the equivalent mutant problem before submitting

a mutant or claiming its equivalence, simply because a reckless

action will have an evident impact on the final score.

B. Game Start

Creating a new game is the first available feature for a player

of CODE DEFENDERS. To do so, the player must specify a

class under test (CUT) by choosing it from a pre-defined list

TABLE I
GAME SCORING SYSTEM EXAMPLE

Round
Alice (attacker) Bob (defender)

Explanation

Action Points Action Points

start − 0 − 0 Game starts

1 m1 Alice submits m1

t1 Bob submits t1
0 1 t1 kills m1

2 m2 Alice submits m2

t2 Bob submits t2
2 1 m2 survives t1 and t2

3 m3 t3 Alice submits m3

Bob submits t3
2 3 t3 kills m2 and m3

4 m4 Alice submits m4

eq(m4) Bob claims m4 equivalent
t4 Alice submits t4

3 3 t4 kills m4

5 m5 Alice submits m5

eq(m5) Bob claims m5 equivalent
ok Alice accepts

3 4 m5 marked equivalent

end 3 4 Game ends; Bob wins

of examples or by uploading a different class. The player must

also pick a role (attacker or defender) and set the number of

rounds the game is going to last and its level of difficulty.

Once a game is created, it is added to a pool of open games,

which are then available to any other user to join. The game

is considered active once a second player has joined, and the

attacker is given the first turn to play. A round is complete

when each player in the game has taken a turn.

C. The Attacker View

In the attacker’s view, shown in Figure 1, a text area allows

the attacker to make changes to a copy of the original CUT.

The attacker’s view also shows all the mutants, alive and

killed, and tests in the game. Currently, the attacker is free to

apply arbitrary changes to the CUT; in the future, we plan to

introduce the notion of fault models to assist in the creation of

more meaningful mutants. When the attacker submits a new

mutant using the “Attack!” button, the system first tries to

compile it. If the compilation fails, the attacker is prompted

to go back and edit the mutant. Alternatively, if the mutant

compiles, all existing tests in the game are executed against it.

We distinguish three possible outcomes of executing of a test

against the original CUT and a mutant:

1) The test passes on the original CUT and passes on the

mutant, which indicates that the mutant has survived.

2) The test passes on the original CUT but fails on the mutant,

hence the mutant has been detected and killed.

3) The test fails on the original CUT, in which case it is

labeled invalid and ignored in the rest of the game.

For the sake of fairness, some restrictions apply on what

constitutes a valid mutant. First, the public interface of the

CUT must not be altered. Second, to avoid the creation of



Fig. 1. The Attacker View

mutants that add irrelevant and difficult to find behaviour

(e.g., if(input ==〈some random value〉)), new branching

or looping statements are not allowed.

D. The Defender View

The defender’s role in the game is to write unit tests for

the CUT. To facilitate this task, the defender view (Figure 2),

consists of a text area with a test template where the player

can write a new unit test, a side panel with the original CUT

source code, two extra panels with the list of mutants (alive and

killed), and the list of tests previously submitted in the game.

When the defender clicks on the “Defend!” button to submit a

new unit test, a compilation and validation check is run on the

test. Only one unit test per submission is allowed (controlled

by counting the @Test annotations in the test code), and no

branching/looping statements are allowed either. If the test is

not valid, the defender keeps the turn and can edit the test.

Otherwise, the valid test is added to the game and executed

against the original CUT and all mutants alive; this action

passes the turn to the attacker and finishes a game round.

E. Equivalent Mutant Duels

The system for incorporating equivalency detection takes

place over multiple in-game rounds, and assumes some level

1Due to space constraints, Figures 2-3 simply intend to depict the layout of
the different game views; the code they contain is not meant to be readable.
Full size screenshots can be browsed at http://code-defenders.dcs.shef.ac.uk.

Fig. 2. The Defender View1

of competency at creating tests from the attackers, even though

their primary task is to create mutants. Defenders can start an

equivalence duel when they suspect that a particular mutant

may be equivalent and cannot be detected by any test. Attackers

must then respond to the challenge in their next turn (Figure 3)

by either accepting that the mutant is equivalent (possibly

http://code-defenders.dcs.shef.ac.uk


Fig. 3. Equivalent Mutant Challenge View

losing several points) or by submitting a test that would detect

it (possibly scoring extra points). This mechanism is expected

to make defenders refrain from starting duels unless they truly

believe mutants are equivalent.

IV. OPEN CHALLENGES

CODE DEFENDERS is an early prototype that we have

developed to explore ways to make mutation testing fun to

learn and practice. Several challenges remain to be addressed

to provide users with a full entertaining and educational

experience, and to explore how this gamification approach can

help to overcome the technical problems of mutation testing.

A. Single- and Multi-player Modes

In its current version, CODE DEFENDERS does not rely

on any test generation or mutation testing tool. Therefore it

requires two human players in each game, which limits its

playability. In future versions we plan to evolve the game to

also support single- and multi-player modes.

A single-player mode implies interaction with an automated

opponent. We plan to leverage existing tools to simulate the

attacker and defender roles. A mutation testing tool, e.g.,

Major [23] or MuJava [24], could be used to simulate the

attacker role of producing mutants. In the simplest case, the

automated attacker could randomly choose and submit pre-

computed mutants for the CUT. A more elaborate alternative

could involve measuring coverage of the set of tests in the game

and attacking with not yet covered mutants. Likewise, existing

unit test generation tools for Java, e.g., EvoSuite [25], could

be plugged in to simulate the defender role. A soft automated

defender could simply pick from a pool of automatically

generated tests at random. A harder-to-defeat defender, in

contrast, could first run the automatically generated tests on

the original CUT and the mutant, which would enable it to

submit, when available, killing tests.

A multi-player mode will require CODE DEFENDERS to

handle multiple players submitting mutants and tests for the

same CUTs. Given the current architecture of the game, this

will mainly pose engineering challenges on the graphical user

interface and underlying database, and a re-design of the game’s

scoring system.

B. Scoring System

As mentioned earlier, the scoring system of CODE DE-

FENDERS is intended to be fair for the two players involved.

That alone, however, does not guarantee an enjoyable playing

experience. We expect that our experience with the current

version of CODE DEFENDERS will help us design a more

engaging gameplay and scoring system. One aspect of the

scoring system where we see room for experimentation, for

instance, is in the handling of equivalent mutants. As explained

in the previous section, when a mutant is claimed as equivalent

by the defender, the attacker must respond by either accepting

the mutant as equivalent, or by providing a killing test. An

arguably more fun protocol here could be that when claiming

a mutant equivalent, depending on their confidence levels, the

defender might be willing to put some points at stake, giving

the attacker the options to engage in the challenge, to reject it,

or even to bluff about actually having a killing test by topping

the amount of points at stake. Eliciting feedback from the

software testing community and early adopters of the game

will be important to refine the current scoring system, as well

as other elements of the game.

C. Scaling to More Complex Classes Under Test

The current interface of CODE DEFENDERS only supports

the inspection of a single Java class per game. Besides changes

to the user interface to support the integration of dependency

classes, there are engineering challenges such as decoupling

the core game components from the building and testing

infrastructure (currently based on Apache Ant and run on

the same web server). Furthermore, it is conceivable that

other testing techniques could be integrated to support players

when using larger code, for example by allowing defenders to

measure code coverage on a new test before submitting it.

D. Abstracting Gameplay from Code

In its current version, CODE DEFENDERS is a code-based

game. That is, playing it requires certain knowledge of Java and

JUnit, because players interact with the system by explicitly

editing and writing actual code. This not only reduces the

number of potential players of the game, but also limits its

playfulness. To overcome this narrowness of scope, we envision

that fictional game scenarios can be designed in which mutation

testing ideas are conveyed to the players without the actual

need to write code. For example, previous work has shown

that a software system can be visualised as a city and that

this metaphor can facilitate certain program comprehension

tasks [26], [27]. A similar approach could be taken to apply

mutation testing concepts: if a city can represent the code under

test, mutations can be mapped to some forms of attacks to the

city, and unit tests can be mapped to defence elements which

protect the city against the incoming attacks.



E. Empirical Evaluation

Recent work has shown that teaching mutation testing has the

potential to improve the learning processes of novice students

in programming courses [3]. The research hypotheses behind

the development of CODE DEFENDERS is that by presenting

mutation testing as a fun activity, a) players will produce strong

tests and mutants for the classes involved in the gameplay, and

b) players will ultimately perform better at testing tasks that can

benefit from applying mutation testing, like fault localisation

and test suite augmentation. Once CODE DEFENDERS reaches

a higher level of maturity, we envision empirical studies to

evaluate the validity of our hypotheses. A viable experimental

setup to evaluate the impact on the technical skills of players

would, for instance, require having a group of participants

engage in the use of CODE DEFENDERS to learn and practice

mutation testing after a tutorial session on the topic. Participants

attending the same tutorial session but with no access to the

game could be placed in a control group. All participants would

be assigned a testing task where mutation testing skills are

required, which will allow to assess whether or not the use of

the game had any effect on their performance.

V. CONCLUSION

In this paper, following the trend of gamifying software

engineering concepts, we advocate the gamification of mutation

testing as a means to foster its adoption among software

developers, which in turn might positively impact software

quality in general. We have presented CODE DEFENDERS, an

online game that aims to make mutation testing fun to learn and

apply. CODE DEFENDERS maps the basic concepts of mutation

testing into game elements, which include generating mutants,

writing tests to detect those mutants, and also a protocol to

deal with equivalent mutants as part of the gameplay. We have

presented design and implementation details of the game, and

have discussed some of the challenges we aim to tackle in

future work. Meanwhile, for some mutation testing fun, CODE

DEFENDERS is available for playing online at:

http://code-defenders.dcs.shef.ac.uk

ACKNOWLEDGEMENT

Thanks to Robert Sharp, Computer Science undergraduate

at The University of Sheffield, for his contribution to the

development of an earlier prototype of CODE DEFENDERS.

REFERENCES

[1] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in ACM/IEEE Int. Conference on Software

Engineering (ICSE). ACM, 2005, pp. 402–411.
[2] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,

“Are mutants a valid substitute for real faults in software testing?” in
ACM Symposium on the Foundations of Software Engineering (FSE).
ACM, 2014, pp. 654–665.

[3] R. A. P. Oliveira, L. B. R. Oliveira, B. B. P. Cafeo, and V. H. S. Durelli,
“Evaluation and assessment of effects on exploring mutation testing
in programming courses,” in Frontiers in Education Conference (FIE).
IEEE, Oct 2015, pp. 1–9.

[4] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From game design
elements to gamefulness: Defining ”gamification”,” in International

Academic MindTrek Conference: Envisioning Future Media Environments

(MindTrek). ACM, 2011, pp. 9–15.

[5] K. M. Kapp, The gamification of learning and instruction: game-based

methods and strategies for training and education. John Wiley & Sons,
2012.

[6] L. Von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum,
“recaptcha: Human-based character recognition via web security measures,”
Science, vol. 321, no. 5895, pp. 1465–1468, 2008.

[7] L. von Ahn, “Duolingo: learn a language for free while helping to translate
the web,” in International conference on Intelligent User Interfaces (IUI).
ACM, 2013, pp. 1–2.

[8] L. Singer and K. Schneider, “It was a bit of a race: Gamification of
version control,” in International Workshop on Games and Software

Engineering (GAS). IEEE, 2012, pp. 5–8.
[9] N. Chen and S. Kim, “Puzzle-based automatic testing: bringing humans

into the loop by solving puzzles,” in IEEE/ACM Int. Conference on

Automated Software Engineering (ASE). ACM, 2012, pp. 140–149.
[10] A. J. Offutt and J. Pan, “Automatically detecting equivalent mutants and

infeasible paths,” Software Testing, Verification and Reliability (STVR),
vol. 7, no. 3, pp. 165–192, 1997.

[11] R. Just, M. D. Ernst, and G. Fraser, “Efficient mutation analysis by
propagating and partitioning infected execution states,” in ACM Int.

Symposium on Software Testing and Analysis (ISSTA). ACM, 2014, pp.
315–326.

[12] A. T. Acree, Jr., “On mutation,” Ph.D. dissertation, Georgia Institute of
Technology, 1980.

[13] T. A. Budd and D. Angluin, “Two notions of correctness and their relation
to testing,” Acta Inf., vol. 18, pp. 31–45, 1982.

[14] K. Adamopoulos, M. Harman, and R. M. Hierons, “How to overcome the
equivalent mutant problem and achieve tailored selective mutation using
co-evolution,” in Genetic and Evolutionary Computation Conference

(GECCO). Springer Berlin Heidelberg, 2004, pp. 1338–1349.
[15] D. Schuler and A. Zeller, “Covering and uncovering equivalent mutants,”

Software Testing, Verification and Reliability (STVR), vol. 23, no. 5, pp.
353–374, 2013.

[16] M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon, “Trivial compiler
equivalence: A large scale empirical study of a simple, fast and effective
equivalent mutant detection technique,” in ACM/IEEE Int. Conference

on Software Engineering (ICSE). IEEE Press, 2015, pp. 936–946.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2818754.2818867

[17] X. Yao, M. Harman, and Y. Jia, “A study of equivalent and stubborn
mutation operators using human analysis of equivalence,” in ACM/IEEE

Int. Conference on Software Engineering (ICSE). ACM, 2014, pp.
919–930.

[18] O. Pedreira, F. Garca, N. Brisaboa, and M. Piattini, “Gamification in
software engineering a systematic mapping,” Information and Software

Technology (IST), vol. 57, pp. 157 – 168, 2015.
[19] S. Arai, K. Sakamoto, H. Washizaki, and Y. Fukazawa, “A gamified tool

for motivating developers to remove warnings of bug pattern tools,” in
International Workshop on Empirical Software Engineering in Practice

(IWESEP). IEEE, 2014, pp. 37–42.
[20] W. Dietl, S. Dietzel, M. D. Ernst, N. Mote, B. Walker, S. Cooper,

T. Pavlik, and Z. Popović, “Verification games: Making verification fun,”
in Workshop on Formal Techniques for Java-like Programs (FTfJP).
ACM, 2012, pp. 42–49.

[21] J. Bishop, R. N. Horspool, T. Xie, N. Tillmann, and J. de Halleux,
“Code hunt: Experience with coding contests at scale,” ACM/IEEE Int.

Conference on Software Engineering (ICSE)(JSEET track), pp. 398–407,
2015.

[22] D. J. Dubois and G. Tamburrelli, “Understanding gamification mecha-
nisms for software development,” in ACM Symposium on the Foundations

of Software Engineering (FSE). ACM, 2013, pp. 659–662.
[23] R. Just, “The Major mutation framework: Efficient and scalable mutation

analysis for Java,” in ACM Int. Symposium on Software Testing and

Analysis (ISSTA), 2014, pp. 433–436.
[24] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: an automated class

mutation system,” Software Testing, Verification and Reliability, vol. 15,
no. 2, pp. 97–133, 2005.

[25] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Transactions

on Software Engineering (TSE), vol. 39, no. 2, pp. 276–291, 2013.
[26] R. Wettel and M. Lanza, “Visualizing software systems as cities,” in

IEEE International Workshop on Visualizing Software for Understanding

and Analysis (VISSOFT), 2007, pp. 92–99.
[27] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities:

A controlled experiment,” in ACM/IEEE Int. Conference on Software

Engineering (ICSE). ACM, 2011, pp. 551–560.

http://code-defenders.dcs.shef.ac.uk
http://dl.acm.org/citation.cfm?id=2818754.2818867

